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Metric equivalence of tree automata
FERENC GECSEG

To Professor K. Tandori on his 60th birthday

In [2] and [3] it has been shown that for both frontier-to-root and root-to-fron-
tier tree automata the general product and the a,-product have the same power from
the point of view of metric completeness. In this paper we strengthen these results
by showing that for both classes of tree automata mentioned above the og-product
is metrically equivalent to the general product.

For all the notions and notations not defined in this paper we refer the reader
to [2], [3] and [4].

1. Frontier-to-root tree automata

Throughout this section we use a fixed rank type R. To exclude trivial cases, it
will be supposed that for an m=0, m€R.

Let X and X' (7¢]) be ranked alphabets of rank type R, and consider the
algebars o4, =(4;, 2) (icI). Furthermore, let

0 = {om™: ([T (Ali€D)" X Z,, ~ [] (S licI)imc R}

be a family of mappings. Then by the general product of o/, (icI) with respect to X
and ¢ we mean the XZ-algebra

o =(4,2) = [[(&]ieD[Z, ¢]
with A=]J(4;li€I), and for arbitrary m, ¢€Z%, and a, ...,q,€A4
pri(a(as, ..., a,) = o;(pri(ay), ..., pri(a,)),
where pr; is the ith projection operator and o;=pri(¢™(ay, ..., Gy, 0)). In the sequei
we assume that 7 is given together with a linear ordering =.
" Received May 30, 1984,
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We now define a special type of the general product. To this take the mappings
T (mER, i€) given by ¢7(a, 0)=pr;(¢™(a, 0)) (a€ 4, o€ Z,). We say the product
& above is an «,-product if for every i€l and me€R, ¢f(ay,...,a,,0) (4, ...,
.y Bu€A, 0€Z,) is independent of pr;(ay), ..., pr;(a,) (j€I) whenever i=j.
Let K be a class of algebras of rank type R. Then the operators H, S, P, P,,
P, P, and P, , are defined in the following way.
H(K): homomorphic images of algebras from K.
S(K): subalgebras of algebras from XK.
P(K): direct products of algebras from K.
P, (K): general products of algebras from K.
P, (K): products from P (K) with finitely many factors.
Pao(K): oty -prodl}cts qf algebras from K.
P, ;(K): o-products from P, (K) with finitely many factors.
Next we define the metric equivalence of the general product and the «,-product.
We say that the aq-product is metrically equivalent to the general product if for arbi-
trary class K of finite algebras with rank type R, integer m=0 and DFT-transducer
A=(Z, X,, 4, Q, Y,, P, A)ctr (A) with A=(, a, X,, 4") and =(4, )E P, (K)
there are a 4%=(B, I)¢P, ((K), B=(%,b, X,,B") (b€B",B’cB) and B=
=(2,X,,B, Q,Y,, P/, B)ctr (B) such that Tgq=— 1.
Before showing that the «,-product is metrically equivalent to the general prod-
uct we recall the following result from [1].

Theorem 1. For arbitrary class K of aigebras with rank type R the equality

HSP,(K) = HSP, (K) = HSPP, (K)
holds.

' Using Theorem 1 we prove
Theorem 2. The ay-product is metrically equivalent to the general product.

Proof. It is enough to show that for arbitrary ranked alphabet ¥ of rank
type R, integers m,n=0, ZI-algebra &=(4,Z%) in P (K)NK; and vector
a=(ay, ..., a,)€A" there are a %=(B,X) in P, s(K)NK; and a vector
b=(by, ..., b)EB" such that (#,b) can be mapped m-homomorphically onto
(#,a). If #€P,(K)NK; then, by Theorem 1, &/ isin HSPP, ;(K)NK;. There-
fore, there is a ¥=(C, 2)cPP, ((K) (N K; such that a subalgebra ¢'=(C’, ) of % can
be mapped homomorphically onto &/ under a homomorphism . Let us write €
in the form €= [[(£}ic]) (,=(4;, Z)€P, ;(K), i€1), and for every j (=1, ..., n)
take a c;€y~(a). Set c¢=(c, ..., ¢,). Denote by J a minimal subset of 7 such
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that for arbitrary ¢, c’€C™ there is a j€J with prj(c)=pr;(¢). Let' 8=
=(B, Z)=][(#;|j€J), and define b€eB by pr;(b)=pr;(c) (jEJ,i=1, ..., n).
Moreover, set b=(b,, ..., b,). Then %EP%I(K)HK; and (4, b) is m-isomorphic
to (%, c). Therefore (#, b) can be mapped m-homomorphically onto (., a).

2. Root-to-frontier tree automata

First of all we fix a finite rank type R such that 0¢R. Moreover, Fy(X,U¢)
will denote the set of all trees from Fy(X,U¢&) whose frontiers contain the auxiliary
variable £ exactly once.

Let us define the path, path (p), leading from the root of a tree p€ Fx(X,U¢)
to the leaf € in the following way.

(i) If p=¢ then path(p)=£E.

@) X p=0o(py, ..oy Pm) (6€2,, mER) and p;cF-(X,U& then path (p)=
=(0..)(path (p,)). |

- Next we recall some concepts concerning ascending algebras which are not so
well known (cf. [3)).

Let 2 be an operator domain with 2,=0. A (deterministic) ascending Z-algebra
& is a pair consisting of a nonempty set 4 and a mapping that assigns to every opera-
tor 6€% an m-ary ascending operation o%: A--A™, where m is the arity of o.
The mapping o0 will not be mentioned explicitly, but we write «/=(4, X).
If X is not specified then we speak about an ascending algebra. «f is finite if A is
finite and X is a ranked alphabet. Moreover, &/ has rank type Rif 2 is of rank type R.

Take two ascending Z-algebras &/=(4, 2) and #=(B, X). & is a subalgebra
of & if

(1) BS 4, and

(i) 6®?(by=0*(b) for arbitrary ¢€ZX and b¢B.

Again consider the ascending algebras &/ and & above. Moreover, let y: A—~B
be a mapping.  is-a homomorphism of &/ into & if the equality ‘

0‘% (lp (a)) = (l/I (01), e l// (am))

holds for arbitrary ¢€X and acA, where (4, ..., a,)=06"(a). If there is a homo-
morphism of o onto & then & is a homomorphic image of . )

Next we define the concept of the product of ascending algebras

Let X and ¥ (i€]) beranked alphabets of rank type R, and conSIder the ascend-
mg E'-a]gebras o =(4;, bX)) (€1). Furthermore let

¢ = {o™: [[(A)i€)XZ,, ~ [] ELli€)imeR}
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be a family of mappings. Then by the general product of s#; (icI) with respect to
2 and ¢ we mean the ascending X-algebra

= (4, 2) = [[(]icD)[Z, ¢}

with A=]J(A;li€]) and for arbitrary m€R, ¢€Z, and acA4

(pri(e (a)y), .., pri(6 (a),) = o+ (pri(a)) (i€ ))

where ¢/ (a); is the j*® component of 6/ (@) and 6;=pr;(¢™(a, 6)) ({€1). In the sequel
we shall assume that 7 is given together with a linear ordering =. (If we have more
than one index set then the same notations = will be used for the linear ordering of
each of them. This will not cause any confusion.)

To define the concept of the ay-product of ascending algebras let us introduce the
notation ¢;(a, o)=pr;(¢™(a, o)) for arbitrary i€I, acA and o€Z,. We say that
the product &7 above is an ay-product if for arbitrary i€I, ¢, is independent of its j**
component (j€l) whenever i=j.

In this section the symbols H, S, P, P, P% and Pa,, ; introduced in Section 1
will be used in their original sense and they also denote the corresponding operators
for ascending algebras. This double use will not cause any difficulties since their con-
crete meaning will be clear from the context.

We say that (regarding ascending algebras) the oy-product is metrically
equivalent to the product if for arbitrary class K of finite ascending algebras with
rank type R, integer m=0, uniform deterministic root-to-frontier transducer A=
., X,, 4, 2,7, ay, P)ctr (A) with A=(, ay, X, a) and L €P,(K) there area Z=
(B, D)EP, ;(K), B= (ﬂ by, X, b) (by€B, b P(B)) and B=(Z, X,, B, ,Y,, by, P')€
€tr (B) such that Ty==7q.

We introduce some more terminology.

For every operator domain Z (of rank type R), 2 will denote the operator do-
main {(o, k)|6€Z,, 1=k=m, mcR} of unary operators.

Take a X-algebra &/=(4, X) of rank type R. Correspond to & the E algebra
s(#)=(4, Z) given by (o, k)" (a)=pr(c”(a)) (6€Z,, 1=k=m, ac 4).

Obviously, s is a one-to-one mapping of K5 onto K5, where Kj is the class of all
ascending X-algebras. Moreover, we have

Statement 1. For arbitrary operator domain X of rank type R and Z-algebras
A, B and B; (icl) we have ,
() #=][(Hicl) if and only if s()=[[(s(LlicD),
(ii) & is a subalgebra of & if and only if s(#) is a subalgebra of s(),
(iii) A is a homomorphic image of o7 if and only if s(#) is a homomorphic image
of s(H).
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Next we define a restricted form of products for the above Z-algebras. Take
a family o= (s, £) (fcI) of Z'-algebras, where every X' (i€I) is an operator
domain of rank type R. Moreover, let 2 be an operator domain with rank type R.
Then a general product (o,-product)

A =(4,2) = ][ (#]icDIZ, ¢]

is a restricted product (restricted oy-product) if for arbitrary icl, a€A and (o, k),
(0’, I)EE, (pi(aa (0'9 k))=(0',-, k) and (Pi(aa (O’, l))=(0',-, l) (0’,-6):’).
The following result is also obvious.

Statement 2. The formations of the restricted product and the restricted og-
product are transitive. Moreover, the direct product preserves both the restricted prod-
uct and the restricted og-product.

For arbitrary Q¢ {P,, Pao} denote Q the restricted version of Q. Moreover,
Q, will stand for P, if Q=P,, and Q,=P, , if Q=P,. We use the notation
Q, for the restricted form of Q. Take a set K of ascending algebras with rank type R.

Then K is defined by K={s(«)|#€K}.

Statement 3. For arbitrary class K of ascending algebras with rank type R,
algebra s/ of rank type R and QE{P,, P%} the following conditions hold.

() LEQ(K) if and only if s(o£)EQ(K).

(i) H€Q(K) if and only if s()EQ(K).

Next we prove

Lemma 1. Let K be a class of ascending algebras with rank type R, and take
a Q¢c{pP,, P%}'. Then HSQ(K)=HSPQ/(K).

Proof. The inclusion HSPQ (K)SHSQ(K) is obvious.

Let us show the converse inclusion. By Statements 1 and 3, s(HSQ(K))=
=HSQ(K) and s(HSPQ/(K))=HSPQ/(K), where s is extended to classes of
ascending algebras in an obvious way. We show that HSQ(K) NK; S HSPQ(K)N K3
for every operator domain XY of rank type R. This will imply HSQ(K)=
=S‘1(HSQ(K))gs‘l(HSPQf(K))=HSPQI(K).

By Statement 2, HSQ(K)NKj5 is an equational class. Assume that an equation
p(x)=q(x) (p, g€ F5(x)) does not hold in HSQ(K)NK;. Let us write p and g in
a more detailed form p=a;(...(61(x))...); g=@,(...(01(x))...) (03, w;€Z, i=1, ..., k,
Jj=1, ..., 1), and assume that I=k. Moreover, set p;=0;(...(61(x))...).(=0, ..., k)
and gi=o(...(0,(x))...) (F=1,...,1), where py=go=x. There are an

o = (4,5 = J] (ZieD[Z, 0] Q(K)
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and an ayeA such that p(ag)#4q(ag). (Here and in the sequel the above notation
means that & is formed by the product represented by Q and every &, (f€I) is in
R.) Set A'={aypli=1, ..., k}U{ayq|i=1, ..., 1}. Denote by I, a minimal subset
of I such that for arbitrary iwo distinct clements a, beA’ there is an €1, wilh
pr; (a)pr; (b). Moreover, let I;,, (1=j=k) be a minimal extension of I; under
wlich for arbitrary i€1;, a,béA’ and oc¥ if ¢, (a, 0)#%@;(b, 0) then there is a
(€I, such that ¢, depends on its #th component and pr,(a)pr(b). (We write
@, for ¢}) Set J=I,, and restrict the ordering of I to J. Obviously, J is finilc.
Take the product

o = (4,5) = [[(A)j€DIZ, ¢']

where ¢ is given as follows. For arbitrary a€d, 1=j=k, icl; and o€, (p,(ﬁ, 0)=

=¢,(a, o) if there is an acA’ such that pry, (ﬁ) =pry l(a) (Here and in the
sequel il I’ ST and ay, ax€ [](A4,)i€]) then pr, (a]) =pry (a,) means that pry(a)=
=pr, (ap) for every i€I’.) In all other cases ¢’ is given arbitrarily in accordance
with the definition of the product represented by Q. ¢’ is obviously well defined. It is
also clear that «/€Q +(K).

For every m=1, ..., k+1 introduce the relation a@~,a (d€A4,acd’) if and
only if’ pr; (@)=pr; (@), and let ay€ A satisly dg~y410y. Then py(Gy) ~pr1-; (o)
and q;(dg) ~g+1-;4;(a,) for arbitrary i (=0, ..., k) andj (=0, ..., /). In particular,
(@) ~p(ap) and q(@p)~19(a,). Therefore p(dy)#q(a,), that is p(x)=¢(x) does
not hold in HSPQ (K)NK;.

The case when an equation p(x)=¢(») (p€F5(x), q€F3(»)) is not valid in
HSQ(K)NK; can be treated similarly.

Lemma 2. For arbitrary class K of ascending algebras with rank type R the
equality HSPH(K)=HSP%(K) holds.

Proof. The inclusion HSP, (K)SHSP,(K) is obviously valid.

To prove HSP,(K)SHSP (K), by Statements 1 and 3 it is enough to show
HSP,(K) SHSP (K) Take an opel ator domain ¥ of rank type R, and consider an
equation p(x)= q(x) (p, g€ F5(x), h(q)=h(p)=k) which does not hold in
HSP,(K)NK;5. Then there are an

= (4, ) = [[(sh = (s, Vi€ )5, IR, (B)

andan’ a€ 4 suchthat p(a)s%q(a). Take J={l, ... k+1} with thenatural ordering
and order JXI in the following way: for arbitrary two (jy, ), (Ja, in)€J X,
(i, i) =(ja» is) if and only if j,<j,, or j,=j, and i=i,. Consider the restricted
oy-product

B = (B’ E) = H(’M(J',i)l(j’ l)EJXI)[E’ (P,],
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where o, =, ((j,i)€JxI), and for arbitrary b€B and o€Z, @,,(b,0)
(feI) is arbitrary, and @ (b, 0)=¢,(b;_1,0) (1<j=k+1,i€l), where
beJ[(4JicI) is given by the equality pry ,(B)=prib) (t=1, ..., k+1,icl).
Introduce the notation b=(by, ..., by4s) Where by, ..., by, are defined by the
previous equalities. Taking b=(a, ..., @) and an ré F5(x) with h(r)=k, one can
show easily by induction on h(r), that the equality

F9(B) = (cis rs Gy 19(@)y ey 19(a)

holds, where ¢=h(*) and ¢, ..., cteﬂ(Aih'EI). Especially, ’2®=(c, ...,
5 Co p?(@) and  ¢g?B)=(ci, ..., crs 4% (@)  (c1s oves Chs €55 ooes LE JI(AFET)).
Therefore, p?(b)#q*(b), that is p(x) q(x) does not hold in HSP, (K)NKs.

The case when an equation of form p(x)=q(») (p(x)€ Fz(x), q(y)EF—(y))
is not valid in HSP,(K)NK; can be treated similarly. Thus we got that
HSP,(K)NK; SHSP, (K)NK;, which implies the inclusion HSP,(K)NK;S
SHSP, (K)NK5. This ends the proof of Lemma 2.

For arbitrary class K of ascending algebras with rank type R let 1(K) denote
the subclass consisting of all ascending algebras from K generated by single elements.
The members of 1(K) will be written as systems (&7, @) where &K and a is a gen-
erating element of 7.

Theorem 1. The general product is metrically equivalent to the oy-product if
and only if for arbitrary class K of finite ascending algebras with rank type R the equal-
ity
() 1HSP,(X) = 1HSP, (K)
holds.

Proof. Assume that (%) is valid. Take a system (&, @)€1SP . (K) with
A=(4,%). By (%) and Lemma 1, (&, a)€1HSPP,  (K). Then there are a
#=(B, 2)€PP, -(K) and a bEB such that for the subalgebra %'=(B’, X) of %
generated by b the system (%, b) can be mapped homomorphically onto (&, a).
(This terminology means that b is mapped into a under the given homomorphism
of # onto &7.) Let us write % in the form

B = [[(BeT) (B, = (B, 2)eP,, (K), i€l).

Take an integer m=0, and consider B{". Denote by J a minimal subset of  such
that for arbitrary two distinct elements by, b,¢ B there is a j€J with pr; (by)#
#pr; (by). Obviously, J is finite. Define b€ [J[(B,j€J) by pr;(b)=pr; (b). Let
#=(B,X) be the ascending subalgebra of 1[(#,ljeT) genelated by b. Then
(% b)e1SP, (&) and il is m-isomorphic to (#’, b). Thus (ﬂ b) can be rnapped
m-homomox ph1ca11y onlo (o7, a). This ends the proof of the sufficiency.
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In order to prove the necessity assume that the oy-product is metrically equiv-
alent to the product. Take a class K of finite ascending algebras with rank type R.
Set L=HSP,(K) and L=HSP, (K). We show that (%) holds, i.e., 1L=1L.
To this, by Statements 1 and 3 it is enough to prove that for arbitrary operator
domain X of rank type R if an equation p(x)=g(x) (P, g€ F5(x)) does not hold in
s(L)NK3 then it is not valid in s(L)NK3 since this implies that the free algebras
in the equational classes s(L)NK; and s(L)NK; generated by single elements
are isomorphic.

Thus assume that p(x)=g(x) (P, g€ F5(x)) does not hold in s(L)NKjz.
Then, by Lemma 1, there is an (o, a)€1SP,;(K) (o =(4, Z), a¢ A) such that
p(ap)#G(ay). Take #=(4, X) with s(«£)=«. Then (, ay)€1SP, (K). Consider
the transducer A=(Z, X,, 4, 2, AXX,, a,, P) where n=>1 is an arbitrary natural
number, Q,=A4XZX, (I¢R) and P consists of the following productions:

(1) ax; - (a> xi) (aEAa xieXn s
(2) aoc —~ (a’ o)(aléls seey 0161) (aEA’ GEZU IGR’ ad(a) = (al’ vees al))‘

Take two trees p, g€ Fy(X,U¢&) such that p=path (p) and g=path(g). Let
mzh(p), h(g). Then, by our assumptions, there is a (%, bp)€1SP, ((K)
(#=(B,2),beB) such that for a B=(Z,X,,B, 2, AXX,, by, P')ctr (B)
(B=(=, By X, b)) we have Tg=Tg. One can easily show by induction on the height
of a tree that for every r€ Fy(X,U¢&) with h(r)=m and path (r)=F the derivations

agr =>4r’'(aé) and byr =%5r"(bé)

hold, whete r’, r"€ Fo(AX X,U¢), a=i(a,), b=7#(b)) (B=s(AB)) and path (+")
is a subword of path (+). In particular,

agp =4p (a:8), bop=35p"(b,0),
and

ayq =4q'(asf), bog=%q"(by¢)

where  p’,p”, ¢, g€ Fo(AX X, UL, a,=p<(a)), b,=p3(b), a;=§%(a;) and
b,=g3(b,). By our assumptions, a,>a,. Assume that b,=b,. Take the trees p(xy)
and g(x,). Then

aop(xy) =’§1P’((01a xl))’ apq(xy) =>sth'((az, xl))
bop(x) =8p"(s), bog(xD) =59"(s)

where s is the right side of the rule b, x; s in P’. Therefore, at least one of the equal-
ities p’((ay, x)))=p"(s) and ¢’((ay, x)))=¢"(s) does not hold contradicting the
choice of B. Thus we got that p#(b,)=g®(b,), that is the equality p(x)=g(x) is
not valid in s(L)N K3, which ends the proof of Theorem 1.

and
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From Theorem 1, by Lemma 2, we obtain

Theorem 2. Regarding ascending algebras the ay-product is metrically equival-
ent to the general product.
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