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Embedding theorems and strong approximation 

J. NÉMETH 

Dedicated to Professor Kciroly Tandori on his 60th birthay 

1. Let f(x) be a continuous and 2n-periodic function and let 

(1) f(x) = Z (ancos nx + K sin nx) 

be its Fourier series. We denote by sn=S„(x) = s„(f; x) the n-th partial sum of (1), 
and the usual supremum norm by || • ||. We define a class of functions in connection 
with the strong approximation: 

s„(X)-= {/• !! i u w i l i 
/ 1=0 

where A = {/.„} is a monotonie sequence of positive numbers and 0 
It is well known that the classical de la Vallée Poussin means 

I 2/1 

r„ = t „ ( / ; x ) := — 2 «*(*)> n = 1 , 2 , . . . 
" k=n+l 

usually approximate the function / , in the supremum norm, better than the partial 
sums do. Thus it was reasonable that L. L E I N D L E R and A . M E I R [ 2 ] introduced, in 
analogy to S„(A), the following class of functions: 

^ - { / • • I l i ^ i w i ' l H - } . 
/ 1=0 

They proved the following result concerning the relation between 5P(A) and VP(X). 

T h e o r e m ([2, Theorem 1]). If \ and {A„} is a monotonie sequence of positive 
numbers satisfying the restriction 

(2) A „ / A 2 „ ^ K n ~ 1, 2, ... 
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with fixed positive K, then 

(3) sp(;.) c vp(A) 
holds. 

Furthermore it is well known that in many cases the classical Fejér means 

1 " 
<r„ = <*„(/; x) := —¡- 2 sk(x) 

« + 1 k=o 

approximate the function better than the partial sums do, but worse than the r„ 
means. Therefore we introduce a new class of functions in connection with the appro-
ximation by <7„(x): 

W ) : = { / : || 2U°n~f\p\\ < 4 n=0 

The aim of the present paper is to investigate some relations among this new class 
and the previous ones. 

2. We shall establish the following results. 

T h e o r e m 1. If p>~ 1 and {A„} is a monotonie nonincerasing sequence of positive 
numbers, then 

(4) S p ( / ) c Fp{l) 
holds. 

Our Remarks show that the assumptions p > l and /.„J, in certain sense, are 
necessary. If we omit one or the other (4) does not hold any more. 

R e m a r k 1. For every p> 1 there exist nondecreasing sequences {A*} and 
{A**} such that 

Sp(A*) c Fp()*) 
and 
O) SP(1**) * F„{)**). 

R e m a r k 2. For any 0 t h e r e exist a nonincreasing sequence {A*} and a 
nondecreasing sequence {/.**} such that 

S„(/•*) et F , (A*) and Sp(A*+) ct Fp(X**). 

The proof of these remarks is very elementary and simple, therefore we only 
present the suitable sequences {A*} and {A**}, and the function f furthermore we 
detail the proof of (* ) . 
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T h e o r e m 2. If and {A„} is a monotonie sequence of positive 
numbers satisfying (2) then 
(5) Fp(X)<=yp{X) 
holds. 

P r o o f of T h e o r e m 1. Since 

1 
(6) 2K\°n-f\p=2K 

n = l n + 1 k±o Z ( s k - f ) «=1 n k = o 

we have to estimate I t from above. Using an inequality of L E I N D L E R (see inequal-
ity (8) of [1]) 

(7) Z K i Z ^ Y ^ K , 2 i t ) 
n = l k = 1 n=l v k=n > 

which holds for any / „>0 , a „ ^ 0 and p ^ l , we have 

(8) 
«=1 " 

~ 1 
y —L 

kÛ k" 
K 

where the last inequality follows from the fact that {A„} is monotonic nonincreasing 
sequence and that p > 1. Inequalities (6) and (8) clearly imply (4), which proves 
Theorem 1. 

The first part of Remark 1 instantly follows taking A*=/i (p_1) /2 (using ine-
quality (7)). Now we prove the second part of Remark 1. 

„p-1 
Let ;** = 

" l o g ' ( n + l ) 
fiFp()*% Since 

and / ( x ) = 2 
cosnx 

2KK-f \>= 2 

11 = 1 n" 

1 

We show that f£Sp(À**) and 

„ t i log" (n + 1 ) 
" cos kx 

£ £2 
k=n+l K 

^ 21 
».p-i / CO l y oo nP-1 1 ~ 1 

i L S i f c ' i ~Kn?i logP(n + 1) ^ = M „=1 log"(/i +1) \k =r+i k2) m±i logp(n +1) n" „±i n log (n +1) 

that is, f£S„(/**). Let x = 0 and N be large enough. Then we get 

2 A „ k ( 0 ) - / ( 0 ) r = 2 l o g P ( n + 1 ) • - Î J 2 n" l = i , = r + i I2) ~ 

N nP-1 I N I 

2 , „ , , logp(n + l ) = K 2 — , „ i ! log" 0 + 1) np „tin 
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which gives that 7,**). Remark 2 can be obtained taking /.*= 

. , , . ~ cos nx ^ °° COS tlx 
and f(x)=2 r ~ ; or > - r = 1 o g " and / ( * ) = 2 " 

( log n) 1 + p 

»•=•:1 N" ¿ A RT1+1/P ( l o g n ) 3 / ' 

Proo f of T h e o r e m 2. If 0 < / ? S l , then using the trivial inequality 

(9) \a\"^\b\" + \a+b\", 
we get 

(10) 2 4 I W I " = 2 4 
n = l n = l 

2 {St-f) k=n+1 

n = l 

Using condition (2) we obtain 

( i i ) A ^ 2 4 

2 ( s k - f ) 
k=0 + 

n 

2 ii 
2 0 * - / ) 

4 = 0 

n A-

2 («*- / ) k = 0 

2 a 
2 W - f ) k = 0 

In 

Kz 2 4 
2 

¡*S 2 4 K - / I " . 

Estimates (10) and (11) give (5) in the case 0 = 1. 
' In the case p > \ we use the inequality 

\a\"^2"-1(\b\" + \a+b\") 
instead of (9) and we get 

(12) 2 4 K - / | p s f 2 4 k - / l f 

similarly as before. Inequality (12) immediately gives assertion (5). 
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