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On questions of hereditariness of radicals

L. C. A. van LEEUWEN

Introduction

"All rings considered are associative. We shall use the following notation:
R is a radical class, ¥ the corresponding semisimple clé;s_s; -<a indicates an ideal;
ann (A4) is the two-sided annihilator of a ring 4; & is the lower Baer radical; L{ )=
=lower radical class, for instance, %= L(zero-rings)." '

A radical class 2 is said to be a hereditary class if & satisfies:

B<ad, AER = BEA.

In [1] a weak version of hereditariness was introduced, which arose in connection
with the finite closure property of radicals under subdirect sums. If a radical class £
is closed under finite subdirect sums, then & has the property:

I<A, Ac®, IS annd=IcA.

Such a radical is said to be hereditary for annihilator ideals ([1], Proposition 1.7).
Although this condition is not sufficient for the finite closure property of £, very -
little is needed to make £ hereditary. Hereditary radical classes are closed under
finite subdirect sums. We investigate these questions in §2. :

In [3] a new characterization was found for the maximal hereditary subradical
hg of a radical £, in fact :

hg =% = {4] any ideal of A .is in R}

where %= {A| any ideal of A4 is in #}. We use this result to sharpen Proposition 1.6
of [1], where hg, was given as an intersection of an- infinite number of radical classes.
We show that the chain, used in [1], stops at the second step. We also show that, for
any radical # containing # or being subidempotent,

hg =& = {A| any ideal of 4 isin %)},
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ie. & is hereditary. Here a radical class £ is called subidempotent if any ring A in
is idempotent.

Our terminology for radical theory is the usual one. Both a radical and a radical
class are denoted by . A ring A is in the radical class & or 4 is an #-ring if A=
=% (A), where Z(A) is the radical of the ring A. The semisimple class % of the
radical # consists of all rings A, such that #(4)=0, i.e.

SR ={A| A has no non-zero ideal in 2)}.

A class M is said to be closed under finite subdirect sums if A,, ..., A,€ M implies
that A4,+...+A4,€M (subdirect sum) for any finite number n of rings A,, ..., 4,.
In order to show closure under finite subdirect sums one needs only consider n=2.

I would like to thank Dr. R. Wiegandt for his criticism and valuable remarks
in preparing this paper. Originally I tried to do something with quasi-radicals, but
he remarked that an order-preserving quasi-radical is complete, which, together
with idempotency, makes it a radical (cf. [2]).

1. In our first result we deal with sums of ideals (cf. Problem 12 in [4]).

Theorem 1. Let A be a ring with ideals B, C and BNC€ZR for some radical R.
Then Z(B+C)=2(B)+%(C).

~ Proo f. The inclusion Z(B)+Z(C)SR(B+C) is clear. Obviously, we have
the direct decomposition

B+C/BNC = B/BNC®C/BNC.

By the assumption BNCER(B+C), therefore the above direct decomposition

yields
' Z(B+C)/BN.C =K/BNCOL/BAC

for ideals K resp. L in B resp. C. Clearly K/BNC is an Z%-ring and contained in

R(B/BNC)Y=A(B)/BNC. Similarly

L/IBNC S #(C/BNC)= AR(C)/BNC.
Hence
R(B+C)YBNCES R(B)BNCHR(C)/BNC
giving
R(B+C)E Z(B)+2A(C).
In addition we have '

Theorem 2. For any ring A with arbitrary ideals B, C and 1,J and for any radi-
cal R the following two statements are equivalent:

(i) A/B, A|CER, R(B)=R(C) implies A/(BNC)ER,

(i) A/I, AJJER, R(DN=RT)=0 implies AJINJ)ER.
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Proof. (i)=(ii) is trivial.
Let A/B, AJCE# with Z(B)=2(C). Then

A|R(B) _ : _ A/,@( )
BiaE) = ABER: G = AICER
with
B C
gz(?/?(B))=%(ge(B))‘0 (2(B) = 2(C)).
Hence .

A|R(B) _ AlB) 4

BB NC/AB) ~ (BNC)RB) = BAC*

In order to show that a radical class 2 is closed under finite subdirect sums we
might use the following reduction:

Theorem 3. If for any ring A and arbitrary ideals 1,J in A with INJ=0 the
condition A[l, AJJE€R implies that AJ(INJ)=2A€R, then R is closed under finite
subdirect sums.

Proof. The symbol @ will mean “direct sum™. Let 7, J be ideals of 4 such that
INJ=0, A[IER and A[JER. By INJ=0 we have

6 (Io2MNN(@RDH®T) = ZD)DR(J).
and also ‘

¢)) _ (Io2W)/( 2D R()) = [IR(ESR
3 : (@ N(2(DDRW)) = JIR(J)EFR.

In (2) and (3) the left hand sides are 1deals of A/(Z(I)@ 2(J)) and by (1) these ideals
have zero intersection. Since
Al(R(DDR())
To2W)/(2IDdR)

] = A(IOR(J))ER

and
A[(RDDR))
@DeN/(@Der()

the imposed condition is applicable yielding
Al RDOR())ER;
and so the extension property of # implies A4€%.

= A/ RDDI)ER

Lemma 4a. Let A be a ring with ideals I,J .such that INJ=0, A/I¢# and
AlJER. If R is hereditary for annihilator ideals, then ann A€R. Moreover, if, in
addition, I,JESR, then INann A=JNann A=0.
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Proof. ann 4fann ANI=(ann A+I)/I is an annihilator ideal of A/Ic%,
so ann Afann ANIEA. Also

(ann.A?I)+J c J-?—a;nA-eﬂ,

since (J+ann A)/JSann A}J, A[J€R. Again, since ((ann ANI)+J)/J is an
annihilator ideal of (J+ann A)/J,

ann AN =

(annAND+J

i ~ann ANI¢A.

The extension property of Z implies ann A€ %. Now assume that [,J€¥%. Then
ann ANI is an ideal in €% implies ann ANI=0. Similarly ann ANJ=0.

From the proof of Lemma 4a we see that 1€ % implies that ann 4NI=0.
Clearly ann ACI*={ac Alal=Ia= (0)} as 7 CA We can say more 1f we assume
that Z#E 4. :

Lemma 4b. Let BCR; A is a ring with ideals I, J such that 1¢9 R, INJ =0,
Al R and A[J€R. Also R is hereditary for annihilator ideals. Then any ideal K
in A such that KNI=0 is contained in I* and I* is maximal with respect to I* (N 1=0.
Moreover A[I*€ 2, whereas ann (A4/I*)=0.

Proof. (I*NI2SI*-1=0, so (I*N)<IeFR gives I1*NI=0. As JNI=0,
by Zorn’s lemma there exists an ideal M, maximal relative to MNI=0. Smce
MI=IM=0, MSI* and the maximality of M ensures M=I*

Let K be any ideal in A4 such that KNJ/=0. If K is not contained in I *, then
(K+71*)N1#0. Now let x, y be arbitrary elements in (K+I1*)NI, then x=k+a
(k€K,acI*), ycI. Hence xy=(k+a)y=ky+ay=0, as' KNI=I*NI=0.
So [(K+I%NI?=0. But [K+INN<Ic¥R and SRCSH# implies
(K+1*)N1 is a semiprime ring, consequently (K+I*)NI=0. This contradicts
(K+I1*)N1#0, so KSI*. In particular, JESI* and A/JER implies A/I*€A.
The ideal "T=(I+I*)/I* is essential in A4/I*: if B/I*#0 is an ideal of A/I*, then
BNIEI*, otherwise. BNISI*NI=0 implies BNI=0 which is impossible by the
maximality of I*. Hence

0 # (BND)+I%)/1* S BII*N(I+T%/T*.
As Z is hereditary for annihilator ideals and (I+1*)/I*Nann 4/I*Sann A/I*, it
follows that (I/+1*)/I*MNann A/I*€Z%. On the other hand I=(I+I*)/[*¢ SR, so

(I+I1/I*Nann A/I*¢ SR yielding (I+1%)/I*Nann A/I*=0. The essential pro-
perty of (I+1*)/1* in A/I* implies ann 4/1*=0.

For any ring 4 and any ideal 7 in A we define [I: A] {x€AlxAS 1, Axgli}.
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Theorem 5. Let & bean arbitrary radical class. & is closed under finite subdirect
sums if and only if

(i) Whenever 1 and J are ideals in a ring A with INJ =0, then A/[I Al, A/[J A]E
€R implies A[[l: AJN[J: AICR.

(u) ‘R is hereditary for annihilator ideals.

Proof. Suppose that (i) and (ii) are satisfied. Let 7,7 be 1deals in A with INJ=0
and suppose AfI, A[J€R. Since IS[I: A] and JS[J: A] it follows that A/[I: A],
AJlJ: AJ€R. It can easily be seen that I/NJ=0 implies ann A=[I: A)N[J: A]
Hence (i) implies that Afann A€2. From Lemma 4a we get, using (ii), that
ann A€#. The extension property of # implies A€Z.

The converse is clear by Proposition 1.7 [1].

Note-that ann (4/)=[I: A]/I, so we may replace (i) by

C Al AlJ

ann(4/I)’ ann(4/J) <

€# implies

A
nn A
Corollary 6. Let & be a radical class such that B SR. Then & is closed under
Sfinite subdirect sums if and only if

A A Lo A _
7 LA mplies A ar ¢

for any ideal I in any ring A.

Proof. Obviously S % implies that & is hereditary for annihilator ideals.
Let A be a ring with ideals 1, J such that INJ=0; A/I, A/JER. We have to show that
A€R. If 14 PR, then IR(), (J+R(I))/RUI) are ideals in A/R() and
IN(T+21))=2U)+UINT)=R(). So A/R(I) is a ring with ideals I/#(I),
(J+2(I))/%(I) having zefo-intersection; also A/l, A/(J+R())ER, as AJJER.
Now I/R(I)ESR. If we can show that 4/#(I)€ #, we are done by the extenswn
property.

- Hence, without loss of generahty, we may assume: [<a4,J<1A4; A/I AlJER
and IESR.

Now apply Lemma 4b. Then JSI* and IS[I: 4] imply AT, * Al A]E@
Hence A/(I*N[I: A)€%. By Lemma 4b we know that ann (4/1%)=0,

[I*: A]=I*. From INI*=0, as I€¥A, it follows that ann A=[I: A]N[I*: A]—
=I*N[I*: A). Hence A/ann A¢#. Then Lemma 4a implies that ann A€¢# and
consequently 4€Z. So the condition is sufficient. The converse is obvious.

The above proof of Cofollary 6 suggests the next result which is a further reduc-
tion for the question of finite subdirect closure for radicals (cf. Theorem 3).-



312 L. C. A. van Leeuwen

- Theorem 7. If for any ring A and arbitrary ideals I,J in A with INJ=0,
I,J€eS R the condition A/J A/IE.% zmplzes that A€R, then X is closed under finite
subdirect sums.

Proof. Let 4 be a ring with ideals 7,/ such that INJ=0; AJI, A[J€&. By
Theorem 3 we have to show that 4€%. Now the ring A/(Z(I)®#(J)) has ideals
(I@%(J))/(%(I)GB%(J)) (2a))/(21)DR(I)) with zero intersection and -
both ideals are in # % (see the proof of Theorem 3). Hence 4/(Z(1)®R(J ))E% and
AcR.

Theorem 8. Let & be a radical class. Then A is hereditary for annihilator ideals
if and only if AI, IA€R imply I€ER for any ring ACR and any ideal I in A.

Proof. Let /<4 with A€# and ISann A. Then AI=IA=0cR implies
IeR. Conversely, let I<ad with 4€# such that AI, IA€#. Now

I - A
Al+14  AI+ 14

and clearly

_I— C ann [LJ
AI+I4A = Al+14 )
SO . .
A . . I
AI1IA €4 implies aIIid €ER.
Also

AI+14 1A
Al T AINIA

[L]/(AH—IA]N Iy
Al Al T AI+14

implies I/AI€R. But AIER, so IcA.

€Z,

as JAc . Hence

2. In a number of cases we get that % is hereditary for annihilator ideals implies
that £ is hereditary. We need some kind of extra condition, otherwise the condition
of hereditariness for annihilator ideals would be sufficient for closure under finite
subdirect sums. In [1] a counter-example is given.

Theorem 9. Let & be a radical class which is hereditary for annihilator ideals.
Then & is hereditary if and only if I<xA€R implies Al, IA€A.

Proof. From the above proof in Theorem 8 we infer that J<uA€# together
with AI, I14€# implies 1€ #Z. Hence 2 is hereditary. The converse is trivial.
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Theorem 10. Let & be a radical class which is hereditary for annihilator ideals.
Then R is hereditary if and only if I1<A€R, IC A® implies I€R.

Proof. Againlet I<14A€R. Now AIC A%, IACS A% with both A and I4 ideals
in & imply AI, TA€R. As & is hereditary for annihilator ideals, it follows that I€ %
(Theorem 8), so £ is hereditary. The converse is trivial.

Another condition which ensures hereditariness of 2 is contained in the follqw-
ing ‘

Theorem 11. A4 radical class & is heredztary if and only if 1<1A€.% implies
I€ER whenever 1*=(0) or 1S A%

‘Proof. This is a direct consequence of Theorem 10, since the condition

I<ade€R, I*=(0)>1IcZ
yields also
IACR, AI=0=I4A=>IcR

so that £ is hereditary for annihilator ideals.

Corollary 12. Let & be a radical class which contains ®. Then & is hereditary
ifand only if
) I<AER, IS A*=>IEAR.

Proof. Let I<A€A. Now I/Izeﬁc.% But I12& 4% so 12632 hence 1692
and £ is hereditary.

We might remark that Corollary 12 is an easy consequence of Theorem 10, since
any radical class £ which contains .4? is heredltary for annihilator ideals (see the
proof of Corollary 6).

The proof of Corollary 12 also indicates the next result:

Corollary 13. Let & be a radical class which contazns AB..Then & is heredztary

zfand only zf
I<t4eR > 1269?.

Proof. See Corollary 12.

Theorem 14. A radical class R is heredltary if and only zf Ri is heredztary for
annihilator ideals - and

RAD(INRA) S R, (INRA)R(A) S 2(I)
for any ideal 1 in any ring A.

Proof. Obviously if £ is heredltary, then uvsing ﬂ.%(A) Z(I) for any 1deal
Iin any ring A4, we get the. conditions. ‘

4
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Conversely, let I be an ideal in a ring A. Then (I NZ(A))/RI)<R(A)R(1)
and the second .condition implies that (INZ(A))/%(I)Sann Z(A)/2(I). Hence,
since R(A)/R)ER, the first condition gives (INRZ(A))/R(I)ER. This says
INR(AER or INAASRD). Always RUSINR(A), whence INR(4)=
=) and & is heredltary

. Corollary 15. 4 radzcal class 9? is heredttary if and only lf .% is hereditary for
annihilatoi ideals and '

. I<|AE.4? AI+IA SR =>IER
for any rmg AE% and any ideal I in A.

Proof. The necessity. being trivial, let I<1A692 Then %(A)(Iﬂ%(A))—
—AINHEAISRU) and (INRA)RA)=UNDASIASAD), if AI+IACS
C&(I) is assumed. Now apply Theorem 14.

It might be noted that Theorem 9 follows directly from Corollary 15. For, if
I<1A€ R, then AI, 14A¢# implies Al,. IAC!%’(I), so AI+IAS%#(I). Corollary
15 gives I€Z or # is hereditary.

.We conclude this section with; a more general result.

Theorem 16. Let # and S resp. be radicals such that S-semi-simple rings are
.%-radzcal Then 2.is heredztary if and only if

T<9A€R, I1SSUAY=>IeR
for any ring AE.% and any ideal I in A

- Proof. Suppose the condition be satisfied .and assume that I<tA€R. As
I/S(I) is S-semi-simple, we have I/S(I/)€#. Now S([)<td€#Z and S()ES(4),
so S(IeR=>IcR. Then Z is hereditary. The converse is obvious.

- Example. Let £ be the class of idempotent rings, i.e. the rings 4 with A42=4.
Let S be the upper radical determined by the Boolean rings. A ring 4 is called a Boo-
lean ring if a*=a for every element a€ A.. Since Boolean rings form a special class
of rings, S is a special radical and the S-semi-simple rings are subdirect sums of Boo-
lean rings, so they are again Boolean rings. Any Boolean ring is idempotent, hence
any S-semi-simple ring.is #-radical. It is known that £ is not hereditary. If we take
the subradical class 2’ (of %) of the hereditarily idempotent rings, we get a hereditary
radical #’. Again any S-semi-simple rlng is #’-radical, as any Boolean ring is heredi-
tarily idempotent. (If 4 is a Boolean ring and I<4, then I is again a Boolean ring
and idempotent).

_.3. It is known that for"any radical £ there exists a unique maximal hereditary

radical hg, contained in £. In [3] it is shown that. hg=2,. where Z={A|any ideal
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of A is in #). It can easily be proved that Z is a radical and £ is hereditary if and only
if #=2A. Let (¥2), be the essential closure of the semisimple class &2 of the radi-
cal Z. A ring A¢(FZR), if 4 has an essential ideal B€ S Z.

"Lemma 17. For any radical R, R=U(FR), (uppér radica?).

Proof. Let A€ % and suppose that A¢ (S R),. Then there exists a non-zero
homomorphic image A/I€(¥ %), and AJl has an essential ideal B/I€#%. But
AER, so A/I€ . By definition of &, it follows that B/I€®, which implies B/I¢
€ERNSR=0. Since this is impossible for an essential ideal, we get that A€ U (FL R);.

Conversely, assume that ACU(FR),. If A¢R, A has a non-zero ideal I,
I¢R. Then 0£1/&(I) is an ideal in A/#(I) and I/Z(1)€SFZR. Now there existAsv
a homomorphic image A/J of A/%(I) containing an isomorphic copy of I/Z#(I),
such that this copy is an essential ideal in A/J. But A€ % (¥ R), implies that "A/J€
CU(S R), hence A/JE%(.?’.%)kﬂ(y.%)k—O or A=J. Contradlctlon so AcR
and Z=U(SR),.

For our next result we use the nqtatipn of [1]. Z is a radical class.

99:={(S, 4A)| S<4 and Sc¥%},
g :={A| every 0 # A/I has no nonzero ideals in SR}
?g, is a radical class [1].
%= {(S,4)| S<A and ScF @3},
%y :={4| every 03 A/I has no nonzero ideals in %(%a)};
‘gL is a radical class [1].
Continuing in this way, one gets a chain of radical classes:
#2%2..2%2
In [1] it was shown that (1) % is the unique maximal hereditary radical subclass of ‘.%.

An improvement of this result is given in the next theorem.

Theorem 18. For any radical class & we have: fé,} is the unique maximal here-
ditary radical subclass of A.

- Proof. We show that, with the above notation, ‘.?0 Z.Let Ac¢%5. Since for
any I<14 we have Z(I)<x4 and I/Z(I)€SR, the assumption’ AE%_;’, ylelds
I/#(I)=0. Thus A¢2A.

4%
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Conversely, let 4¢ 2 and take any 02 A/I. If AJI has a nonzero ideal B(l)¢
€S R, then AJIER yields that B/Ic RNSR=0, which is a contradiction. Hence
0= A/I has no nonzero ideals in ¥2, i.e. -Ae@;’,. Using Lemma 17 we have esta-
blished: 3—?=%(9’@)k=@§,. Apply now Lemma 17 again to the radical @;:
Ez%(y?/_?)k={?;. From #=%% and the definitions of ¥ and &} resp. we infer
that @%=?;. ‘Hence we get: ?;’7:?51, or L=2, which is the unique maximal
hereditary subradical of £. '

Note that the above chain now reads:

R2R2R=R =

since N %a=%=2.
An example in [1] shows that, in general, {25, # need not be hereditary. In
fact, @° is heredltary if and only-if {45, {41 or, in our notation, & is hereditary if

and only if Z= 17

Theorem 19. If a radical class R is hereditary for annihilator ideals, then & is
hereditary.

Proof. Let A be a zero-ring and suppose that 4€¢%. Then any ideal I of A4 is
in ®, so ACR. Therefore any zero-ring in £ is in 2, which implies Z= % {31,
Proposition 1 and Corollary 1).

The next result is well-known. For a radical class £ the following are equivalent.

a) & contains all zero-rings;

b) £ contains all nilpotent rings;

c) BEAR.

The above proof of Theorem 19 indicates that any radical class £ containing all
zero-rings satisfies: # is hereditary. So we get

Corollary 20. Let & be a radical with BSR. Then R is the maximal heredi-
tary subradical of A.

Proof. Obviously #S 4 implies that £ is hereditary for annihilator ideals, so
Corollary 20 is a direct consequence of Theorem 19.

Remark. We will see that the condition of Theorem 19 for hereditariness of %
is not necessary (after Theorem 24).
The counterpart is formed by the radicals £ containing no nonzero Zero-rings.

Lemma 21. For a radical class & the following are equivalent:
a) # contains no nonzero zero-rings;



Hereditariness of radicals 317

b) & contains no nonzero nilpotent rings;
c) R is subidempotent i.e. any ring A in & is idempotent.

Proof. Since the proof is straightforward, we omit it.

In order to study radicals & with the above property, we introduce
Ga:={(S, A)| S€¥# and S Eannd},
where S is a subring of A. This implies S<1A4.

9g:={d| every 0# A/I has no nonzero ideals in ann(4/I) and in SR}

Then &, is a radical class and #N%, is the maximal radical subclass of 2 which is
hereditary for annihilator ideals ([1], Proposmon 1.8).
Define
= {4]| every. 03 A/I has ann(4/I)=0)}.

Then & is a radical class (cf. [4]). It is clear that for any radical £ one has: «g’eg%.
The next lemma shows that equality holds for subidempotent radicals 2.

Lemma 22. Let & be a subidempotent radical. Then Gy=8s. )

Proof. We only need to prove that %g(g’e Let AE{?Q and take any~ 03¢
#A/l=A4. Then ann A/%(ann A)Sann (4/2(ann A)). Since A€%F,, it follows that
ann A/%(ann A)=0, so ann Ac¢%. But (ann A)?=0, so ann A=0, as £ is sub-
idempotent. Hence A€&.

In general one can show that ,
Gg = {A| any O3 A/l has the property: J/I<A[I, J/I S ann(4/I) = J[IER}.

From the definitions of %, and %, resp. we get immediately: %,S%% yielding
459, for any radical #. Always 95C R, hence #= gg,cgmg for any ra-
dical #. '

In the following theorem we will give a_ suﬂic1ent COl’ldIthn in order that 92-
=RNG,.

Theorem 23 Let ,% be a radical class such that AE% implies AS, SAE%(S)

for any ring A and any ideal S in A. Then B=RN%G, and R is the unique maximal
radical subclass of # which is heredttary Jor anmhzlator ideals.

Proof. We have to show that AE?/ZO% 1mphes AER. Assume AE%O?
and ‘let S<id4. Then S/%(S)<:A/92($)€%,, as’ AE%,. Also S/2(S)S
Cann (4/2(S)), as AS, SACR(S). Hence S/(S)ER, as AE@Q (see the above
characterization of %,) Therefore S=2(S) or S€A. It follows that A€ %. By
Proposition 1.8 [1] Z=%N%, has the required property of maximality.
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We have seen that radicals 2 with #C % have the property that Z is the maxi-
mal hereditary subradical of . Our final result contains another class of radicals #
for which this phenomenon occurs.

Theorem 24. Let & be a subidempotent radical. Then 2 is hereditary for anni-
hilator ideals if and only if RS &.

For any subtdempotent radical R we have that & is the maximal hereditary sub-
radical of R. R is a hereditarily idempotent radical.

Proof. From [1], Proposition 1.8 it follows that £ is hereditary for annihilator
ideals if and only if RS %, for any radical #. So for a subidempotent radical we
get the first result immediately from Lemma 22. Now let Z be an arbitrary subidem-
potent radical. Take any ring A€Z#. If A*=0, then A=0, so any zero-Z-ring is
in &, hence Z is hereditary ([3], Proposition 1) and Ris a hereditarily 1dempotent
radlcal :

Remark. As not every subidempotent radical £ is contained in &, it follows
that a subidempotent radical # need not be hereditary for annihilator ideals. This
shows that the sufficient condition in Theorem 19 is not necessary.

" In the light of the previous results we examine the Examples 1.4 and 1.5 in [1].
Consider the ring R whose additive group is Q+ Q (direct sum) and whose multipli-

cation is given by (a, b)(c, d) = (ac, ad+bo).

The homomorphic images of R are 0, Q and R, while the ideals of R are O, 1 ( Q°)
and R (Q° is the zero-ring on Q).

Let 2 be the (radical) class of rings with divisible additive groups. Then both R
and I are in 2. Since I is the only non-trivial ideal in R, we get that R€ 2. However,
149, as I(=Q° has non-zero reduced ideals. So 2 is not hereditary. By Theorem
19 we get that 9 is not hereditary for annihilator ideals. Note that 4 is not contained
in 9, since Z° 9, Z° A (Z° is the zero-ring on Z). In addition, 2 is not sub-
idempotent, since 1€9, but I2=0. This is in accordance with Corollary 20 and
Theorem 24, since any radical £ containing % or being subldempotent has a heredl-
tary ‘subradical - &

We also consider the lower radical class L({R}) determmed by R. Now R is.a
non-simple ring with identity (1, 0). Since I is the only non-trivial ideal of R and
R/I=(Q, Q not isomorphic to R, we see that R satisfies the conditions (i) and (ii) of
Theorem 3.5 in [1]. Hence L({R}) is not closed under finite subdirect sums.

On the other hand, R is idempotent and R/I=Q is idempotent, so that R€&;.
Therefore L({R})S&,. Also L({R}) is a subidempotent radical, as any radical
contamed in & is subidempotent. Hence L({R}) is hereditary for annihilator ideals
(Theorem 24).
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