Some discrete inequalities of Opial's type

GRADIMIR V. MILOVANOVIĆ and IGOR Ž. MILLOVANOVIĆ

1. Introduction

Let us given an index set $I=\{1,2, \ldots, n\}$ and weight sequences $\mathbf{r}=\left(r_{k}\right)_{k \in i}=$ $=\left(r_{1}, \ldots, r_{n}\right)$ and $\mathbf{p}=\left(p_{k}\right)_{k \in I}=\left(p_{1}, \ldots, p_{n}\right)$. For a sequence $\mathbf{x}=\left(x_{k}\right)_{k \in I}=\left(x_{1}, \ldots, x_{n}\right)$

$$
\begin{equation*}
\|\mathbf{x}\|_{\mathrm{r}}=\left(\sum_{k=1}^{n} r_{k} x_{k}^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\mathbf{x}, \nabla \mathbf{x})=\sum_{n=1}^{n} p_{k} x_{k} \nabla x_{k} \tag{2}
\end{equation*}
$$

where the sequence $\nabla \mathrm{x}$ is given by $\nabla \mathrm{x}=\left(x_{1}, x_{2}-x_{1}, \ldots, x_{n}-x_{n-1}\right)$. If we put $x_{0}=0$ and $\nabla x_{k}=x_{k}-x_{k-1}(k=1, \ldots, n)$, then the sequence $\nabla \mathbf{x}$ can be expressed in the form $\nabla \mathbf{x}=\left(\nabla x_{1}, \nabla x_{2}, \ldots, \nabla x_{n}\right)$.

In this paper we determine the best constants A_{n} and B_{n} in the inequalities

$$
\begin{equation*}
A_{n}\|\mathbf{x}\|_{\mathrm{I}}^{2} \leqq(\mathbf{x}, \nabla \mathbf{x}) \leqq B_{n}\|\mathbf{x}\|_{\mathrm{r}}^{2} \tag{3}
\end{equation*}
$$

which are a discrete analogue of inequalities of Opial's type (see, for example, [1, pp. 154-162]). The idea for this paper came from the papers [2] and [3].

2. Main results

Theorem. Define a sequence $\left(Q_{k}(x)\right)$ of polynomials for the given weight sequences \mathbf{r} and \mathbf{p} using the recursive relation

$$
\begin{gather*}
x Q_{k-1}(x)=b_{k} Q_{k}(x)+a_{k} Q_{k-1}(x)+b_{k-1} Q_{k-2}(x) \quad(k=1,2, \ldots) \tag{4}\\
Q_{0}(x)=Q_{0} \neq 0, \quad Q_{-1}(x) \stackrel{\text { def }}{=} 0
\end{gather*}
$$

where

$$
\begin{equation*}
a_{k}=\left(p_{k} / r_{k}\right)(k=1, \ldots, n) \text { and } b_{k}=-\left(p_{k+1} / 2 \sqrt{r_{k} r_{k+1}}\right)(k=1, \ldots, n-1) \tag{5}
\end{equation*}
$$

For each sequence $\mathbf{x}=\left(x_{k}\right)_{k \in I}$ of real numbers the inequalities (3) hold, where A_{n} and B_{n} are the minimum and the maximum zeros of polynomial $Q_{n}(x)$, respectively.

Equality holds in the left-hand (right-hand) inequality in (3) if and only if $x_{k}=$ $=\left(C / \sqrt{r_{k}}\right) Q_{k-1}(\lambda)(k=1, \ldots, n)$, where $\lambda=A_{n}\left(\lambda=B_{n}\right)$ and C is an arbitrary real constant different from zero.

Proof. Let X be an n-dimensional euklidean space with scalar product $(\vec{z}, \vec{w})=$ $=\sum_{k=1}^{n} z_{k} w_{k}$, where $\vec{z}=\left[z_{1}, \ldots, z_{n}\right]^{\mathrm{T}}$ and $\vec{w}=\left[w_{1}, \ldots, w_{n}\right]^{\mathrm{T}}$. Let, further, $\mathbf{a}=\left(a_{1}, \ldots\right.$ $\left.\ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n-1}\right)$, and define a three-diagonal matrix by

$$
H_{n}(\mathbf{a}, \mathbf{b})=\left[\begin{array}{cccccc}
a_{1} & b_{1} & 0 & \cdots & 0 & 0 \\
b_{1} & a_{2} & b_{2} & & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & & a_{n-1} & b_{n-1} \\
0 & 0 & 0 & & b_{n-1} & a_{n}
\end{array}\right]
$$

Introducing $z_{k}=\sqrt{r_{k}} x_{k}(k=1, \ldots, n)$, from (1) and (2) we get

$$
\|\mathbf{x}\|_{r}^{2}=\sum_{k=1}^{n} r_{k} x_{k}^{2}=\sum_{k=1}^{n} z_{k}^{2}=(\vec{z}, \vec{z})
$$

and

$$
\begin{aligned}
(\mathbf{x}, \nabla \mathbf{x}) & =\sum_{k=1}^{n} p_{k} x_{k} \nabla x_{k}=\sum_{k=1}^{n}\left(p_{k} z_{k} / \sqrt{r_{k}}\right) \nabla\left(z_{k} / \sqrt{r_{k}}\right)= \\
& =\left(p_{1} z_{1}^{2} / r_{1}\right)+\sum_{k=2}^{n}\left(p_{k} z_{k} / r_{k} \sqrt{r_{k-1}}\right)\left(\sqrt{r_{k-1}} z_{k}-\sqrt{r_{k}} z_{k-1}\right) .
\end{aligned}
$$

Thus by (5),

$$
(\mathbf{x}, \nabla \mathbf{x})=\left(H_{n}(\mathbf{a}, \mathbf{b}) \vec{z}, \vec{z}\right)
$$

On the other hand, let us consider the sequence $\left(Q_{k}(x)\right)$ of polynomials defined by (4). For $k=1,2, \ldots, n$, we obtain from (4) the equality

$$
\begin{equation*}
x \vec{v}=H_{n}(\mathbf{a}, \mathbf{b}) \vec{v}+b_{n} Q_{n}(x) \vec{e} \tag{6}
\end{equation*}
$$

where $\vec{v}=\left[Q_{0}(x), Q_{1}(x), \ldots, Q_{n-1}(x)\right]^{\mathrm{T}}$. and $\vec{e}=[0,0, \ldots, 0,1]^{\mathrm{T}}$. Setting $x=\lambda$ in (6), we conclude: If λ is such that $Q_{n}(\lambda)=0$, then λ is an eigenvalue of the matrix $H_{n}(\mathbf{a}, \mathbf{b})$ and $\vec{v}=\left[Q_{0}(\lambda), Q_{1}(\lambda), \ldots, Q_{n-1}(\lambda)\right]^{\mathrm{T}}$ is the corresponding eigenvector of the matrix $H_{n}(\mathbf{a}, \mathrm{~b})$, and conversely, according to (6), if λ is an eigenvalue of the matrix $H_{n}(\mathrm{a}, \mathrm{b})$, then $Q_{n}(\lambda)=0$, i.e. λ is a zero of the polynomial $Q_{n}(x)$.

Thus, the eigenvalues of the matrix $H_{n}(\mathbf{a}, \mathbf{b})$ are exactly the zeros the of polynomial $Q_{n}(x)$. Since $H_{n}(\mathbf{a}, \mathbf{b})$ is a three-diagonal matrix $\left(b_{i}^{2}>0, i=1, \ldots, n-1\right)$ all its eigenvalues $\lambda_{i}(i=1, \ldots, n)$ are real and distinct, and

$$
A_{n}(\vec{z}, \vec{z}) \leqq\left(H_{n}(\mathrm{a}, \mathrm{~b}) \vec{z}, \vec{z}\right) \leqq B_{n}(\vec{z}, \vec{z})
$$

hold, with equality for eigenvectors corresponding to the eigenvalues $A_{n}=\min \lambda_{i}$, $B_{n}=\max \lambda_{i}$.

This completes the proof of the theorem.
Corollary 1. Let the sequences \mathbf{r} and \mathbf{p} be given recursively by

$$
\begin{gathered}
r_{k+1}=\left(4 k(k+s) /(2 k+s+1)^{2}\right) r_{k} \quad(k=1, \ldots, n-1) \\
p_{k}=(2 k+s-1) r_{k} \quad(k=1, \ldots, n)
\end{gathered}
$$

with $r_{1}=1$ and $s>-1$. Then for every sequence $\mathbf{x}=\left(x_{k}\right)_{k \in i}$ of real numbers the inequalities (3) hold, where A_{n} and B_{n} are the minimal and the maximal zeros of. the normalized generalized Laguerre polynomials $\bar{L}_{n}^{s}(x)=L_{n}^{s}(x) /\left\|L_{n}^{s}\right\|$. Here

$$
L_{n}^{s}(x)=\sum_{m=0}^{n}\binom{n+s}{n-m}\left((-x)^{m} / m!\right) \text { and } \quad\left\|L_{n}^{s}\right\|=\sqrt{\Gamma(n+s+1) / n!}
$$

Equality holds in the left-hand (right-hand) inequality in (3) if and only if $x_{k}=$ $=\left(C_{k} / \sqrt{r_{k}}\right) L_{k-1}^{s}(\lambda)(k=1, \ldots, n)$, where $\lambda=A_{n}\left(\lambda=B_{n}\right)$ and $C(\neq 0)$ is an arbitrary. constant.

Proof. For the proof of this result it is enough to show that in this case (4) reduces to the recurrence relation for generalized Laguerre polynomials. Since

$$
a_{k}=\left(p_{k} / r_{k}\right)=2 k+s-1 \quad \text { and } \quad b_{k}=-\left(p_{k+1} / 2 \sqrt{r_{k} r_{k+1}}\right)=-\sqrt{k(k+s)},
$$

(4) becomes

$$
x Q_{k-1}(x)=-\sqrt{k(k+s)} Q_{k}(x)+(2 k+s-1) Q_{k-1}(x)-\sqrt{(k-1)(k+s-1)} Q_{k-2}(x)
$$

which is the recurrence relation for normalized generalized Laguerre polynomials $\left(Q_{k}(x)=\bar{L}_{k}^{s}(x)\right)$.

In the special case $p_{k}=r_{k}=1 \quad(k=1, \ldots, n)$, we have the following result:
Corollary 2. For every sequence $\mathbf{x}=\left(x_{k}\right)_{k \in I}$ of real numbers and for $x_{0}=0$, the inequalities

$$
\begin{equation*}
2 \sin ^{2}(\pi / 2(n+1)) \sum_{k=1}^{n} x_{k}^{2} \leqq \sum_{k=1}^{n} x_{k}\left(x_{k}-x_{k-1}\right) \leqq 2 \cos ^{2}(\pi / 2(n+1)) \sum_{k=1}^{n} x_{k}^{2} \tag{7}
\end{equation*}
$$

are valid.

Equality holds in the left-hand inequality if and only if $x_{k}=C \sin (k \pi /(n+1))$ $(k=1, \ldots, n)$, where $C=$ const $\neq 0$, and in the right-hand inequality if and only if $x_{k}=(-1)^{k-1} C \sin (k \pi /(n+1)),(k=1, \ldots, n)$, where $C=$ const $\neq 0$.

Proof. In this case, we have $a_{k}=1, b_{k}=-1 / 2$ and

$$
\begin{equation*}
x Q_{k-1}(x)=-(1 / 2) Q_{k}(x)+Q_{k-1}(x)-(1 / 2) Q_{k-2}(x) \tag{8}
\end{equation*}
$$

where $Q_{0}(x)$ can be $Q_{0}(x)=1$. If we put $t=1-x$, one can easily obtain the solution of the difference equation (8), for example for $|t|<1$, i. e. $0<x<2$,

$$
\begin{equation*}
Q_{k}(x)=(\sin (k+1) \theta / \sin \theta) \quad(k=1, \ldots, n) \tag{9}
\end{equation*}
$$

where $e^{i \theta}=t+i \sqrt{1-t^{2}}$. Then, from $Q_{n}(x)=0$ it follows $\lambda_{k}=2 \sin ^{2}(k \pi / 2(n+1))$ ($k=1, \ldots, n$), implying

$$
A_{n}=\min _{k} \lambda_{k}=2 \sin ^{2}(\pi / 2(n+1)) \quad \text { and } \quad B_{n}=\max _{k} \lambda_{k}=2 \cos ^{2}(\pi / 2(n+1))
$$

Using (9) the conditions for equality are simply obtained.
Also we note that the inequalities (7) can be written in the form

$$
-\cos (\pi /(n+1)) \sum_{k=1}^{n} x_{k}^{2} \leqq \sum_{k=2}^{n} x_{k} x_{k-1} \leqq \cos (\pi /(n+1)) \sum_{k=1}^{n} x_{k}^{2}
$$

i.e.,

$$
\begin{equation*}
\left|\sum_{k=2}^{n} x_{k} x_{k-1}\right| \leqq \cos (\pi /(n+1)) \sum_{k=1}^{n} x_{k}^{2} \tag{10}
\end{equation*}
$$

Remark. The inequality (10) is related to an extremal problem occurring in the investigation of approximative properties of positive polynomial operators. Namely, let C_{m} be the class of all nonnegative trigonometric polynomials of order m

$$
\begin{equation*}
T_{m}(t)=1+2 a_{1} \cos t+\ldots+2 a_{m} \cos m t \tag{11}
\end{equation*}
$$

The problem is to determine a polynomial $T_{m}^{*} \in C_{m}$ which has the greatest coefficient a_{1} (see, for example, [4, pp. 113-115]). If the polynomial (11) is written in the form

$$
T_{m}(t)=\left|x_{1}+x_{2} e^{i t}+\ldots+x_{m+1} e^{i m t}\right|=\sum_{k=1}^{m+1} x_{k}^{2}+2\left(\sum_{k=2}^{m+1} x_{k} x_{k-1}\right) \cos t+\ldots
$$

where $x_{k}(k=1, \ldots, m+1)$ are real numbers, the determination of T_{m}^{*} is reduced to finding

$$
\sup a_{1}=\sup \sum_{k=2}^{m+1} x_{k} x_{k-1}, \sum_{k=1}^{m+1} x_{k}^{2}=1
$$

Putting $n=m+1$ in (10), we have $\sup a_{1}=\cos (\pi /(m+2))$.

References

[1] D. S. Mitrinović and P. M. Vasić, Analytic inequalities, Grundlehren der Math. Wiss., Band 165, Springer-Verlag (Berlin-Heidelberg-New York, 1970).
[2] K. Fan, O. Taussky and J. Todd, Discrete analogs of inequalities of Wirtinger, Monatsh. Math., 59 (1955), 73-79.
[3] G. V. Milovanović and I. Z̈. Milovanoví́, On discrete inequalities of Wirtinger's type, J. Math. Anal. Appl., 88 (1982), 378-387.
[4] V. M. Tihomirov, Some problems of approximation theory, Univ. Moscow (1976). (Russian)

FACULTY OF ELECTRONIC ENGINEERING

