A tormula for the solution of the difference equation

$$
x_{n+1}=a x_{n}^{2}+b x_{n}+c
$$

DIETMAR DORNINGER and HELMUT LÃNGER

There are many papers dealing with the qualitative behaviour of the solution of the difference equation $x_{n+1}=a x_{n}^{2}+b x_{n}+c$, but up to now no explicit formula for the solution is known. (For a survey of results cf. [2].) In the following we deduce such a formula in a graph-theoretic context.

By a graph (V, E) with the vertex-set V and the set of edges E we mean an undirected graph without loops and without multiple edges. Thus the set E of edges. of a graph (V, E) can be considered as a set of unordered pairs $\{v, w\}$, where v, w belong to the set V. A graph (V, E), wherein a certain vertex v_{0} is distinguished as the "root"' of the graph, will be called a rooted graph and will be denoted by $\left(V, E, v_{0}\right)$. A rooted graph S which is a subgraph of a rooted graph G will be called a rooted subgraph of G, if the roots of S and G coincide.

Definition 1. For any non-negative integer n let T_{n} denote the rooted graph

$$
(P(\{1, \ldots, n\}),\{\{M, M \backslash\{\max M\}\} \mid \emptyset \neq M \subseteq\{1, \ldots, n\}\}, \emptyset)
$$

where $P(\{1, \ldots, n\})$ denotes the power set of $\{1, \ldots, n\}$ and $\max M$ the maximum number occurring within the subset M of $\{1, \ldots, n\}$.

Remark. T_{n} can be easily constructed inductively by observing $T_{0}=(\{\emptyset\}, \emptyset ; \emptyset)$ and

$$
T_{n+1}=\left(V\left(T_{n}\right) \cup\left\{M \cup\{n+1\} \mid M \in V\left(T_{n}\right)\right\}, E\left(T_{n}\right) \cup\left\{\{M, M \cup\{n+1\}\} \mid M \in V\left(T_{n}\right)\right\}, \emptyset\right)
$$

for all $n \geqq 0$.
We say that a vertex M of T_{n} has cardinality k if the cardinality $|M|$ of the set M is k.

Lemma. For any non-negative integer n, T_{n} is a rooted tree.

Proof. Let n be some fixed non-negative integer. Studying the definition of T_{n} one can see easily that there are no loops and that there always exists a path connecting an arbitrary vertex of T_{n} with the root \emptyset. Thus T_{n} is a connected graph (without loops). If T_{n} would contain a circle C, then C would have to have at least three vertices, since there are no loops and no double edges in T_{n}. Assume, M is a vertex of maximal cardinality of C. Then, by the definition of T_{n}, the vertices of C being adjacent to M would have to coincide, which is a contradiction. Hence T_{n} is a tree.

Definition 2. For a graph $G=(V(G), E(G))$ and for any subgraph $S=$ $=(V(S), E(S))$ of G let S_{G} denote the complete subgraph of G which has the ver-tex-set

$$
V\left(S_{G}\right)=V(S) \cup\{x \in V(G) \mid \text { there exists some } y \in V(S) \text { such that }\{x, y\} \in E(G)\} .
$$

For a rooted graph G and for any rooted subgraph S of G the rooted subgraph S_{G} of G is defined analogously.

Theorem. Let I be an arbitrary integral domain. Then the solution of the difference equation $x_{n+1}=a x_{n}^{2}+b x_{n}+c(a, b, c \in I ; n \geqq 0)$ is given by $x_{n}=x_{0}+n c$ if $(a, b)=(0,1)$ and

$$
x_{n}=\bar{x}+\sum a^{|V(S)|-1}\left(f^{\prime}(\bar{x})\right)^{\mid V\left(S_{T_{n}} \backslash V(S) \mid\right.}\left(x_{0}-\bar{x}\right)^{|V(S)|}
$$

otherwise. Thereby $f(x)$ denotes the polynomial function $a x^{2}+b x+c, \bar{x}$ is an arbitrary fixed point of f (which in case $(a, b) \neq(0,1)$ exists in a suitable extension. field of I) and the sum is taken over all rooted subtrees S of T_{n}. (By definition $0^{\circ}:=1$.).

Proof. The solution in case $(a, b)=(0,1)$ is obvious. Therefore assume $(a, b) \neq$ $\neq(0,1)$.

Then within the algebraic closure K of the quotient field of I there exists some fixed point of f, say \bar{x}. Performing the substitution $x_{n}=\bar{x}+y_{1}^{(n)}$ the difference equation $x_{n+1}=f\left(x_{n}\right)$ is transformed into the difference equation

$$
\begin{equation*}
y_{1}^{(n+1)}=y_{1}^{(n)}\left(a y_{1}^{(n)}+f^{\prime}(\bar{x})\right) . \tag{1}
\end{equation*}
$$

Now consider the system

$$
\begin{gather*}
y_{1}^{(n+1)}=y_{1}^{(n)}\left(a y_{1}^{(n)}+f^{\prime}(\bar{x}) y_{2}^{(n)}\right) \\
y_{2}^{(n+1)}=y_{2}^{(n)}\left(0 y_{1}^{(n)}+1 y_{2}^{(n)}\right) \tag{2}
\end{gather*}
$$

of difference equations over K. As one can see easily, $y_{1}^{(n)}$ is a solution of (1) with the initial value $y_{1}^{(0)}$ if and only if $\left(y_{1}^{(n)}, 1\right)$ is a solution of (2) with the initial value ($y_{1}^{(0)}, 1$). To solve the system (2) one can apply the formula
(which was proved in [1]) where in our case $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}a & f^{\prime}(\bar{x}) \\ 0 & 1\end{array}\right)$.

Performing the index transformation $g \leftrightarrow V:=g^{-1}(\{1\})$ we get

$$
y_{\mathbf{1}}^{(n)}=\left.\sum a^{|V|-1}\left(f^{\prime}(\bar{x})\right)\right|^{\{M \in P(\{1, \ldots, n\}) \backslash V \mid M \backslash\{\max M\} \in V\} \mid}\left(y_{1}^{(0)}\right)^{|V|}
$$

where the sum is taken over all subsets V of $P(\{1, \ldots, n\})$ which contain the empty set as an element and have the property $\emptyset \neq M \in V \Rightarrow M \backslash\{\max M\} \in V$. We claim that the sets V are exactly the vertex-sets of the rooted subtrees of T_{n}. Given a set V one can see immediately that within the complete subgraph of T_{n} with vertex-set V there exists a path connecting each element of V with \emptyset. Thus the complete subgraph of T_{n} having V as its set of vertices is connected and hence is a rooted subtree of T_{n}. Conversely, let S be a rooted subtree of T_{n}. Then from each vertex M of S with $|M| \geqq 1$ to the root \emptyset we can find a path $M=M_{0}, M_{1}, \ldots, M_{k}=\emptyset \quad(k \geqq 1)$ within $S .\left|M_{1}\right|>\left|M_{0}\right|$ would imply $k>1$ and $\left|M_{m-1}\right|=\left|M_{m+1}\right|$ and hence $M_{m-1}=$ $=M_{m+1}$ for $m:=\min \left\{i|1 \leqq i<k, \quad| M_{i+1}\left|<\left|M_{i}\right|\right\}\right.$ contradicting the definition of a path. Therefore $\left|M_{1}\right|<\left|M_{0}\right|$ which implies $M_{0} \backslash\left\{\max M_{0}\right\}=M_{1} \in V(S)$. This shows that with every non-empty vertex M, S also contains the vertex $M \backslash\{\max M\}$ wherefrom we can conclude

$$
y_{1}^{(n)}=\sum a^{|V(S)|-1}\left(f^{\prime}(\bar{x})\right)^{\mid V\left(S_{T_{n}} \backslash V(S) \mid\right.}\left(y_{1}^{(0)}\right)^{|V(S)|}
$$

the sum being taken over all rooted subtrees S of T_{n}. Replacing $y_{1}^{(n)}$ by $x_{n}-\bar{x}$ yields the result of the theorem.

Remark. If $a=f^{\prime}(\bar{x})=1$, then $x_{n}=\bar{x}+\sum_{i=1}^{2^{n}} b_{n i}\left(x_{0}-\bar{x}\right)^{i}$ where for all $n \geqq 0$ and for all i with $1 \leqq i \leqq 2^{n}, b_{n i}$ denotes the number of all rooted subtrees of T_{n} with exactly i vertices.

References

[1] H. LÄnger, A formula for the solution of a system of difference equations over a commutative ring, in: Contributions to General Algebra 2 (Proc. Klagenfurt Conf. 1982, ed. G. Eigenthaler, H. K. Kaiser, W. B. Müller and W. Nöbauer), Hölder-PichlerTempsky and Teubner (Wien and Stuttgart, 1983), 233-238.
[2] Ch. Preston, Iterates of maps on an interval, Lecture Notes in Mathematics 999, Springer-Verlag (Berlin, 1983).

