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Classification and construction of complete
hypersurfaces satisfying R(X, ¥)-R=0

Z. 1. SZABO

In one of his papers K. Nomizu [3] examined the immersed hypersurfaces in
R"*1 satisfying R(X,Y)-R=0 for all tangent vectors X; Y, where the curvature
éendomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each
point of the manifold. The main theorem of Nomizu’s paper is the following.

Theorem (K. Nomizu). Let M be an n-dimensional, connected, complete Rie-
mannian manifold, which is isometrically immiersed in R"*** so that the type number is
greater than 2 at least at one point. If M satisfies the condition R(X,Y)- R=0 then
it is of the form M=S*XR"™*, where S* is a hypersphere in a euclidean subspace
R**1 of R"*1 and R"~* is a euclidean subspace orthogonal to R**1, :

This theorem inspired the so called Nomizu conjecture: Every irreducible com-
plete space with dim=3 and R(X,Y)-R=0 is locally symmetric.

But the answer for this conjecture was negative as H. TAKAGI [6] constructed a
3-dimensional counterexample. This counterexample is a connected complete immers-
ed hypersurface in R*. Thus the problem is to determine all the connected complete
n-dimensional immersed hypersurfaces in R**1 satisfying R(X, Y)-R=0, the de-
scription of which completes Nomizu’s theorem. The main purpose of this paper is to
give a complete description and classification of these hypersurfaces.

1. Basic formulas

A C* Riemannian manifold*) (M", g) with the property R(X,Y)-R=0 is
called a semisymmetric manifold. Let us assume that.the semisymmetric manifold
(M", g) is an immersed hypersurface in R"*1. Let n be a normal unit vector field on a
connected orientable neighbourhood U of M™. If D resp. V denotes the Riema'nnian
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*) The notion differentiable is used in the meaning C.
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covariant derivative in R"*1 resp. in M", then

DyY = VyY+H(X,Y)n, ®
(1.1)
Dyn = A(X), H(X,Y)=—g(4(X),Y)
holds, for all differentiable vector fields X, Y on U tangent to M". H(X, Y') is the
so-called second fundamental form of the hypersurface, and A(X) is the so-called
Weingarten field. The A(X) is a symmetric endomorphism’s field on the manifold.
The rank of A4 at a point p€ M" is called the type number at p and it is denoted by

k(p).
The curvature tensor field R(X, Y)Z of M" is of the form

(1.2) R, Y)Z = —g(A(X), Z) AX) +g(4(¥), Z)A(X)

by the Gauss’ equation.

The nullspace of the cuvature operator at a point p consists of vetors Z¢T,(M)
for which R(X, Y)Z=0 holds for all vectors X; Y€T,(M). The dimension of the
nullspace at p is called the index of nullity, and it is denoted by i(p). If k(p) is O or
1, then R,=0 holds, and i(p)=n in this case. But if k(p)>1 holds, then k(p)=
=n—i(p) (seein [2], p. 42).

It is not hard to see, that all the hypersurfaces with k(p)SZ (or equivalently
i(p)=n—2) are semisymmetric. By Nomizu’s theorem every connected, complete
immersed semisymmetric hypersurface M" in R**! is a cylinder, if at least at one
point p, k(p)=2 holds, so in what follows we examine only the hypersurfaces for
which k(p)=2 holds at every point peM".

If at a point k(p)=2 holds, then i(p)=n—2. Let 4; and 4, be the two non-
trivial eigenvalues of 4,, and let x,, X, be the corresponding orthogonal unit eigen-
vectors. If V1 denotes the 2-dimensional subspace spanned by x; and x,, then the
orthogonal complement V) of V! is just the nullspace of the curvature operator, and

also
(M) = V4R

holds. This direct sum is called the V-decomposition of the tangent space T,(M).
Since k(p)=2 holds everywhere, and the eigenvalue functions 4,(q)=21,(q) are
continuous, so k(g)=2 holds in a neighbourhood of p. Le. the set, where k(g)=2
holds, is an open set U in M". If we consider the above ¥V-decomposition on U, then
the distributions V%, i=0; 1, are differentiable, since V! is spanned by the vector
fields of the form R(X,Y)Z. |

The V-decomposition is defined at the points p with k(p)<2 by the trivial
decomposition T,(M)=VF, .

Further on we examine the hypersurface on the open set U, where k(g)=2 holds.

The following relations are simple consequences of the Bianchi identity
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o(VxR)(Y,Z)=0:
(L.3) L VWIS VL VeV SV, Vil S Vo4t = T(M),

where the formula V. ViISV* means that for the differentiable vector fields X 1
tangent to V', the vector field Vy pe is tangent to V' .

We mention that the dlstrlbutlon V1 is in general not integrable, but by the second
relation in (1.3) it follows, that the distribution V% on U is always integrable and the
integral manifolds are totally geodesic and locally euclidean submanifolds. From the
first formula in (1.3) we can see too, that the distribution V! is parallel along the
curves which are going in the above totalgeodesic integral manifolds of ¥°.

Now let us consider a local system m,, m,, ..., m,_, of differentiable unit vector
fields tangent to V'® which are paarwise orthogonal, furthermore, also V, m;=0
hold. From the above considerations it follows,'that such a vector field system exists
around every point of U.

Next we introduce some basic formulas w.r.t. the system ml,mz, vy My _p.
For the differentiable vector fields X; Y tangent to ¥'! we can write

1.9 ’ Vym, = B,(X)+ ZMf(X)m,,, " where B;(X),,,EV,},
)
(1.5) VyY = VyY+ 3 M*(X,Y)m,, where V,Y, €V

Using these formulas we define the tensor fields B,, M*, M f and the covariant deriv-
ative V only on the distribution ¥*.

- But let us extend these tensor fields and this covariant derlvatlve over the whole
tangent bundle in such a -way that B,(m,)=0, M?(m)=0, M*(m; X)=
=M*mg, m,)=0 and Vm,X=Vm,X3 Vm“mﬂ=0 hold. Then the fields B,, M*, M? are
differentiable tensor fields indeed, furthermore, V is a metrical covariant derivative,
i.e. Vg=0 holds. The following formulas are also obvious:

(1.6) M*(X,Y) =—g(B,(X),Y), Mj(X)=—M(X).

We leave the proof of these facts to the reader. Let R(X, Y)Z be the curvature tensor
of V. _ 7

Proposition 1.1. For differentiable vector fields X,Y,Z tangent to V' the
tensor fields B,, M*, M;, R satisfy the following basic formulas:

(L) R(X,Y)Z=R(X, Y)Z+ 3 {M*(Y,Z) B,(X)—M*(X, Z) B,(Y)},

18) ©  (TxBIX)—FyBIX) = 3 (10 By ()~ ME () By (D),

L dMP(X,Y) = L
= 3 MIONMI(Y)—(1/D{M? (X, B,(Y))~M*(Y, B, (X))},

H

(1.9)
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(1.10) . (Va,B)(X) = —ByoB,(X),
(1.11) (Vo MPX) = — M}(B,(X)),
R(m,, X)Y=0,
(1.12) ) . . ) .
- ie. Vo Vx¥=VyVp Y4V xY—Vp V-3 ME(X)V,,Y,
« [
(1.13) . (Y B(X, Y) = R(Y, B,(X))+R(B.(Y), X),

where d is the exterior derivative and the symbol A\ denotes the skew-product.

The complete proof of these formulas is contained in [4]. But we mention, that
(1.7) follows by (1.4) and (1.5) from the formula R(X, Y)Z=VXVYZ—VYV_XZ—
—Vix,v1Z, the formulas (1.8)—(1.12) are equivalent to the identities R(X, ¥Y)m,=
=0, R(m,, X)Y=0, R(m,, X)m,;=0, and formula -(1.13) follows from the Bianchi
identity and from (1.4) in the following manner:

(Vm.R)(X3 Y) = - (VXR)(Ya ma)_(VYR)(ma’ X) = R(Y’ Ba(X))+R(Ba(Y)a X)
Here the detail_s are also left to the reader.

2. Reduction of the basic formulas

Further on let us examine the complete connected semisymmetric hypersurface
M"inR"*'with k(p)=2-on the open set U, where k(p)=2 and thus R,(X, Y)Z0
holds. Let us consider also the ¥-decomposition T(M)=V°+V?! on U and for a
point p€ U let us’consider the maximal connected integral manifold N of ¥° through
a point p. If ¢(s) is a differentiable curve in N, parametrized by arc-length and if
m;, m,, ..., m,_, is a vector field system around c(s) defined in the previous chapter,
then for the tangent vector ¢(s)= 2 a*(s)m, the tensor, defined by

(21) Bé(s)':= 2 aa(s)Bn/_c(s)r

is uniquely determined, and it is independent from the choice of the system mi,
...,M,_, around c(s). Indeed if Mm,, ..., m,_, is another system around c(s) with
i, = > bfm,, and the corresponding tensors w.r.t. this system are denoted by B,,

then from )
B, = biBy, my= (b m,, &) =3 af(s)my;= 3 af(b~V5m,
B “a . B a,p
we get ’ .

Saf(b-58, = 3 af(b-V3blB, = 3 a°B,,
2,8 ] @, B,7 . a

which proves the above statement.
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Let- us notice too, that the curvature tensor R(X, Y)Z is of the form
2.2) R(X,Y)Z = K(g(Y Z)X—g(X,2)Y), X;Y;ZeVY,

on ¥, where K(p) is the sectional curvature w.r.t. the section ¥,' at p. From (1. 13)
it follows that the function K(s)=K (c(s)) satisfies the dlfferentlal equation

dK
(2.3)‘ - = —(Tr BY)K,
and thus we have
- f'TrBéds
2.9 K(s) = K(0)e ¢

From this formula we get, that K is zero neither on N nor on the boundary of N,
and thus the boundary of N is inside of U. But N is maximal, thus N cannot have
boundary points. As the space is complete, N is a complete, connected, locally
euclidean and totally geodesic submanifold in the maifold M. On the other hand the
second fundamental form A vanishes on the tangent spaces of N, further V' is totally
parallel along N, thus N is an open subset in an (n—2)-dimensional euclidean sub-
space R"~2 of R"*1. But because of the completeness of N it must be equal to the
whole euclidean subspace R"~2, and thus we have

Proposition 2.1. Every maximal integral manifold N of V°, through a point
D, where R,#0 holds, is complete, totally geodesic and isometric with R*~2. In addi-
tion N is an (n—2)-dimensional euclidean subspace in R"*. The curvature tensor R,
of the space M" never vanishes at the points of such a submanifold N.

Now let ¢(s), —o<s<o, be a complete geodesic in a subspace N, considered
in the above proposition and parametrised by arc-length s. Let us consider also B;
along c(s) defined in (2.1). Then
@.5) ' V:B; = — B}

holds. From this equation it follows, that B, never vanishes along ¢ () if it is non-zero
at a point c(s,), and so it is'a zero-field, if it is zero at a point. Let us remember too,
that V' is invariant under the action of B, and that also B .(V°)=0 holds.
Next we solve the differential equtiaon (2.5). We can distinguish two cases.
Accordingly let ¢ and B, be as above in a connected and complete semisymmetric
hypersurface M" with k(p)=2.

Proposition 2.2. If the endomorphism B; degenerates at a point c(sy) in V. (s )
then B:=0 holds along the whole c(s) and B; is parallel along c(s).

Proposition 2.3. If the endomorphism B, is non-singular at one point c(s,)
in V(s y» then it is non-singular along c(s) in'V, c(s y» and at every point c(s) the eigen-
values of B are non-real complex numbers in V1
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As a consequence we get, that in a complete semisymmetric hypersurface with
k(p)=2 the endomorphisms B; cannot have real non-zero eigenvalues.
In the following proofs the completeness of the manifold is important.

Proof of Proposition 2.2. Let x,;(s) be the unit vector in ¥, (,) belonging
to the image set of By, and let x,(s,) be the orthogonal unit vector in V(s) Let us
extend these vectors into parallel vector fields x;(s), x;(s) along ¢(s). Then these are
tangent to V.

The restriction of B, , onto V., has the matrix in {x,(s;), X;(s¢)} of the form
) C(So)

(s,
(2.6) [l (go), v(go)] ’

where A(s)=0 holds iff Bg(s =0 Is satisﬁed.b The solutions of (2.5) are uniquely
determined by the initial value (2.6), so if A(s,)=0 holds, then the solution of (2.5)
has the matrix of the form

@n [g, P(s) = y(so) ,

w.r.t. the basis {x,(s), X,(s5)} in Vg, since (2.7) is a solution of (2.5) with the above
initial conditions. _
Now if A(s,)0 holds, then the solution of (2.5) has the matrix of the form

s

1 - fdr/(r+c,)
@9 e Y0

0, 0

w.rt. {X;(5), X,(5)} in V3,), where ¢;=(1—504(s0))/A(s,) is constant. But in this
case the functions 1(s), y(s), K(s) have. infinity value at —c¢; which contradicts- the
completeness of the manifold. Thus this case doesn’t occur and )(so) 0 holds,
which proves the proposition.

Proof of Proposition 2.3. Let {x,(s,), X2(so)} be an orthonormed basis in
Vc(s 2 such that the vectors x;(s,) are the eigenvectors of the symmetric part of B
The matrix of B, restricted onto ch is of the form

c(s

o (so), —B(so)
2.9 : e ,
9) “LB(so),  22(s0)
w.r.t. this basis. Let {X,(s), X,(s)} be the extension of {x,(s,), Xz(50)} onto ¢(s) by
parallel displacement. If we consider B, only in ¥z, then from (2 5) we get the
following: o )
BZch-BL-.: —B,, . VL.-B; =I -
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Thus the matrix of the solution B; of (2.5) with initial condition (2.9) is

s+c; —cy
2.10) (s+ec)(s+e)+c2’ (s+e)(s+ey)+ci ,
3 s+
(s+c1)(s+c2)+c 7 (ste)(ste) ek

w.rt. {x.(s), X;(s)}, where
¢; = ((a(0)/det Besp) —Sg> €2 = (a(0)/det Bysy) =50, €3 = (B(0)/det Beis)—so
Because of the completeness of the hypersurfaces the equation
(s+e)(s+ec)+cz=0
of second order can’t have real solution, i.e. for it’s discriminant 4
A= (c;—c)?—4c2 <0

holds. It is easy to see from (2.10) that by this conditon the eigenvalues of the re-
stricted B, are non-real along c(s) which proves the proposition.

After these propositions we examine the orthogonal projection of vector fieids
VY onto ¥°, where X and Y are tangent to V1. We denote this pro;ected vector
field by v(VxY).

Proposition 2.4. Let M" be a connected complete semisymmetric hypersurface
with k(p)=2. Then the vectors v(VXY) span an at most 1-dimensional subspace S
in V) for every point p.

Proof. We start with the indirect assumption dim S,=2 for a point p. By the
assumption the ¥-decomposition is of the form T, (M)=V,+¥;! around p, where
dimV=n—2. Let {x,,X,} be an orthonormed differentiable basic field around p
in V'*. Let us denote the vector v(V, Xx;),, by x;;. Then for arbitrary unit vector m,
tangent to Vp", the matrix of B, w.r.t. (X;, X,) i 1s the following:

[_g(xua m), —g(Xy,m)
- g(xl2s m), - g(x22 s m)
The characteristic equation of this matrix is
A+ {g(x11, m) + g (Xss, m)} i+ {g(x11, M) g (Xs2, M) — (X2, M)g(X;, M)} = 0, -
which has the discriminant
4 = {g(Xy1, m)— g(Xqs, m)}2+4g(x12, m)g(Xy,, m).

If x;,#0 or X0 holds and m is orthogonal to x,, or to x,,, then the eigen-
values are —g(Xy,m), —g(Xs, m). And if x;;=X;,=0 holds, furthermore m

'
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halves the angle of x;, and X,;, then the eigenvalues are +Vg(x;z, m)g(Xy,, m) =
#0, and these eigenvalues are also reals. Consequently we can choose such a vector m
for which B, has real, non-zero eigenvalue. This contradicts the previous prop- -
osition and the proof is complete.

Let p be a point for which dim S$,=1 holds. Then dim S,=1 holds in a neigh-
bourhood of p. Let M? be such a 2-dimensional submanifold through p in the points
of which

T,(M") = T (M) +V?, dimS,=1
hold. Let us choose such a system my,...,m,_, around p for which the vectors
m, (), g€ M?, are pointing in the direction of S,. Then in the points g€ M?

By(q) #0, By(q)=..=B,2(q)=0
holds. Since the differential equation (1.10) is of first order, so

B, #0, By=..=B, ,=0

hold everywhere, and m,; is pointing in the direction of S.-

A system miy, ..., m,_, constructed in this way is called a reduced system. For -
such a system only the first tensor B, is non-trivial, which we denote by B. Also the
basic formulas (1.8) and (1.9) are more simple w.r.t. such a system, and we get for
them:

(2.12) (VyB)(Y)—(VyB)(X) = 0,
(2.13) MYX)B(Y)-ML(Y)B(X) =0,
(2.149 dM?— 3 MINM! =

The other basic formulas are unchanged.

At the end we give some definitions.

Let M™ be a connected complete immersed hypersurface in R"*! with k(p)=2
everywhere. Let 7] be the open set, where k(p)=2, i.e. K(p)>0 holds for the Rie-
mannian curvature scalar K. Then in the interior ¥; of M™\¥; the Riemann curva-
ture R(X, Y)Z vanishes. Let %;S%¥; be the open set where the subspace S, (defined
in Proposition 2.4) is 1-dimensional. Then the tensor B vanishes in the interior ¥;
of ¥7\7z. The open set ¥ is called the pure trivial part of M". At the end let ¥,&7;
be the open set where B has two non-real eigenvalues. Then in the interior ¥, of
¥2\% B doesn’t vanish and it has only zero eigenvalues on ¥,. The open sets ¥,
resp. ¥ are called the pure parabolic resp. pure hyperbolic part of M™.

It is rather trivial that the open set

215) » AV AV A
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is everywhere dense in M". Furthermore the open sets ¥, ¥, resp. ¥ always contain
the complete integral manifolds of ¥°, i.e. the type of the hypersurface is uniquely
determined along a maximal integralmanifold of ¥°, where dim V,I"=n—2 holds.

Now let M" be a general (not necessarily complete) immersed hypersurface, with
k(p)=2 everywhere. The V-decomposition is defined for it in the same way as in
§ 1. This decomposition is of the form

C T,(M")=¥2+V}, dimV?=n-2,

iff the Riemannian curvature scalar K(p) doesn’t vanish. The maximal integral mani-
fold of ¥° through such a point p is always an open set in an euclidean subspace R*~2
of R". The M" is called vertically complete iff all these integral manifolds are complete
euclidean suspaces R"~? in R™.

We can define the open sets ¥, ¥, %;, %, ¥, 5> ¥» for vertically complete hyper-
surfaces with k(p)=2 in some way as before, since proposmons (2.2),(2.3)and (2.4)
hold for such hypersurfaces also. The type of hypersurfaces along an integral mani-
fold of ¥° (where dim ¥,’=n—2) is also uniquely determined.

Definition. A vertically complete immersed hypersurface M" with k(p)=2
is said to be of

1) trivial type if ¥;=0 holds, i.e. M" contains only ¥; resp. pure trivial parts,

2) parabolic type 1f Y:=%=9, ¥,#0, hold, i.e. M" contains only ¥; and non-
empty pure parabolic part,

3) hyperbolic type if M"=%;,i.e. M" contains only pure hyperbolic part.

By formula (2.15) all complete hypersurfaces with k(p)=2 can be built up
from vertically complete hypersurfaces of the above types. In the next sections we
give general procedures for the construction of vertlcally complete immersed hyper-
surfaces of the above types.

3. Hypersurfaces of trivial type

Strong theorems are known — local or global — which describe all the hypersur-
faces with zero Riemannian curvature. For example a complete connected hypersur-
face M" with zero Riemannian curvature is a cylinder of the form M"=c¢XxR"!
where c is a curve in an.euclidean plane R? and R"~ is the orthogonal complement of
R2[1]. So by the description of hypersurfaces of trivial type we assume that the open
set ¥; is nonempty. .

Proposition 3.1. Let U be a connected component of ¥ in a hypersurface of
trivial type. Then U is a cylinder of the form U=M?*XR""%, where M2 is a hyper-
surface in a euclidean subspace R® and R"~* is the orthogonal complement to RS,

5
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Proof. The tensor ficlds B, are zero in the considered case, so V,,V'C¥!
holds. So the distribution 7! is integrable and the integral manifolds are totally ge-
ode51c Let M? be an integral manifold of V. From B =0 and A(V°) 0

D VoS Ve

follows, where D is the covariant derivative of R"*1, Thus the integral r_rianifolds of Vo
are parallel euclidean subspaces, and M2 is contained in the orthogonal complement
R3 of these parallel subspaces It is rather trivial, that U is of the form U=M2xR"~2
indeed. : :

The following theorem is obv1ous

" Theorem 3.1. For a hypersurface of trivial type there exists an everywhere
dense open subset, on the connected component of which the space is of zero Riemannian
curvature or it is a cylinder described in the above proposition.

Generally a hypersurface of trivial type doesn’t split into a global direct product
of the form M?XR"~%. To show this fact we construct a 3-dimensional irreducible
hypersurface of trivial type.

Let C; and C, be two infinite closed circle-cylindrical domains without common
points in R? which are pointing in different directions m; resp. n,. Furthermore let
f(x,y,2) be such a differentiable real function on R® which has zero value on
RAN(C,UC,) and fis positive inside of C;, i=1,2, such that it is constant along
the lines parallel to n;. Such functions obviously exist.

Proposition 3.2. The hypersurface M3 represe;nted: by (x,y, 2 f(x,y,2))
in R* is a complete irreducible hypersurface of trivial type, diffeomorphic to R®.

Proof. The open sets ¥2cM3, i=1;2, represented by (x,y, z, f(x, y, 2)),
(x, y, 2)EC;, are cylindrical of the- form ¥i=M?XR, furthermore the Rlemanman
curvature vanishes on M3\(¥"1U¥'%). Thus M? is of trivial type.
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"Let p be arbitrary point of R¥N\(C;UC,). Then p is a point of M3, It is easy to
show, that the holonomy group H, of M? is generated by the rotation groups SO(2),,
SO(2),, where SO(2);, i=1; 2, acts around the axis through p pointing in the direc-
tion of m;. Thus H,=S0(3) holds, and M? is irreducible. The other statement in the
proposition is obv1ous

Since the above example is not locally symmetric, so it is also a counterexample
to Nomizu’s conjecture. :

With the above method one can construct n-dimensional complete irreducible
hypersurfaces of trivial type for any dimension n.

4. Hypersurfaces of parabolic type

Let us consider the hypersurface M" on the open set ¥,, where R#=0, B=0
with B2=0. The system m,;, m,, ..., m,_, is by assumption a reduced system. Let
{9, 0} be an orthonormed basis in 71 such that 9, is tangent to the image space of B.

By V,, B=0 we get that 0 and 9, are parallel vector fields along any integral
. manifold of V9, i.e. Vmu3i=0 holds. Furthermore from B2=0 we have that the
matrix of the restricted B (onto V) is of the form

0, 0
NCRY [ b 0
w.r.t. {3y, 91}.
Let us introduce also the functions A, Ay by

42 - V8o =2d1, Vo di=M0d, Vadi=-20p Vodp=—20,.
Proposition 4.1. The above functions satisfy the following equations:
4.3 . =0, 9(b)= '
@49 Y Vo= Va0 =0.
Proof From (2.12), (4.1) and (4.2) we have
(ValB) 00) = 81 (b)d,+b210y = (V,-, B)(0)) = B(19y) = /1b31 )
SO We get (4.3). (4.4) is obvious by AI—O and by the above considerations.

Now let us examine the Weingarten field 4 of the hypersurface. As for it
A(V%)=0, A(V)=V"1hold, so let 4 be the restnctlon of A onto V1, The matrix of 4
w.r.t: {9y, ) is of the form

> 0]
(4.5) Yo

53 ‘Y1.

5.
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Proposition 4.2. The Weingarten field A satisfies the following relations:

(4.6) Vo4 =—A40B, V, A=0 for a=2,
@.7) AoB is symmetric, (Va, A)@) = (Va, 4)(dy),
4.3 11=0, m(pp)+6b=0, m,(y,) =0 for a=2,
4.9) m,(8) =0 if a=1,

thus & is constant along the integral manifolds of V°,

(4.10) , 0.(30) = o(8) + Ay, 9,(0) = 248.

Proof. Equations (4.6) and (4.7) come from the Codazzi—Mainardi equatibn
(Vx HX) = (Vy A (X),

using the vector fields dy, 0;, m,, ..., m,_,. The equation y;=0 comes from symme-
try of AoB, and the others are equxvalent to (4.6) and (4 7) using the formulas
@.1)—@4.5).

By (4.8) and (4.5) the curvature scalar K of M" is
4.11) K=detd=-8<0
on ¥;, so the matrix of 4 in {9,, 8,} is of the form

@12) x=|, X l/7]

By the second equation of (4.10) also the equation
4.13) ) 0,(K) = 44K
holds.

Let us notice too, that the sectional curvature K, is non-positive in a hypersurface
of parabolic type so from the Hadamard—Cartan theorem we get:

Proposition 4.3. The sectional curvature K, of a hypersurface M" of parabolic
type is non-positive. Thus if M" is complete and simply connected then it is diffeo-
morphic to R".

Proposition4.4. The distribution W9, spanned by 0, and V°, is involutive, and the
integral manifolds of W° are open sets in (n—1)-dimensional euclidean subspaces of
R+, In addition if the hypersurface is complete, then the maximal integral manifolds of
W? are complete (n—1)-dimensional euclidean subspaces in R"**.

Proof. For the Lie derivative [0, m,] resp. [m,, mg] we have _
[319 ma] = Valma—vm,‘al = Valma = Ba(al)+2 M(Z(al)my = ZMZ(al)m)"
b4 : b -

) [ma’ mﬁ] = 03
thus W° is involutive. ‘
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Let H be an integral manifold of W?. Then H is a hypersurface in M" with nor-
mal vector field d,. H is by (4.4) a totally goedesic hypersurface in M" with zero Rie-
mannian curvature as well.

Let D be the covariant derivative in R"*1. By (4.1) and (4 5) we have

Dyn =060y, Dy dy=—6n, Dyn=0, Dypdy=0.

Thus the planes spanned by n and 9, (along H) are parallel, and so H is an open
set in the euclidean subspace which is orthogonal-to the above parallel planes.

Now let M" be a complete hypersurface of parabolic type and let H be a maximal
integral manifold of W°. From the second equation of (4.3) and from (4.13) we get,
that K resp. B vanishes neither on H nor on the boundary of H. Thus H is
without boundary points and so it is a complete (n—1)-dimensional euclidean sub-
space in R"+1,

By the above proposition every connected component “I";" of ¥, in a complete M"
can be considered as a fibred space IT: 'Vpi»R, where the fibres I1-(q), g€R,
are (n—1)-dimensional euclidean spaces. In the following proposition we make this
fibration into a global fibration.

Theorem 4.1. Let M" be a simply connected and complete immersed hypersur-
face of parabolic type in R***. Then M" isin a natural manner a fibred space I1: M"—~
—+R, where the ﬁbres II7(q), q€R, are (n—1)-dimensional euclidean subspaces in
R™H1,

Proof. Let us examine M" on the open set ¥;. The rank of the Weingarten field
Aon¥is1or0.Let ;'S ¥ be the open set, where rank 4=1 holds, and let %;°
be the interior of Y5\ %". If 9, is the unit vector field on ¥;', tangent to the image-
space of A, then

A(0y) = 740, Wwith y,#0

holds. Let ﬁ{l"c T, (%Y, g€¥", be the subspace orthogonal to dy(g). It is well

known that the distribution I:'I:/“ is involutive and the integral manifolds of it are
open sets in the (n— 1)-dimensional euclidean  subspaces of R"*1. In the following we
prove the completeness of these integral manifolds.

First of all let us notice, that the fibration described in Proposition 4 4. can be
extended continuously onto the boundary. of ¥;. In fact, in the opposite case two se-
quences p;, ¢;€¥, could be chosen such that p=Ilim p,=lim g;=¢ is on the bound-
ary of ¥, the integral manifolds H,, resp. H, of W° through p; resp. g; converge to
H, resp ,but H,#H, holds As the spaces H,,H,, H,, H, are hypersurfaces
in M" thus S : :

dim (H, N H,) =n—2.
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would hold for large numbers 7, which is a contradiction. Thus the proof of the state-
ment is complete.

Let us return to the investigation of P’I‘/"’s integral manifolds. Let H be a maximal
integral mainfold. For a vector field X tangent to H we have

(VaoA)(X ) = (Vx 4A)(y),

from which we get »
(4.19 Vx0o =0, X(y0) = y08(X, Vaoao)-

So if x(¢) denotes an integral curve of X, then along it

1o = ro@yed
holds. From this we have, that 4 vanishes neither on H nor on the boundary of H.
So every boundary point of H is a boundary point of ¥, too. We prove, that such a
boundary point doesn’t exist for H. e
} - We start with the indirect assumption. If ¢ would be such a boundary pomt

then let H, be the subspace through g which we get by the extension of the fibration,
described in Proposition 4.4, onto the boundary of "/" Then dim (HNH)=n—2
holds obviously. Let 8y be the normal vector of H in T, o (M7). Since K(q)= 0,
A(g)#0 hold, so by (4.12) we get, that 9, is the unique non-trivial eigenvector of
A(q). But by (4.14) the non-trivial eigenvector 9, is parallel along H, so the vector

0(q) is also a non-trivial eigenvector of A(q) This is contradiction, because 3o(q)¢
#d, holds. :

~ So we get, that the maximal integral manifolds of WO are also complete (n— 1)-
dimensional euclidean subspaces in R***. Now let us consider a connected component
;" of ¥;°. From the above considerations it follows, that ¥;” is an open set in an
n-dimensional euclidean hyperspace, such that the boundary of ¥;% is either an
(n—1)-dimensional euclidean subspace, or two parallel (n—1)-dimensional subspaces.
Thus the extension of the fibration onto ¥%° is trivial, which proves the proposition.

The above statements suggest a simple constructional method for hypersurfaces
of parabolic type. :

Proposition 4.5. Let c(s) be an immersed curve in R"*, parametrised by
arc-length. Furthermore let H ., be a differentiable field of (n—1)-dimensional eu-
clidean subspaces along c(s) such that H, is orthogonal to ¢(s). Then the subspaces
H,, cover an immersed hypersurface with k(p)=2 around c(s).

Proof. It is trivial, that the subspaces H.(, cover an immersed hypersurface
M" in a neighbourhood of ¢(s). Let n be the normal vector field of this hypersurface
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M", and let 9, be the unit vector field in M”", orthogonal to the subspaces Hy.
Since the vector Dyn, where X is tangent to H ), is pointing always in the direction
of 9y, so the image-space of Weingarten map A is spanned by the vectors d, and Dy
Thus rank A=2 holds, and the proof is finished.

The spaces constructed in the previous proposition are in general not complete.
But in many cases a field H,, described above covers globally a complete immersed
hypersurface M". This is the case, if we consider an arbitrary differentiable field
H s, of orthogonal (n— 1)-dimensional euclidean subspaces along a line c(s) of R"*%.
Of course there can be given more complicated cases. Since such a hypersurface is in

general not of the form
¢XH,,

where ¢ is a plane curve in a euclidean subplane R® and H, is orthogonal to R2,
so these hypersurfaces have non-zero curvature in general.

Theorem 4.2. Let c(s), —eo<s=<oo,. be an immersed curve in R"*' and let
H, be such a differentiable field of orthogonal (to ¢(s)), (n—1)-dimensional eu-
clidean subspaces along c(s), whlch cover a complete hypersurface M". Then for M*
we have k(p)=2, B®=0 and :

@.15) K = — (Dj,m, Dy n) 4 (Dj,m, 0p)* = 0.
Furthermore if K(p)<O holds in a point pcH,, then K<O is satisfied along H pi

Proof. By Proposition 4.5 k(p)=2 holds for M", and if K(p)=0 (i.e.
k(p)=2) is satisfied, then the image space of the Weingarten field 4, is spanned by 9,
and Daon, where Dyn has non-zero projection onto the fibre H,.Let 0, be the unit
vector pointing in the direction of this projected vector. Then the non-trivial subspace
of 4, is spanned by d, and d;. Since for D, n the relation D, n=4 9,=A4(d,) holds,
) the matrix of 4, w.r.t. {0,, 9} is of the form

?o,-]
: 0

with 60. Since Dy n=y,0,+39, holds so by. K= —&? we get the relation (4.15).
Of course (4.15) holds also in the case K(p)=0, as m this case Dy nis pointing in the
direction of. d,. .

The subspaces H., are totally geodesm so V,, 3,=0 follows. From this we get
g(B(01), 9,)=0 i.e. 9, is an eigenvector of B. But the space is complete so B has only
zero real eigenvalue. Thus B(d;)=0 and B2=0 follows.

The integral manifolds of ¥ are parallel hyperspaces in the ﬁbres HC(S), and
so the integral curves of 9, are lines in Hc(s, From (2.4) and (4.13) we get, that K<0
holds along H,, if in a point p€H,,, K(p)<O0 is satisfied.
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We are going to investigate the irreducibility of the previously described spaces.
Let M" be a complete simple connected immersed hypersurface as in Theorem 4.2
with K<0, and let c¢(s), —o<s<woo, be an arbitrary fixed integral curve of d,.
The subspaces H,, can be described uniquely by the normal vector field n(s) along
c(s).

Theorem 4.3*). The hypersurface M" with K<O is reducible iff a euclidean
subspace R* with k<n-+1 exists, which contains c(s) with the vector field n(s) as well.
If R* is the smallest such subspace, then M" is of the form

(4.16) , M" = M*-IXRI*+1,

where M*~ is an irreducible complete hypersurface in R* covered by a one-parametrized
family H7, of (k—1)-dimensional euclidean subspaces, furthermore R" kL s eu-
clidean - subspace in R"*! orthogonal to R".

Proof. If ¢(s) with n(s) is contained in a subspace R*, k<n+1, then M"
is obviously of the form (4.16). Thus we examine the other direction, and let us assume
that M" is reducible, and it is of the form

(4_17) M® = Qk—lXQn—k+1
with k<n. :

First we prove that (4.17) is a cylindrical decompdsition. Let T7 resp. T2 be the
tangent space of Q%! resp. Q" **..Since for the curvature tensor R the equation
R(T*, T)X=0 holds, so by the Gauss equation we get

(4.18) g(X, A(TH)A(T?) = g(X, A(TH)A(TY),

for every tangent vector X¢T(M). We show, that 4 vanishes on one of the tangent
spaces T'.

In fact, if there were tangent vectors X'¢T,, i=1;2 for which A4(X")>0
holded, then by (4.18) the vectors A(X*) would point in the same direction, and so A
would be of rank 1. But this is imposible, because K<0 holds.

So we get, that one of the spaces Q*~%, 0" ~**! has negative scalar curvature, and
the other is of zero curvature. Let Q*~! be the space with K<0. Since 4(T%)=0
holds, so T2S¥V?° and the integral manifolds of T2 are complete (n—k+ 1)-dimen-
sional euclidean subspaces. Because of the decomposition (4.17) these euclidean sub-
spaces must be parallel subspaces in R"*1. So (4.17) is a cylindrical decomposition of
the form ' I .

. Mt = Qk-—l XRn—k+_1’
where Q! is a hypersurface in R* orthogonal to R*~**1, Since R***! is orthogonal
to ¢(s) and n(s) as well, so ¢(s) and n(s) are contained in R*.

*) The theorem is true also in case K=0.
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The last statement in the theorem is obvious.

We mention, that the above theorem is true also .in the case, when we consider
M?" only for an open interval a<s-<b.

By Theorem 4.2 the hypersurfaces described in the theorem can contain also
pure trivial part ¥;, i.e. on which K<0, B=0 hold. It is clear by the above remark,
that ¥; is non- empty iff an open interval a<s<b exists, for which c(s) with n(s)
is contained in a 3-dimensional subspace R?, but a smaller subspace doesn’t contain
the system {c(s), n(s)}. So excluding this possibility the other hypersurfaces described
in Theorem 4.2 are of parabolic type.

It is very easy to construct such complete, irreducible hypersurfaces which con-
tain pure parabolic part only.

For example let us consider a differentiable field of unit vectors n(s) along a line
¢(s), —eo<s=<oo, in R for which

1. thé vector D;n is non-zero along c(s),

2. the system {c(s), n(s)}, —eo<s<-oo, is not contained in a subspace R with
k<(n+1).

3. There is no interval a<s<b, for which {c(s),n(s)} is in a subspace R®.

Then the euclidean subspaces H. ), orthogonal to ¢(s) and n(s), inscribe in R"+1
an irreducible.complete hypersurface with pure parabolic part only:

It is very easy to contruct also such hypersurfaces which contain only pure trivial
and pure parabolic parts.

5. Hypersurfaces of hyperbolic type

Theorem 5.1. Every connected and simply connected immersed hypersurface M"
of hyperbolic type is of the form M"=M?3XR"~3, where M3 is an immersed hypersur-
face of hyperbolic type in a euclidean subspace R* and R"~2is euclidean subspace ortho-
gonal to R

Proof. By (2.13)
M}(X)B\(Y)—M;(Y)B,(Y) =0

holds. Since B, is non-degenerate thus M'= —M>=0 holds for «=2. This means
that Vym, is contained in ¥} for every vector X¢ Vpl. By formulas (1.3) and Proposi-
tion 2.4 the distribution ¥, spanned by ¥,! and m,/p, is involutive and the integral
manifolds of this distribution are totally geodesic. It is also trivial, that the orthogonal
complement ¥,** of ¥* is also involutive, and the maximal integral manifolds of it
are (n—3)-dimensional euclidean subspaces in R"*1. Let M3 be a maximal integral
manifold of ¥*. Then for every vector field ¥ tangent to ¥** and for every vector
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field X tangent to ¥'* the vector field D,Y is also tangent to V'**, where D is the co-
variant derivative in R"**. This means, that the integral manifolds of ¥** are parallel
euclidean subspaces in R**? and that M3 is an immersed hypersurface of hyperbolic
type in an orthogonal complement R* of the above parallel euclidean spaces. From the
basic formulas it is rather-trivial, that the metric of M" is of the form M"=M 3R 3
indeed. '

From the above theorem we can see, that for the construction of hyperbolic
hypersurfaces we must construct only the 3-dimensional cases. In the following we
describe a general construction for such hypersurfaces.

At first let us consider a one-fold covering of a simply connected open set U of
R?® with complete lines such that the unit vector field u tangent to these lines is dif-

ferentiable. We call such a covering a line-fibration of U. For a point peU let I;‘,1

* .
be the orthogonal complement of u, and let ¥, be the 1-dimensional subspace in
T,(U) spanned by u,. The following relations are obvious for the covariant derivative
D of R3:

* * * * * * *
(6P c Dp VIS VY, Dy VoSV, Dp V'S VO+V

Furthermore let é(X }:=Dyu be the derived tensor field of u and let V be the
covariant derivative defined by

*
Vy¥:= DyY—(DyY, u)u = DyY+(B(X), Y)u, X,; Y, eVl
(5.2) .
éxu =0 for every vector field X, and ﬁ,x:: DuX af XEny
on U, where (X, Y') denotes the inner product in R3. It is rather trivial that Vs
metrical w.r.t. (X , Y). If 13 denotes the curvature tensor of {7, then the following basic
formulas hold for the given line fibration:

R(X, 1)Z = (B(Y), Z)B(X)—(B(X), Z)B(Y),
(5:3) Vx B -@yB)(X) =0 if X,; Y,eV}
V,B* = — B*oB",
13(&, WY = R(X, Y)u —0.

These formulas can be proved in a similar way as the formulas of Proposition
1.1. Since the lines in the fibration are complete lines so it can be proved (similarly to
Proposition 2.2 and 2.3) that along a line either B*2=0 holds or B* is non-degen-

*
erated on V! and it has two non-real eigenvalues.
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" Now let U; S U be the maximal open set where B**=0 holds and let U,SU

be the open set where B* is non-degenerated in V1. Then the open set U,UU, is
everywhere dense in U, and both open sets are line-fibred open sets. Thus for the line-
fibrations we can give the following local classification. One class of such fibrations
contains the fibrations for which B*2=0 holds, and the other class contains the

*
fibrations for which B* is non-degenerated in V1. We describe this classification form
a more geometric point of v1ew
First let us consider the case B**=0. If B=0 holds on an open set, then this

open set is fibred with parallel lines. And if B* 0 holds, then let 30, 81 be the orthogo-

* . %* .
nal unit vector fields tangent to V%, such that 0, is tangent to the kernel of B. The
following statement can be proved in the same way as Proposition 4.2.

. ' *
Proposition 5.1. The distribution Vl’" spanned by u and 8, is involutive.
A maximal integral manifold I} of Vl’" is an open set in a euclidean hyperplane of
R3 such that the lines of fibration, which have common point with I} are parallel

lines in this hyperplane and the 1ntegral curves of 31 in H are parallel line segments
in the plane. - :

Conversely, if through -every line / of a line-fibration there exists a euclidean
hyperplane ‘H such that H covers parallel lines from the fibration around / then the

equation Be=0 holds for the line-fibration.
~ The last statement of the above proposition is also obvious.

" Thus the above local classification of line-fibrations is the following. One class
contains the line-fibrations which can be covered with one parametric family of hyper-
planes in the sense of Proposition 5.1 and the elements of other class cannot be
covered in such a way. So we call the elements of the first class plane-coverable line-
fibrations and the elements of the second class plane-uncoverable line-fibrations.

It is easy to give plane-coverable line-fibrations. For example let us consider a
famlly of parallel lines in a hyperplane ‘H of R3.

l
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Let us move H along a line / (perpendicular to H) in such a way that H also turns
around /. In this way we get a plane-coverable line-fibration of the whole R3. In
order to show the existence of fibrations belonging to the second class we also give
an example of a plane-uncoverable line-fibration of whole R3.

Let us consider the unit vector field

(5.9 _
u = (2241)7V2(x2+ y2+ 224+ 1) 712 {(xz—y)a—i-+(yz+x)-(%+(z2+l)aiz}

defined in a Cartesian coordinate neighbourhood (x, y, z) of R3. A simple computa-
tion shows the equation D,u=0, thus the maximal integral curves of u are lines and
these lines define a line-fibration of R3. Every line intersects the (x, y)-plane (z=0)

just in one point. It can be simply computed that the eigenvalues of é(X )=Dyu
at the point of the (x, y)-plane are

(5.5) 0, (x2+y2+1)712, —(x2+y2+1)"12j,

where i is the imaginary number. Thus B has two non-real eigenvalues at every point
of R? and the fibration is a plane-uncoverable line-fibration.

Now let us consider a 3-dimensional hypersurface M3 of hyperbolic type in R*.
The integral curves of the vector field m in M? are lines in R* and the tangent hyper-
spaces T,(M?®) coincide along such an integral curve /. Let us denote this constant
hyperspace by T,(M?). If § is such a euclidean hyperspace in R*, which is not ortho-
gonal to /, then the orthogonal projection IT: M3—~S maps an open neighbourhood
U of | diffeomorphically onto an open set U* of S such that the image of m’-s integral
curves form a line-fibration of U*. This line-fibration is called the projected line-
fibration of U*.

‘Proposition 5.2. The projected line-fibration of U* is plane-uncoverable if M3
is of hyperbolic type. '

Proof. Let « be the angle between the line / and the projected line /”. Then o
can be cosidered as a differentiable function on U* which is constant along the pro-
jected lines /. If A;(p), peU*, i=1,2,3 denotes the eigenvalues of B(X)=Vym
at the point IT~1(p)e U then by a simple computation we get, that the eigenvalues of
é(X )=Dyu are Af=cosat;, i=1,2,3, which proves the proposition.

By the above considerations every hypersurface M3 of hyperbolic type can be
represented locally as the position of the points

(5'6) (x, Vs 25 f(x3 ¥, Z))a

where f(x, y, z) is a differentiable function on an open set U*SR3, where U* is an
open set, line-fibred in a plane-uncoverable way.
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We mention; that the unit normal vector field n of M3 is represented by

eX) n= (oS —Far D,

where h=(1+/2+f2+/)"?, furthermore the second fundamental form is repre-
sented by :

, f;:x Soy Sz
(5.8) fyx Sy Soe]-
f;.x S

(For details see [6].) Let u be the unit vector field referring to the line-fibration of U*.
Then the covariant vector field df is parallel along the integral curves of u, i.e. D ,df=0
holds, furthermore rank H=2 holds at every point p€ U*, and the nullspace of H is
spanned by u

Now we turn to the reversed problem, and we give a general construction for
hyper-surfaces M3 of hyperbolic type. '

Theorem 5.2. Let U* SR be an open set which is line-fibred in a plane-uncov-
erable way. Then around every line of the fibration there exist di ﬁ”erentlable functzons
f(x,y,z) such that the points

(x, 7, 2, £ (%, 3, 2)
represent hypersurfaces of hyperbolic type.

Proof. Let u be the vector field referring to the fibration of U*.

Lemma 5.2.1. The hypersurface (x,y, z,f(x, ¥, z)) is of hyperbolic type referring
to the fibration of U* iff

(5.9) D,df =0, rankD*f=2
hold.

The proof is obvious by Proposition 5.2 and formula (5.8).

Let M2cCU™* be such a hypersurface in R® for which the tangent spaces T, (M ?)
are complements of u,, i.e. T,(M*)+S,=T,(R® holds, where 'S, is the 1-dimensio-
nal subspace spanned by u,. Thus M2 can be considered as a cross-section of U*’s
fibration. If (xY, x?) is a coordinate -neighbourhood of M2, then it can be extended
uniquely onto a coordinate neighbourhood (x2, x2, t) of U* such that 9/dt=u holds,
and (x4, x2, 0) is just (x1, x%) on M 2. The vector fields d/0x’ can be written in the form

(5.10) 3‘1—, = E;+d,u,



342 Z.1. Szabd

where E; is orthogonal to u and thus also

i )
(5.11) ) P, = [3xi ,
holds. For the tensor field B the following holds:
(9 * T % 9 "
(5.12) B(W] = B(E;+®;u) = B(E) = B’E B,’ 5 —B!®,u.

Lemma 5.2.2. The fields E;, ®;, B, fulfill the following formulas:

9%, . 9Bl
S =0 D= B(E) = BIE,, S = —BlE,

(B(ED, E)—(BE), E) = E/(®)~E(®)) = 00/~ /0.
Proof. From [9/0x), u]=[8/0x", /0t]=0 we get

(5.13)

[0 ] 3(15
0_[8x" [E-!-Qu u] = [E;,u] ——u.
On the other hand
[E;, 6] = Dy,u—D,E; = B(E)~D,Ei.
Since both components of these equations are orthogonal to u, so we get the first

two equations in (5.13). We get the third equation form D, B=_B and from the
second equation. We get the last equation in the following way:

[ax‘ ’ a 7 [Ei+d5ill, E_,--I—dilll] ==

=[E, Ej]~ +{(B(Ej),'Ei) —‘(B (ED, Ej) - Ej ($)+ Ei(¢j)}“,
thus the last equation is also satisfied.

Every solution f of D,df=0 satisfies u-u(f)=0, thus f must be of the form
f=0(xY, x?)t+A(x!, x?) in the above coordinate neighbourhood (x, x2, t), where the
functions g, A are the functions of the variables (x%, x%) only.

Lemma 5.2.3. 4 function f=o(x*, x)t+A(x*, x%) is the solution of D df—
iff for ¢ and A the differential equation

Jdo (3@ oA
(5.14) o —Bi | ’+a

di,g] =0, i=1; 2,
holds. :
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Proof. This equation comes from (5.13) by
d ]_ o [ 0 ] O _
(Dudf) [_3_x'- T 019X ~df| Dt ox! Frra ~ 4 (DyEit Pu) =

39 ( do /)
atan ~d(BE) = 5 B(W”’ax' Q"’]

For every solution f the restrictions of ¢ and A onto M? satisfy the diﬁ’ef;:ntial
equation _
de ( dA ] _
(5.15) Fri B, o —09,| = 0.

- Lemma 52.4. Let o(x', x¥) and A(x', x®) be the solutions of (5.15) on M2
Then the function f=ot+A defined on (x1, x2, t) is a solution of D, df=0.

Proof. Let w;(¢) be the functions defined by the left side of (5.14) along a line
of the fibration. Since §; is of the form (2.10) along a line thus w;(¢) are analytical

functions with ;(#)=0. A simple computation shows the equation
d"w;
dr

= (~1yBhBb ... B o
- il e P YL,

so d'wfdtjy=0, ie. w;=0 everyWhere. This proves the statement.

Now let us assume that M2 is a hyperplane in R® and that (x1, x?) is a Descarte-
sian coordinate system on it.

Lemma 5.2.5. The covariant vector field p;= ﬁ{ D, is a closed form on a hyper-
plane M?2.

Proof. It can be seen from (5.3) that the equation
. * *
(5.16) (Dx B)(Y) = (Dy B)(X)

holds for every vector field X, Y in R3. By this formula we get
0 *( 0
o o () 1)

* * ]
—Bj di,u] —Djoxs (B,' _-_— —-B{Q,ll] =

9
S ox ox"

* * * *

0B, o x } 9 { 0Bi®,  oBi® }

= i’ A S r r — T u’
{3x‘ % 519,57 + 510, 5; 20l W ™ R

*
= Dyjaxt (B'
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and so
*
0B 0B *
— q r q r
% on Bio, B B D, B
(5.17) Yy

088, _ 9B;9,
ox’ oxt

By the last formula th_el proof is complete.

Let us define the matrix field
* * *
- B3, (1/2)(Bi—Bj)
* * *
(1/2)(B— B3, B}

on M2. This matrix field is positive definite as by the plane-uncoverable fibration

(5.18) aty =

(5.19) det (a¥) = — B2Bl—(1/4) (B! — B2 > 0

holds, since the discriminant 4(= —det.(a”)) ofthg characteristic equation

22—TrBi+detB =0
is negative.

Lemma 5.2.6. In a hyperplane M? the differential equation (5. 15) is equivalent to
the equations

2
(5.20) o a’ %d—. =0, det(a')=>0,
' © 00 | X )
(5.21) - 3 90 L Breg =B -

Furthermore for a fixed solution A of (5.20) the di ﬁ"erenttal equation (5.21) is completely
integrable w.r.t. g.

Proof. We can write the equation (5.15) also in the following invariant form
(5.22) do+0d—w =0,

where & resp. w are the covariant vector fields B{ D, resp. B{ 02]0x". As the operator
d acts on the left side of this equation so we get by Lemma 5.2.5:

(5.23) , do=dohd = wAé.

We show, that this equation is equivalent to (5.20). Indeed, the equation (5.23) is just
the following:

* *
r 7 2 —Bi®,B
0Bk _9Bik _ fig Bpa,—Bro,Bp1,,

ox! oxt.
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where A,:=2/0x". By the first equation of (5.23) we get

2 2
(5.24) g g 0%

Fowont B wan = ®

which is equivalent to (5.20) indeed. Since (5.23) is the condition of mtegrablhty for
(5.21) thus the last statement is in the lemma also obvious.

Now let / be a line from the line-fibration of U*. For a point p€l let M 2 be a.
hyperplane such that / is not belonging to M2. Then there exists a neighbourhood ¥ of, .
p in M? such that the lines going through points of ¥ are not belonging to M2. Let
(x%, x?) be a Descartesian coordinate neighbourhood on M2 and let A be a non-linear
solution of (5.20) around p. Then 2 is non-linear in a neighbourhood ¥* of p, i.e.
the matrix field 924/dx'dx’ is non-trivial on ¥*. Let ¢ be a solution of (5.21) w.i.t.
the fixed A. Then g is uniquely determined by the initial value g(p). By the above con-
siderations the function f(x1, x2, t)=g(x!, x3)t+A(x}, x?) satisfies the differential
equation D,df=0. On the other hand the rank of D% is 2 in a neighbourhood of /.
To prove this statement we only have to show that the matrix field 921/dx'dx/ is
non-singular on ¥*. Indeed, by (5.24) the field 924/Ax'dx’ cannot be of rank 1, on V'*,
because in the opposite case the null-space would be an eigen direction of é; by (5.24).

This is impossible, because'the two eigenvalues of 1§" are non-real. So for a neighbour-
hood of / the points (x, y, z, f(x, y, z)) represent a hypersurface of hyperbohc type
and the proof of Theorem is complete.

Now we turn to Takagi’s counterexample. Let us consider the line-fibration (5.4).
Then every line of the fibration intersects the (x, y)-plane only in one point. Let us
denote this canonical coordinate neighbourhood on this plane by (x*, x%). A simple

computation shows, that the matrix field E{ is of the form
B = e+ e[ '1]_

on this plane and so the function A(x!, x):= —xx? satlsﬁes the differential equauon
(5.20) with det (024/0x'dx’)= —1. From (5.21) we get the solution

= (12)((- () (O (1) o

If we compute the function f(x?!, x2, 1)=gt+2 in the Deccartesmn coordmate
neighbourhood (x, y, z) of R3, we have

. o xPz—yPz—2xy
S, 2) = T 2@+

and so the points (x, y, z, f(x, y, z)) represent a complete irreducible hypersurface of.

6
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hyperbolic type which is of course irreducible and non-symmetric. But this is just
Takagi’s counterexample, so we have:

Proposition 5.3. Takagi ’s bounterexample is a complete hypersurface of hyper-
bolic type.

Proposition 5.4. -The sectional curvature K, is non-positive for every plane o
in a hypersurfaces of hyperbolic type. So every complete and simple connected immersed
hypersurface M" of hyperbolic type is diffeomorphic to R".

Proof. Itis enough to prove, that the sectional curvature w.r.t. ¢=V,! is nega-
tive. If (4}), i;j=1;2, is the Weingarten field, restricted onto ¢=V¥,}; then K,=
=det (A;'-) holds. On the other hand V_,4=—AoB holds, thus we get

B{A,J = B;A"

If 4;; were positive definite, then B would have two non-zero real eigenvalues.
So the signature of A4;; is 1, and thus K,=det (45)<0 holds.

6. Classification of complete semisymmetric hypersurfaces

At the end we can summarize the results of the paper in the following manner.

Theorem 6.1. Let M" be a complete semisymmetric immersed hypersurface in
R, Then M" is one of the following types.

1. M"is of zero curvature, and it is of the form M"=cXR"™Y, where c is a curve
in a hyperplane R® and R"™* is orthogonal to R?. '

2. M" is a straight cylinder of the form M"=S*XR"* described in Nomizu’s
theorem.

3. M"is pure trivial of the form M"=M?2XR""%, where M? is a hypersurface in
a 3-dimensional euclidean subspace R® and R"2 is orthogonal 1o R®. :

4. M" is pure parabolic of the form M"= M "XR""‘, where M™ k is an irreducible
pure parabolic hypersurface in a euclidean subspace R*** and R"~* is orthogonal to
Rk+1

5. M"is pure hyperbollc of the form M"=M3*XR"™3, where M3 is a pure hyper-
bolic irreducible hypersurface in a 4-dimensional euclidean subspace R* and R™2 is
orthogonal to R%. ' .

6. M" satisfies the relation k(p)=2 and it is mixed with ¥, ¥, ¥,,¥; parts.

Theorem 6.2. 4 camplete semisymmetric lmmersed hypersurface with K=0
is one of the following types. -
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1. M is a cylinder M"=S*"1XR"~*" described in Nomizu’s theorem.
2. M" is pure trivial of the form M"=M?*XR""* described above in point 3.

Theorem 6.3. Let M" be a complete immersed semisymmetric hypersurface with
|K|=e=>0 for a constant e. Then M" is also one of the types described in the above
theorem.

Proof. Let M" have the property k(p)=2. Then M" can’t have hyperbolic
part, because on an integral line of m; on this part the function K(s) is of the form

Q

KO = srasrora

Q = constant,

by (2.4) and (2.10).

But M” can’t have pure parabolic part either. Indeed, on this part the integral
manifolds of #W° would be compléte (n— 1)-dimensional euclidean subspaces in R**!
by (2.4), (2.7), (4.3) and (4.13), and the maximal integral curves of 9; would be
complete lines in these subspaces.

On the other hand B degenerates on this part, so by (1.7) R(9,, 9 )30—R(31 , 00)0,
- holds. From this relation we get

0:(A) = K+2%,

so along an integral curve of 9,

dK A ,
= 4K, == =K+1

hold. The general solutions of this system with K<O0 are the following:

O
(Q1—=(+02%)°

where @, and Q, are constants with Q,<0. So this case is also impossible and M"
contains only pure trivial part. By Proposition 3.1 the proof is finished.

t+Q,

2 =—aroyTo.

K@ =
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