Embedding theorems and strong approximation

J. NÉMETH

Dedicated to Professor Kairoly Tandori on his 60th birthay

1. Let $f(x)$ be a continuous and 2π-periodic function and let

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

be its Fourier series. We denote by $s_{n}=s_{n}(x)=s_{n}(f ; x)$ the n-th partial sum of (1), and the usual supremum norm by $\|\cdot\|$. We define a class of functions in connection with the strong approximation:

$$
S_{p}(\lambda):=\left\{f:\left\|\sum_{n=0}^{\infty} \lambda_{n}\left|s_{n}-f\right|^{p}\right\|<\infty\right\}
$$

where $\lambda=\left\{\lambda_{n}\right\}$ is a monotonic sequence of positive numbers and $0<p<\infty$.
It is well known that the classical de la Vallée Poussin means

$$
\tau_{n}=\tau_{n}(f ; x):=\frac{1}{n} \sum_{k=n+1}^{2 n} s_{k}(x), \quad n=1,2, \ldots
$$

usually approximate the function f, in the supremum norm, better than the partial sums do. Thus it was reasonable that L. Leindler and A. Meir [2] introduced, in analogy to $S_{p}(\lambda)$, the following class of functions:

$$
V_{p}(\lambda):=\left\{f:\left\|\sum_{n=0}^{\infty} \lambda_{n}\left|\tau_{n}-f\right|^{p}\right\|<\infty\right\} .
$$

They proved the following result concerning the relation between $S_{p}(\lambda)$ and $V_{p}(\lambda)$.
Theorem ($\left[2\right.$, Theorem 1]). If $p \geqq 1$ and $\left\{\lambda_{n}\right\}$ is a monotonic sequence of positive numbers satisfying the restriction

$$
\begin{equation*}
\lambda_{n} / \lambda_{2_{n}} \leqq K \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

Received August 6, 1984.
with fixed positive K, then

$$
\begin{equation*}
S_{p}(\lambda) \subset V_{p}(\lambda) \tag{3}
\end{equation*}
$$

holds.
Furthermore it is well known that in many cases the classical Fejér means

$$
\sigma_{n}=\sigma_{n}(f ; x):=\frac{1}{n+1} \sum_{k=0}^{n} s_{k}(x)
$$

approximate the function better than the partial sums do, but worse than the τ_{n} means. Therefore we introduce a new class of functions in connection with the approximation by $\sigma_{n}(x)$:

$$
F_{p}(\lambda):=\left\{f: \| \sum_{n=0}^{\infty} \lambda_{n}\left|\sigma_{n}-f\right|^{p}| |<\infty\right\} .
$$

The aim of the present paper is to investigate some relations among this new class and the previous ones.
2. We shall establish the following results.

Theorem 1. If $p>1$ and $\left\{\lambda_{n}\right\}$ is a monotonic nonincerasing sequence of positive numbers, then
(4)

$$
S_{p}(\lambda) \subset F_{p}(\lambda)
$$

holds.
Our Remarks show that the assumptions $p>1$ and $\lambda_{n} \downarrow$, in certain sense, are necessary. If we omit one or the other (4) does not hold any more.

Remark 1. For every $p>1$ there exist nondecreasing sequences $\left\{\lambda_{n}^{*}\right\}$ and $\left\{\lambda_{n}^{* *}\right\}$ such that
and

$$
S_{p}\left(\lambda^{*}\right) \subset F_{p}\left(\lambda^{*}\right)
$$

(*)

$$
S_{p}\left(\lambda^{* *}\right) \nsubseteq F_{p}\left(\lambda^{* *}\right)
$$

Remark 2. For any $0<p \leqq 1$ there exist a nonincreasing sequence $\left\{\lambda_{n}^{*}\right\}$ and a nondecreasing sequence $\left\{\lambda_{n}^{* *}\right\}$ such that

$$
S_{p}\left(\lambda^{*}\right) \nsubseteq F_{p}\left(\lambda^{*}\right) \quad \text { and } \quad S_{p}\left(\lambda^{* *}\right) \nsubseteq F_{p}\left(\lambda^{* *}\right)
$$

The proof of these remarks is very elementary and simple, therefore we only present the suitable sequences $\left\{\lambda_{n}^{*}\right\}$ and $\left\{\lambda_{n}^{* *}\right\}$, and the function f, furthermore we detail the proof of (*).

Theorem 2. If $0<p<\infty$ and $\left\{\lambda_{n}\right\}$ is a monotonic sequence of positive numbers satisfying (2) then

$$
\begin{equation*}
F_{p}(\lambda) \subset V_{p}(\lambda) \tag{5}
\end{equation*}
$$

holds.
Proof of Theorem 1. Since

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left|\sigma_{n}-f\right|^{p}=\sum_{n=1}^{\infty} \lambda_{n}\left|\frac{1}{n+1} \sum_{k=0}^{n}\left(s_{k}-f\right)\right|^{p} \leqq \sum_{n=1}^{\infty} \lambda_{n} \frac{1}{n^{p}}\left(\sum_{k=0}^{n}\left|s_{k}-f\right|\right)^{p}=I_{1}, \tag{6}
\end{equation*}
$$

we have to estimate I_{1} from above. Using an inequality of LEINDLER (see inequality (8) of [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leqq K_{1} \sum_{n=1}^{\infty} \lambda_{n}\left(\frac{a_{n}}{\lambda_{n}} \sum_{k=n}^{\infty} \lambda_{k}\right)^{p} \tag{7}
\end{equation*}
$$

which holds for any $\lambda_{n}>0, a_{n} \geqq 0$ and $p \geqq 1$, we have

$$
\begin{equation*}
I_{1} \leqq K_{2} \sum_{n=1}^{\infty} \frac{\lambda_{n}}{n^{p}}\left(\frac{\sum_{k=1}^{\infty} \frac{\lambda_{k}}{k^{p}}}{\frac{\lambda_{n}}{n^{p}}}\right)^{p}\left|s_{n}-f\right| \leqq K_{3} \sum_{n=1}^{\infty} \lambda_{n}\left|s_{n}-f\right|^{p} \tag{8}
\end{equation*}
$$

where the last inequality follows from the fact that $\left\{\lambda_{n}\right\}$ is monotonic nonincreasing sequence and that $p>1$. Inequalities (6) and (8) clearly imply (4), which proves Theorem 1.

The first part of Remark 1 instantly follows taking $\lambda_{n}^{*}=n^{(p-1) / 2}$ (using inequality (7)). Now we prove the second part of Remark 1.

Let $\lambda_{n}^{* *}=\frac{n^{p-1}}{\log ^{p}(n+1)}$ and $f(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$. We show that $f \in S_{p}\left(\lambda^{* *}\right)$ and $f \notin F_{p}\left(\lambda^{* *}\right)$. Since

$$
\begin{gathered}
\sum_{n=1}^{\infty} \lambda_{n}\left|s_{n}-f\right|^{p}=\left.\left.\sum_{n=1}^{\infty} \frac{n^{p-1}}{\log ^{p}(n+1)}\right|_{k=n+1} ^{\infty} \frac{\cos k x}{k^{2}}\right|^{p} \leqq \\
\leqq \sum_{n=1}^{\infty} \frac{n^{p-1}}{\log ^{p}(n+1)}\left(\sum_{k=n+1}^{\infty} \frac{1}{k^{2}}\right)^{p} \leqq K \sum_{n=1}^{\infty} \frac{n^{p-1}}{\log ^{p}(n+1)} \frac{1}{n^{p}}=\sum_{n=1}^{\infty} \frac{1}{n \log (n+1)}<\infty,
\end{gathered}
$$

that is, $f \in S_{p}\left(\lambda^{* *}\right)$. Let $x=0$ and N be large enough. Then we get

$$
\begin{gathered}
\sum_{n=1}^{N} \lambda_{n}\left|\sigma_{n}(0)-f(0)\right|^{p}=\sum_{n=1}^{N} \frac{n^{p-1}}{\log ^{p}(n+1)} \cdot \frac{1}{n^{p}}\left(\sum_{k=1}^{n} \sum_{l=k+1}^{\infty} \frac{1}{l^{2}}\right)^{p} \geqq \\
\geqq K \sum_{n=1}^{N} \frac{n^{p-1}}{\log ^{n}(n+1)} \cdot \frac{1}{n^{p}} \log ^{p}(n+1)=K \sum_{n=1}^{N} \frac{1}{n},
\end{gathered}
$$

which gives that $f \notin F_{p}\left(\lambda^{* *}\right)$. Remark 2 can be obtained taking $\lambda_{n}^{*}=\frac{n^{p-1}}{(\log n)^{1+p}}$ and $f(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}} ;$ or $\lambda_{n}^{* *}=\log n$ and $f(x)=\sum_{n=2}^{\infty} \frac{\cos n x}{n^{1+1 / p}(\log n)^{3 / p}}$.

Proof of Theorem 2. If $0<p \leqq 1$, then using the trivial inequality

$$
\begin{equation*}
|a|^{p} \leqq|b|^{p}+|a+b|^{p} \tag{9}
\end{equation*}
$$

we get

$$
\begin{gather*}
\sum_{n=1}^{\infty} \lambda_{n}\left|\tau_{n}-f\right|^{p}=\sum_{n=1}^{\infty} \lambda_{n}\left|\frac{\sum_{k=n+1}^{2 n}\left(s_{k}-f\right)}{n}\right|^{p} \leqq \tag{10}\\
\leqq \sum_{n=1}^{\infty} \lambda_{n}\left|\frac{\sum_{k=0}^{n}\left(s_{k}-f\right)}{n}\right|^{p}+\sum_{n=1}^{\infty} \lambda_{n}\left|\frac{\sum_{k=0}^{2 n}\left(s_{k}-f\right)}{n}\right|^{p}=I_{1} .
\end{gather*}
$$

Using condition (2) we obtain

$$
\begin{align*}
& I_{1} \leqq \sum_{n=1}^{\infty} \lambda_{n}\left|\frac{\sum_{k=0}^{n}\left(s_{k}-f\right)}{n}\right|^{p}+K_{1} \sum_{n=1}^{\infty} \lambda_{2 n}\left|\frac{\sum_{k=0}^{2 n}\left(s_{k}-f\right)}{2 n}\right|^{p} \leqq \tag{11}\\
& \leqq K_{2} \sum_{n=1}^{\infty} \lambda_{n}\left|\frac{\sum_{k=0}^{n}\left(s_{k}-f\right)}{n}\right|^{p} \leqq K_{3} \sum_{n=1}^{\infty} \lambda_{n}\left|\sigma_{n}-f\right|^{p} .
\end{align*}
$$

Estimates (10) and (11) give (5) in the case $0<p \leqq 1$.
In the case $p>1$ we use the inequality

$$
|a|^{p} \leqq 2^{p-1}\left(|b|^{p}+|a+b|^{p}\right)
$$

instead of (9) and we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left|\tau_{n}-f\right|^{p} \leqq K \sum_{n=1}^{\infty} \lambda_{n}\left|\sigma_{n}-f\right|^{p} \tag{12}
\end{equation*}
$$

similarly as before. Inequality (12) immediately gives assertion (5).

References

[1] L. Leindler, Generalization of inequality of Hardy and Littlewood, Acta Sci. Math., 31 (1970) 279-285.
[2] L. Leindler and A. Meir, Embedding theorems and strong approximation, Acta Sci. Math., 47 (1984), 371-375.

