Some discrete inequalities of Opial's type

GRADIMIR V. MILOVANOVIĆ and IGOR Ž. MILOVANOVIĆ

1. Introduction

Let us given an index set $I = \{1, 2, ..., n\}$ and weight sequences $\mathbf{r} = (r_k)_{k \in I} = (r_1, ..., r_n)$ and $\mathbf{p} = (p_k)_{k \in I} = (p_1, ..., p_n)$. For a sequence $\mathbf{x} = (x_k)_{k \in I} = (x_1, ..., x_n)$

(1)
$$\|\mathbf{x}\|_{\mathbf{r}} = \left(\sum_{k=1}^{n} r_k x_k^2\right)^{1/2}$$

and

(2)
$$(\mathbf{x}, \nabla \mathbf{x}) = \sum_{n=1}^{n} p_k x_k \nabla x_k,$$

where the sequence $\nabla \mathbf{x}$ is given by $\nabla \mathbf{x} = (x_1, x_2 - x_1, \dots, x_n - x_{n-1})$. If we put $x_0 = 0$ and $\nabla x_k = x_k - x_{k-1}$ $(k=1, \dots, n)$, then the sequence $\nabla \mathbf{x}$ can be expressed in the form $\nabla \mathbf{x} = (\nabla x_1, \nabla x_2, \dots, \nabla x_n)$.

In this paper we determine the best constants A_n and B_n in the inequalities

(3)
$$A_n \|\mathbf{x}\|_{\mathbf{r}}^2 \leq (\mathbf{x}, \nabla \mathbf{x}) \leq B_n \|\mathbf{x}\|_{\mathbf{r}}^2,$$

which are a discrete analogue of inequalities of Opial's type (see, for example, [1, pp. 154-162]). The idea for this paper came from the papers [2] and [3].

2. Main results

Theorem. Define a sequence $(Q_k(x))$ of polynomials for the given weight sequences **r** and **p** using the recursive relation

(4)
$$xQ_{k-1}(x) = b_kQ_k(x) + a_kQ_{k-1}(x) + b_{k-1}Q_{k-2}(x) \quad (k = 1, 2, ...),$$
$$Q_0(x) = Q_0 \neq 0, \quad Q_{-1}(x) \stackrel{\text{def}}{=} 0,$$

Received February 16, 1983

where

(5)
$$a_k = (p_k/r_k)$$
 $(k = 1, ..., n)$ and $b_k = -(p_{k+1}/2\sqrt{r_k r_{k+1}})$ $(k = 1, ..., n-1)$.

For each sequence $\mathbf{x} = (x_k)_{k \in I}$ of real numbers the inequalities (3) hold, where A_n and B_n are the minimum and the maximum zeros of polynomial $Q_n(x)$, respectively.

Equality holds in the left-hand (right-hand) inequality in (3) if and only if $x_k = = (C/\sqrt{r_k})Q_{k-1}(\lambda)$ (k=1,...,n), where $\lambda = A_n$ ($\lambda = B_n$) and C is an arbitrary real constant different from zero.

Proof. Let X be an n-dimensional euklidean space with scalar product $(\vec{z}, \vec{w}) = \sum_{k=1}^{n} z_k w_k$, where $\vec{z} = [z_1, ..., z_n]^T$ and $\vec{w} = [w_1, ..., w_n]^T$. Let, further, $\mathbf{a} = (a_1, ..., a_n)$, $\mathbf{b} = (b_1, ..., b_{n-1})$, and define a three-diagonal matrix by

$$H_n(\mathbf{a}, \mathbf{b}) = \begin{bmatrix} a_1 \ b_1 \ 0 \ \dots \ 0 \ 0 \\ b_1 \ a_2 \ b_2 \ 0 \ 0 \\ \vdots \\ 0 \ 0 \ 0 \ a_{n-1} \ b_{n-1} \\ 0 \ 0 \ 0 \ b_{n-1} \ a_n \end{bmatrix}.$$

Introducing $z_k = \sqrt{r_k} x_k$ (k=1, ..., n), from (1) and (2) we get

$$\|\mathbf{x}\|_{\mathbf{r}}^{2} = \sum_{k=1}^{n} r_{k} x_{k}^{2} = \sum_{k=1}^{n} z_{k}^{2} = (\vec{z}, \vec{z}),$$

and

$$\begin{aligned} \mathbf{x}, \nabla \mathbf{x}) &= \sum_{k=1}^{n} p_k x_k \nabla x_k = \sum_{k=1}^{n} \left(p_k z_k / \sqrt{r_k} \right) \nabla \left(z_k / \sqrt{r_k} \right) = \\ &= \left(p_1 z_1^2 / r_1 \right) + \sum_{k=2}^{n} \left(p_k z_k / r_k \sqrt{r_{k-1}} \right) \left(\sqrt{r_{k-1}} z_k - \sqrt{r_k} z_{k-1} \right) \end{aligned}$$

Thus by (5),

 $(\mathbf{x}, \nabla \mathbf{x}) = (H_n(\mathbf{a}, \mathbf{b})\vec{z}, \vec{z}).$

On the other hand, let us consider the sequence $(Q_k(x))$ of polynomials defined by (4). For k=1, 2, ..., n, we obtain from (4) the equality

(6) $x\vec{v} = H_n(\mathbf{a}, \mathbf{b})\hat{\mathbf{v}} + b_n Q_n(x)\hat{\mathbf{e}},$

where $\vec{v} = [Q_0(x), Q_1(x), ..., Q_{n-1}(x)]^T$ and $\vec{e} = [0, 0, ..., 0, 1]^T$. Setting $x = \lambda$ in (6), we conclude: If λ is such that $Q_n(\lambda) = 0$, then λ is an eigenvalue of the matrix $H_n(\mathbf{a}, \mathbf{b})$ and $\vec{v} = [Q_0(\lambda), Q_1(\lambda), ..., Q_{n-1}(\lambda)]^T$ is the corresponding eigenvector of the matrix $H_n(\mathbf{a}, \mathbf{b})$, and conversely, according to (6), if λ is an eigenvalue of the matrix $H_n(\mathbf{a}, \mathbf{b})$, then $Q_n(\lambda) = 0$, i.e. λ is a zero of the polynomial $Q_n(x)$.

414

Thus, the eigenvalues of the matrix $H_n(\mathbf{a}, \mathbf{b})$ are exactly the zeros the of polynomial $Q_n(x)$. Since $H_n(\mathbf{a}, \mathbf{b})$ is a three-diagonal matrix $(b_i^2 > 0, i=1, ..., n-1)$ all its eigenvalues λ_i (i=1, ..., n) are real and distinct, and

$$A_n(\vec{z}, \vec{z}) \leq (H_n(\mathbf{a}, \mathbf{b})\vec{z}, \vec{z}) \leq B_n(\vec{z}, \vec{z})$$

hold, with equality for eigenvectors corresponding to the eigenvalues $A_n = \min \lambda_i$, $B_n = \max \lambda_i$.

This completes the proof of the theorem.

Corollary 1. Let the sequences r and p be given recursively by

$$r_{k+1} = (4k(k+s)/(2k+s+1)^2)r_k \quad (k = 1, ..., n-1),$$

$$p_k = (2k+s-1)r_k \quad (k = 1, ..., n),$$

with $r_1=1$ and s>-1. Then for every sequence $\mathbf{x}=(x_k)_{k\in I}$ of real numbers the inequalities (3) hold, where A_n and B_n are the minimal and the maximal zeros of the normalized generalized Laguerre polynomials $\overline{L}_n^s(x)=L_n^s(x)/||L_n^s||$. Here

$$L_n^s(x) = \sum_{m=0}^n \binom{n+s}{n-m} ((-x)^m/m!) \text{ and } ||L_n^s|| = \sqrt{\Gamma(n+s+1)/n!}.$$

Equality holds in the left-hand (right-hand) inequality in (3) if and only if $x_k = = (C_k/\sqrt{r_k})L_{k-1}^s(\lambda)$ (k=1,...,n), where $\lambda = A_n$ $(\lambda = B_n)$ and $C(\neq 0)$ is an arbitrary constant.

Proof. For the proof of this result it is enough to show that in this case (4) reduces to the recurrence relation for generalized Laguerre polynomials. Since

$$a_k = (p_k/r_k) = 2k + s - 1$$
 and $b_k = -(p_{k+1}/2\sqrt{r_k r_{k+1}}) = -\sqrt{k(k+s)}$

(4) becomes

$$xQ_{k-1}(x) = -\sqrt{k(k+s)}Q_k(x) + (2k+s-1)Q_{k-1}(x) - \sqrt{(k-1)(k+s-1)}Q_{k-2}(x),$$

which is the recurrence relation for normalized generalized Laguerre polynomials $(Q_k(x) = \overline{L}_k^s(x))$.

In the special case $p_k = r_k = 1$ (k = 1, ..., n), we have the following result:

Corollary 2. For every sequence $\mathbf{x} = (x_k)_{k \in I}$ of real numbers and for $x_0 = 0$, the inequalities

(7)
$$2\sin^2(\pi/2(n+1))\sum_{k=1}^n x_k^2 \leq \sum_{k=1}^n x_k(x_k-x_{k-1}) \leq 2\cos^2(\pi/2(n+1))\sum_{k=1}^n x_k^2,$$

are valid.

Equality holds in the left-hand inequality if and only if $x_k = C \sin(k\pi/(n+1))$ (k=1,...,n), where $C = const \neq 0$, and in the right-hand inequality if and only if $x_k = (-1)^{k-1}C \sin(k\pi/(n+1))$, (k=1,...,n), where $C = const \neq 0$.

Proof. In this case, we have $a_k = 1$, $b_k = -1/2$ and

(8)
$$xQ_{k-1}(x) = -(1/2)Q_k(x) + Q_{k-1}(x) - (1/2)Q_{k-2}(x),$$

where $Q_0(x)$ can be $Q_0(x)=1$. If we put t=1-x, one can easily obtain the solution of the difference equation (8), for example for |t|<1, i. e. 0<x<2,

(9)
$$Q_k(x) = (\sin (k+1)\theta/\sin \theta) \quad (k = 1, ..., n),$$

where $e^{i\theta} = t + i\sqrt{1-t^2}$. Then, from $Q_n(x) = 0$ it follows $\lambda_k = 2\sin^2(k\pi/2(n+1))$ (k=1, ..., n), implying

$$A_n = \min_k \lambda_k = 2 \sin^2(\pi/2(n+1))$$
 and $B_n = \max_k \lambda_k = 2 \cos^2(\pi/2(n+1)).$

Using (9) the conditions for equality are simply obtained.

Also we note that the inequalities (7) can be written in the form

$$-\cos\left(\pi/(n+1)\right)\sum_{k=1}^{n} x_{k}^{2} \leq \sum_{k=2}^{n} x_{k} x_{k-1} \leq \cos\left(\pi/(n+1)\right) \sum_{k=1}^{n} x_{k}^{2},$$

i.e.,
(10) $\left|\sum_{k=2}^{n} x_{k} x_{k-1}\right| \leq \cos\left(\pi/(n+1)\right) \sum_{k=1}^{n} x_{k}^{2}.$

Remark. The inequality (10) is related to an extremal problem occurring in the investigation of approximative properties of positive polynomial operators. Namely, let C_m be the class of all nonnegative trigonometric polynomials of order m

(11)
$$T_m(t) = 1 + 2a_1 \cos t + \dots + 2a_m \cos mt.$$

The problem is to determine a polynomial $T_m^* \in C_m$ which has the greatest coefficient a_1 (see, for example, [4, pp. 113—115]). If the polynomial (11) is written in the form

$$T_m(t) = |x_1 + x_2 e^{it} + \dots + x_{m+1} e^{imt}| = \sum_{k=1}^{m+1} x_k^2 + 2\left(\sum_{k=2}^{m+1} x_k x_{k-1}\right) \cos t + \dots,$$

where x_k (k=1, ..., m+1) are real numbers, the determination of T_m^* is reduced to finding

$$\sup a_1 = \sup \sum_{k=2}^{m+1} x_k x_{k-1}, \quad \sum_{k=1}^{m+1} x_k^2 = 1.$$

-....

Putting n=m+1 in (10), we have $\sup a_1 = \cos(\pi/(m+2))$.

References

- D. S. MITRINOVIĆ and P. M. VASIĆ, Analytic inequalities, Grundlehren der Math. Wiss., Band 165, Springer-Verlag (Berlin-Heidelberg-New York, 1970).
- [2] K. FAN, O. TAUSSKY and J. TODD, Discrete analogs of inequalities of Wirtinger, Monatsh. Math., 59 (1955), 73-79.
- [3] G. V. MILOVANOVIĆ and I. Ž. MILOVANOVIĆ, On discrete inequalities of Wirtinger's type, J. Math. Anal. Appl., 88 (1982), 378-387.
- [4] V. M. TIHOMIROV, Some problems of approximation theory, Univ. Moscow (1976). (Russian)

FACULTY OF ELECTRONIC ENGINEERING DEPARTMENT OF MATHEMATICS BEOGRADSKA 14 18 000 NIŠ, YUGOSLAVIA