A tormula for the solution of the difference equation $x_{n+1} = ax_n^2 + bx_n + c$

DIETMAR DORNINGER and HELMUT LÄNGER

There are many papers dealing with the qualitative behaviour of the solution of the difference equation $x_{n+1} = ax_n^2 + bx_n + c$, but up to now no explicit formula for the solution is known. (For a survey of results cf. [2].) In the following we deduce such a formula in a graph-theoretic context.

By a graph (V, E) with the vertex-set V and the set of edges E we mean an undirected graph without loops and without multiple edges. Thus the set E of edges of a graph (V, E) can be considered as a set of unordered pairs $\{v, w\}$, where v, wbelong to the set V. A graph (V, E), wherein a certain vertex v_0 is distinguished as the "root" of the graph, will be called a rooted graph and will be denoted by (V, E, v_0) . A rooted graph S which is a subgraph of a rooted graph G will be called a rooted subgraph of G, if the roots of S and G coincide.

Definition 1. For any non-negative integer n let T_n denote the rooted graph

 $(P(\{1,\ldots,n\}),\{\{M,M\setminus\{\max M\}\}|\emptyset\neq M\subseteq\{1,\ldots,n\}\},\emptyset)$

where $P(\{1, ..., n\})$ denotes the power set of $\{1, ..., n\}$ and max M the maximum number occurring within the subset M of $\{1, ..., n\}$.

Remark. T_n can be easily constructed inductively by observing $T_0 = (\{\emptyset\}, \emptyset, \emptyset)$ and

$$T_{n+1} = (V(T_n) \cup \{M \cup \{n+1\} | M \in V(T_n)\}, E(T_n) \cup \{\{M, M \cup \{n+1\}\} | M \in V(T_n)\}, \emptyset)$$

for all $n \ge 0$.

We say that a vertex M of T_n has cardinality k if the cardinality |M| of the set M is k.

Lemma. For any non-negative integer n, T_n is a rooted tree.

Received March 1, 1983.

Proof. Let *n* be some fixed non-negative integer. Studying the definition of T_n one can see easily that there are no loops and that there always exists a path connecting an arbitrary vertex of T_n with the root Ø. Thus T_n is a connected graph (without loops). If T_n would contain a circle C, then C would have to have at least three vertices, since there are no loops and no double edges in T_n . Assume, M is a vertex of maximal cardinality of C. Then, by the definition of T_n , the vertices of C being adjacent to M would have to coincide, which is a contradiction. Hence T_n is a tree.

Definition 2. For a graph G = (V(G), E(G)) and for any subgraph S = (V(S), E(S)) of G let S_G denote the complete subgraph of G which has the vertex-set

 $V(S_G) = V(S) \cup \{x \in V(G) \mid \text{there exists some } y \in V(S) \text{ such that } \{x, y\} \in E(G)\}.$ For a rooted graph G and for any rooted subgraph S of G the rooted subgraph S_G of G is defined analogously.

Theorem. Let I be an arbitrary integral domain. Then the solution of the difference equation $x_{n+1}=ax_n^2+bx_n+c$ (a, b, $c\in I$; $n\geq 0$) is given by $x_n=x_0+nc$ if (a,b)=(0,1) and

$$x_n = \bar{x} + \sum a^{|V(S)| - 1} (f'(\bar{x}))^{|V(S_{T_n}) \setminus V(S)|} (x_0 - \bar{x})^{|V(S)|}$$

otherwise. Thereby f(x) denotes the polynomial function ax^2+bx+c , \bar{x} is an arbitrary fixed point of f (which in case $(a, b) \neq (0, 1)$ exists in a suitable extension field of 1) and the sum is taken over all rooted subtrees S of T_n . (By definition $0^0 := 1$.)

Proof. The solution in case (a, b)=(0,1) is obvious. Therefore assume $(a, b) \neq \neq (0, 1)$.

Then within the algebraic closure K of the quotient field of I there exists some fixed point of f, say \bar{x} . Performing the substitution $x_n = \bar{x} + y_1^{(n)}$ the difference equation $x_{n+1} = f(x_n)$ is transformed into the difference equation

(1)
$$y_1^{(n+1)} = y_1^{(n)} (a y_1^{(n)} + f'(\bar{x})).$$

Now consider the system

(2)
$$y_1^{(n+1)} = y_1^{(n)} \left(a y_1^{(n)} + f'(\bar{x}) y_2^{(n)} \right) \\ y_2^{(n+1)} = y_2^{(n)} \left(0 y_1^{(n)} + 1 y_2^{(n)} \right)$$

of difference equations over K. As one can see easily, $y_1^{(n)}$ is a solution of (1) with the initial value $y_1^{(0)}$ if and only if $(y_1^{(n)}, 1)$ is a solution of (2) with the initial value $(y_1^{(0)}, 1)$. To solve the system (2) one can apply the formula

$$y_1^{(n)} = y_1^{(0)} \sum_{\substack{g: P(\{1, \dots, n\}) \to \{1, 2\} \ M: g \neq M \subseteq \{1, \dots, n\} \\ g(g) = 1}} \prod_{\substack{g \in M \setminus \{max \ M\}, g(M) \ Y_g(M) \\ g(M) = 1}} (a_{g(M \setminus \{max \ M\}), g(M)} y_{g(M)}^{(0)})$$

(which was proved in [1]) where in our case $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a & f'(\bar{x}) \\ 0 & 1 \end{pmatrix}$.

488

Performing the index transformation $g \leftrightarrow V := g^{-1}(\{1\})$ we get

$$y_{1}^{(n)} = \sum a^{|V|-1} (f'(\bar{x}))^{|\{M \in P(\{1, ..., n\}) \setminus V \mid M \setminus \{\max M\} \in V\}|} (y_{1}^{(0)})^{|V|}$$

where the sum is taken over all subsets V of $P(\{1, ..., n\})$ which contain the empty set as an element and have the property $\emptyset \neq M \in V \Rightarrow M \setminus \{\max M\} \in V$. We claim that the sets V are exactly the vertex-sets of the rooted subtrees of T_n . Given a set V one can see immediately that within the complete subgraph of T_n with vertex-set V there exists a path connecting each element of V with \emptyset . Thus the complete subgraph of T_n having V as its set of vertices is connected and hence is a rooted subtree of T_n . Conversely, let S be a rooted subtree of T_n . Then from each vertex M of S with $|M| \ge 1$ to the root \emptyset we can find a path $M = M_0, M_1, ..., M_k = \emptyset$ $(k \ge 1)$ within S. $|M_1| > |M_0|$ would imply k > 1 and $|M_{m-1}| = |M_{m+1}|$ and hence $M_{m-1} =$ $= M_{m+1}$ for $m := \min \{i \mid 1 \le i < k, \mid M_{i+1} \mid < \mid M_i \mid\}$ contradicting the definition of a path. Therefore $|M_1| < |M_0|$ which implies $M_0 \setminus \{\max M_0\} = M_1 \in V(S)$. This shows that with every non-empty vertex M, S also contains the vertex $M \setminus \{\max M\}$ wherefrom we can conclude

$$y_1^{(n)} = \sum a^{|V(S)|-1} (f'(\bar{x}))^{|V(S_{T_n}) \setminus V(S)|} (y_1^{(0)})^{|V(S)|},$$

the sum being taken over all rooted subtrees S of T_n . Replacing $y_1^{(n)}$ by $x_n - \bar{x}$ yields the result of the theorem.

Remark. If $a=f'(\bar{x})=1$, then $x_n=\bar{x}+\sum_{i=1}^{2^n}b_{ni}(x_0-\bar{x})^i$ where for all $n\geq 0$ and for all *i* with $1\leq i\leq 2^n$, b_{ni} denotes the number of all rooted subtrees of T_n with exactly *i* vertices.

References

- H. LÄNGER, A formula for the solution of a system of difference equations over a commutative ring, in: Contributions to General Algebra 2 (Proc. Klagenfurt Conf. 1982, ed. G. Eigenthaler, H. K. Kaiser, W. B. Müller and W. Nöbauer), Hölder—Pichler— Tempsky and Teubner (Wien and Stuttgart, 1983), 233-238.
- [2] CH. PRESTON, Iterates of maps on an interval, Lecture Notes in Mathematics 999, Springer-Verlag (Berlin, 1983).

TECHNISCHE UNIVERSITÄT WIEN INSTITUT FÜR ALGEBRA UND DISKRETE MATHEMATIK WIEDNER HAUPTSTRASSE 8-10 1040 WIEN, AUSTRIA