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1. Introduction. BoHR [1] proved (in another form) that if a 2za-periodic in-
tegrable function g is orthogonal to every trigonometric polynomial of order at
most n then the following inequality is true :

M |fxg(’) d’l = Enl-lg(x)l (~e<x<o,n=12.)

where ¢, (and later ¢, k=2, 3, ...) denotes an absolute constant. Later an inequality
of type (1) was discussed by many authors (see e.g. [2], [3]), [4], [6], [9)).

Let L (1=p=-) be the Banach space of all 2z-periodic functions with the
usual norm

2n 1/p
1/, ={f fGPrdx} (1 =p<-e),
Il = esssup 1),

— oo X< 00

We denote by T, the set of all trigonometric polynomials of order at most n
(n=0,1,..)). For feL} let

@ BN = inf If-4l, (r=0,1,2,..).

Let D2, be the set of all 2z-periodic functions f which are absolutely continuous on
(— e, =0) and for which f’¢L2 . It is vell known that

c (4
3) EXN=2Ufl, 1 =pse, fiDh, n=1,2,..).
Using the inequality (3) (case p=1) we can prove the inequality'(l) and cohversely.
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In this paper we prove this statement in abstract normed linear spaces and we give
applications for special spaces.

2. A Bohr type inequality in abstract spaces. Let X be an arbitrary normed linear
space. The norm in X is denoted by || - ||. Let furthermore X* be the dual space of X
(the space of all continuous linear functionals defined on X). The norm in X* is
denoted by [ -]|*. Let L be a subspace of X and

L =Li(X):={g€X*: g(x)=0 Vch[;}.

We can prove that L+ is a subspace of X* We define the best approximation of an
element x€X by elements of L:

E () = inflx—y].
Let T be the following operator:
@ , T: D(T)—~ X linear and T(D) =

where D D(T)(CX) denotes the domain of T.
Suppose that there exists an operator I which has domam D(I)CX *

®) I. D{I) - X* is linear,
1 and T satlsfy the following relation
6 : g(x) = I,(Tx) (vxeD(T) VgED(I ).

Then the following statement is true:

Theorem 1. Let Tandlbe two operators satisfying (4), (5), (6). a) If D (I).=”IH-
then the following statements are equivalent for A=>0:

™ E.(x) =2|Tx| (¥x€D(T)),
® I1gl* = Algl* (vgeD(I)).
b) In the case D(I)CL* the inequality (7) implies (8).

Proof. a) (7)—~(8): We have by the duality prmmple of Nikolskii (sec e.g;

SINGER (8, p. 22))
sup |Ig(Tx)| = sup Ig(x)I—EL(x)SlllTxll
geLL geLt
llgll“sl igi*=1

So for any fixed gED(I)CLL(llgII*Sl) we have
|Ig(Tx)| = A|Tx| (vxeD(T)).

-

Hence by (4) we obtain.
1le()| = Ayl (Vy€X)
therefore we get (8) from the definition of norm in X*.
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b) (8)—~(7): We have by duality principle and by (8)
E (x)= sup |g(x)|= sup |[(Tx)| = sup [Ig|*|Tx] = A|Tx].

geLt geLl geLl
Ngh*=1 Ng*ll =1 Ngh*=1

3. Applications. a) Let X=L} (1=p<e) and let L=T, : n=1,2,..).
Then we:have " X*=L% (1/p+1/g=1, 1=p<e) and (L3)*DL},. Let

2r

TH(L5) = {g€Ly: [ ghdx=0,V4€T,} (1=p<e).

0
* 1 2n
T (L) 2 {g€Llhs [ gt,dx =0, V14,ET )= O(LL).
0 ) . L

Let Tf:=f" (féD(T)::Dgn) and

fsi= [ gt [gen,m={

0

TH(LE) (1=p=<oo),
QL) (=) '

It is easy to see that T and T satisfy the conditions (4), (5), (6) (with D(T)=L* in
the case 1=p<oes, . D(T)CL™* in the case p=-<c). So by Theorem 1 we have

Theorem 2: Let 1=q=e, n=1,2,.... For every g&D,,(I) we have

c
Ly, = —ni “gHLg,,-:

rex
0

b) Let X =L"(w)' 1=p=o be the Banach space of all measurable functions

defined on [—1,1] with norm
1

Sl ={ [ I wdxf? (1 =p <),
o Mlep = 1Sle = ess sup /()]

where :
w(x) = (1—-xPA+x)f (¢, > —1, x€[—1, 1].

We have X*=[L"W)]*=L(w) (1=p<o, l/p+1/g=1) and [L=(w)}*D>L'(w).
Let I1, be the set of all algebraic polynomials of degree at most n (n=0, 1,2, ...)
and let L=1I1,. Then we have

1
Lt = I} (L (W) = {geLi(w): [ gp,wdx =0, Vp,ell,}
-1
&) ‘ (1=p=<e, l/pt+l/lg=1),

I [L=w)] > {geLw): [ gpwdx =0, Vp,£M,pi=Q,(w).
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For any feLf(w) (1=p=o) we define
E:(W’f) = p:gg" "f_pn"p,w (n = 0: 1: 27 )
The following class of functions was defined in [7]:
M, (w):= {fEL?(w): f is absolutely continuous in (—1, 1), Y1—x? f"(x)€L(w)}.
In [7] we proved that

(10) E(w,f) §%”V1—x2 P @low (L=pseo, feM,w), n=1,2,..).

Now, let us define the operators T and [ as follows:

Tf(X) =T, f(x):=V1=x* f'(x) (feD(T,):= M,(w)),
1509 = 1,809 =i [ vOe0dr (eepr,)
where D(/, ;) denotes the domain of I=1,, which is defined by
ay DI, )= [LPW)] 2<g=w, 1/p+l/g=1),

D(I,,):= {gcII}[LP(w)]: g satisfies condition (13)} (1 <g=2)

(12 D(I, )= {g€Q,(w): g satisfies condition (13)} (¢ =1),
where
a3 [ w@g@®dr=o[w"(x) Y1=5*] (x| - 1).

-1

We prove that the operators T and [ satisfy the conditions in Theorem 1.

X

Let feD(T,), geD({,,) and let G(x)= fw(t)g(t)dt,
=1
In the case (1=p<2, so 2<qg=) we have for —1<x<0

66 =| [ wos@ al = ( [ Ig(t)l"w(t)dt)‘“'(fw(:)dt)lf?g

= [ gl wOllx +1)P WP (x)] =
= (x+ )V O W VT = o [W/P@VI=x*] (x ~=1).
For 0<x<1, using the relation

x 1

Gx)= [wyg)dr=— [ w(®g(®dt

-1 x
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1
(which follows from the fact that f wgdt=0 since gED(I,,)). By a similar me-
-1
thod we obtain

G(x) =o[w/?(x) V1—x2] (x—=1).

So relation (13) is true for every gcD(l,,) (1=g=e, n=1,2,...). Therefore by
integration by part we have

f f@Dew@dx= [ f()Gx)dx =

1

V_— "o G(x)w(x) dx:_f1 Tf(x) Ig(x)w(x) dx.

Since this integral exists for every Tf€¢LP(w) and T[D(T)]=LP(w), we have by a
well known theorem of functional analysis that Ig€L%w) and the last formula
proves (6).

By Theorem 1, using (10) we have

= fVl X 3) ==

Theorem 3. Let 1=q=<, n=1,2,.... For every gcD(l,,) we have

Iﬁ;&} f w(t)g(t)“q'w = ilgllq w-

¢) Let X=LP=IL7(—oo, =) (1=p=<) be the Banach space of functions
defined on (—oo, ). Let

o(x) = 0,,s(x) = A +[x)/Pe= "2 (3 =2, 6§ =0, — <x <)
We consider the following subspace of LP:

L:= H,;:= {o(x)p,(x): p,€IT,} (n=1,2,..).
We have

L* = H} (L7) = {geL1: f gp,edx = 0, Vp,,EII}

—c0

(I1=p<es, 1/p+i/fp=1n=1,2,.))
and

Hi(L=) o {geL*: [ gpadx =0 Vp,€ll,}:= Q.
For any @fcL? we define

Efe.f) = inf, le(=pdl, (1=0,1,2,..).
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Freup [3] proved the following inequality:

c 4
) E@N=pmlel, ((=p== ofiM@, n=12..)
where
(15)  My(e);={ef€L?: f is absolutely continuous on (—ee, =), of"€L?}.

We define T=T, and I=1,, as follows:

T(ef) = of (ofeM,(0) :=D(T,)),

1e@= 45 [ e ar (D)),
where
gEH(LP) (1 =p<w) and g
D[I“’")::.{ g€Q (p=<) (satisﬁes condition (16))} ’
where
(16) - J eWedt = Olx["e ()] (Ix] +=2).

— o0

First we prove that T and I satisfy the conditions of Theorem 1. Let fc¢D(T},)
(1=p=<) and let gcD(I,,) (/p+1/g=1),

X

G()=[e@e®adr

— oo

Using (16) we obtain

F@GEI = 16@I| [ O di+ 0] = ollxlo@+o [P0 )| [ 7@ def] =
= o()+of| f k[ o (0)1f7 (@) def] = o(1)+o [|x[¥] f eO)If Odi]] =
0 0o

=o(V)+o [Ixfalef’l, |( [ di)"] = o) +o(1) = o(1) (Jx| ~e2).
So we have by integration by part
an J f@e@g®dx = [ f(DGH)dx =

= J Q(x)f'(x)gz;)'G(x)d-‘= [ Tenigas.
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Since the integral (17) exists for every T(¢f)€LF and T[D(T)]=L” we have IgcL?
and (17) proves condition (6). Other properties of T and [ follow from the definition.
We have by Theorem 1 and (14)

Theorem 4. Let 1=g=o, n=1,2,.... For every gcD(,,)we have

’ 1
)

200 f e(Dg(®) dt“q 5% gl
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