Acta Sci. Math., 47 (1984), 239—247

" On approximation of the solutions of quasi-linear
elliptic equations in R"

L. SIMON

Introduction

Let P=P(D) be an elliptic differential operator of order 2m with constant

_ 0 0 g ..
coeflicients [D (—za— , —1i 3 )] and Q=Q(x, D) a differential operator of
X1 Xn o
order 2m with smooth coefficients which vanish for |x|>a.
For any domain QCR" and any integer k=0 denote by H*(Q) the Hllbert

space of functions u with the norm

el gy = {2 le"u| d)«}”2

(Sobolev space); Lﬁ(Q)-—-H"(Q). Further denote by HE_(€) the set of functions u
satisfying the condition: @uec H*(Q) for arbitrary infinitely differentiable function
¢ which is equal to zero out of a compact subset of €.

In [1] the elliptic equation

0.1) Au = (P+Qu=f in R

has been considered when P(&)>0 for all ¢€R™ It has been proved that if for
any feLZR™ (ie. feL*(R"), f(x)=0 if |x|>a) there exists a solution u of the
equation (0.1) which tends to zero at infinity. then the solution is unique. Furthermore,
by use of methods of [2] it is easy to show that for this solution the estimation

0.2) llaemmny = ¢4l lLsny

holds. (¢, is a constant which does not depend on £.) In{1] there have been formulated
conditions on the differential operators B;(x, D) which guarantee that for sufficiently
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large ¢=0 the boundary value problem in B,={x€R": |x|<g}
0.3) Au,=f in B,
(0.4) B;(x,D)u,=0 on S, j=1,....m

(S,={x€R": |x|=¢)) has a umque solution u, in the Sobolev space H?*(B,) and
an estimation of the form ,

0.5) bt — tilusmisy = €all Sl agume ™

holds, where c¢,, ¢; are positive constants which do not depend on f and p.
In [3] similar results are proved when P(£)0 for £ER™ {0} but P(0)=0 and

. o
(0.3), (0,4) is the Dirichlet problcm_, ie. Bj(x, D)—T where v is the normal vector
vl

to S,. Then instead of (0.2). and (0 5) the following estimations are valxd for any
compact KcRr®

(0.6) o o el = e (B zmn
and ' B ) -
0.7 flat~ vpllremy = c2(K)g(0) ”f"z,ﬁ(n"); :

where ¢,(K), ¢c,(K) are coostéhis' which do not depend on fand o, eling(g)= 0.
Under certain conditions estimations of the form (0.2), resp.

©8) T '=i|'u— tplhisiy = €@ Nz

can be shown where hm g(g) 0.

In this paper it will be supposed that the differential operators P and Q satisfy
the above mentioned conditions of works [1], resp. [3] such that estimations of the
form (0.6), (0.7), resp. (0.2), (0.8) hold Our aim is to consider a quasi-linear elliptic
equation of the form :

0.9) Au+g(x u,...,Dlu,..)=f in R"

where |B|=2m—1 and to prove the existence of a solutlon of (0. 9) Moreover, we
are going to prove an estimation of type (0.7), resp. (O 8) for the quasi-linear equation
0.9).

In [4]—[8] there are proved ex15tence theorems on qua51-11near and nonlmear
ellxptxc equations in unbounded domains. These results, however, cannot be applied
to the eguation (0.9) in the case P(0)=0.
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1. Existence of solutions

Theorem 1. Suppose that for any feL:(R") there exists a unique solution u
of (0.1) and for this solution the estimation (0.6) holds. Let g: R**N~R be a conti-
nuous function (N denotes the number of multiindices B such that |B|=2m—1) satis-
fying the conditions: '

(1.1 g Uy Uy, ) =0 if x| = a;

1.2) fim Bt ot ) ot in X

@ sugeedl oo |y ..y Ug, ..0)|

(1.3) the first partl'alv dervatives of g are continuous. and bounded.
Then for any feLi(R"™) equation (0.9) has at least one solution u¢ HE™(R"),
vanishing at infinity.

Proof. Denote by 4~'f the unique solution of (0.1) which vanishes at infinity.
Function u is the solution of (0.9) (vanishing at infinity) if and only if v=Au is a
solution of the equation '

(14) v+G@) =f
in L2(R") where the operator G is defined by’
G@) = g(x, A7, ..., DPA™1, ...).

We shél_l first prove that G is a continuous and comf)act (nonlinear) operator in
the Hilbert space L2(R"). By use of the mean value theorem and condition (1.3) we
have the estimation

G - G@| = alldA™ @ =)+ ... +|DP A7 @ ="+ ..]

(¢, denotes a constant) and thus

(1.5) { [le@-6omr}” =

.Ba . X B
sal{ flA7 -+ +{ [IDP 42 @M+ ] = llo— 0¥ e,
B, . _ B,
because in virtue of 0.6) A~': LZ(R")—~H*"(B,) is a bounded linear operator.
Since A7 is a bounded linear operator and by (1.2) .,
lgCxuy ooy ug, )| = cal(u,'...-,‘u,;, |
(cs denotes a constant), thus ' '

o NGy = call AT 0l nms,y = esllvl] awe
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Hence by use of condition (1.1) we find that for any v€LZ(R"), G(v)€ L(R") and
thus by (1.5) G: LZ(R")—~LZ(R") is a continuous operator.
From conditions (1.1)—(1.3) it follows that for any v€ LZ(R")

9 )
(1.6) 7500 = %(x, A, .., DP A", )+

3 .

og 1 "
98 “1p, ..., D4 D, . ) —
+ 2 x, A %y, ..., D v, )ax,-

(DFA™ )
and G()EH!R") (ie. GW)EH'(R™) and G(v)=0 for |x|>a). From (1.6) it
is also clear that G maps bounded subsets of LZ(R") into bounded subsets of H}(R").
Hence G: L:(R")—LZ(R") is a compact operator.

Now we shall prove the equality

(1.7 fim 19Oy

1o ey~ [0l 2@
Denote A~'v by u then

"G(U)IIL?,(R") _ "g(x, Uy oony D# u, . --)"Lg(R") "u"Hsm(Ba)
ol 2y /| samea, 9] 2

(1.8)

In virtue of the boundedness of 4~ the second factor on the right hand side is bound-
ed. Moreover, ||ulgmgy—~> as {vllz@n—~co since v=A@) and 4: H (B~
—~L2(B,) is a bounded linear operator. Thus to prove (1.7) we have only to show that

. vy DE s ves 2mn
(1.9) lim  18Ce % DT e _

llllllHZm(Ba)-—'°° ”u"H""(B“)

For any positive number b=0

(1.10) [ g u@), ..., DPu(x), ...)[2dx =
B, :
= f |g(x, u(x); ..., DPu(x), ...)|2dx+
(), -, DPu(x),....)| =B
+ f g (x, y(x), coos DPu(x), ...)[P dx.

|(u(x), ..., DPu(x),...)| =b

By (1.2) for any e=>0 the number b=>0 can be chosen such that

g u(x), i, DPu(), .. )| = g|(@(x), ..., DPu(x), ...)).
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Thus -
(1.11) [ lg(x, u(x), ..., DPu(x), ... )[Fdx =

1w(x), ..., DPu(x), ...)| >b

= [|@(, - DPue), )P dx = ulfioncay.
Ba

For a fixed b>0 the second term on the right in (1.10) is bounded because g is con-
tinuous and |x|=a, |(u(x), ..., D*u(x), ...)|=b. Therefore from (1.10), (1.11) we
have (1.9) and equality (1.7) is proved.

Since G: L:(R")~L:(R") is a continuous compact operator satisfying (1.7),
thus by use of Schauder’s fixed point theorem we can prove that the equation (1.4)
has at least one solution v€ L2(R") for any f€LZ(R). By (1.7) we can choose a num-
ber g,>0 such that ‘

IGO) @y 1
A
ol 2y 2

Set F(v)=f—G(v). .Then the operator F is bounded in LZ(R"), i.e

ol 2 > @0 implies

o3y = €0 implies  [FG)lzsmr = 015

since G is bounded in LZ(R"). Let ¢ denote the number max {g,, Qll, 2| f1}. Then
F maps the sphere {v€LZ(R"): |[v]liz@m=e¢} into itself, because [F(v)|=0,=¢
if ol =g, and

IF@I = I/ I1+1GWI = e2+v2=¢ if @0 =[] = e.

Moreover, F is a continuous and compact operator, hence by Schauder’s fixed point
theorem F has at least one fixed point. Thus equation (1.4) has at least one solution
v€ LZ(R") and then the function u=A"w¢ H"(R") is a solution of (0.1), vanishing
at infinity.

Consider now the following boundary value problem in B,:

1.12) Au,+g(x, 4y, ...; DPuy, ..)=f in B,
(1.13) Bi(x,D)u, =0 on S,,j=1,..,m

Theorem 2. Assume that the conditions of Theorem 1 are fulfilled. Further
suppose that if o=g, then for any fEL*(R") the problem (0.3), (0.4) has a unique
solution u,€ H*"(B,) and the estimation (0.7) holds. Then for any ¢=g, and f€L:(R")
the problem (1.12), (1.13) has at least one solution u,€ H*"(B,).

Proof. Denote by 4;%f the unique solution u,€H*"(B,) of the problem
(0.3), (0.4). If v, L3(R") is a solution of

(119 O+ 8%, Ag 0y s DP AT, L) =T

16*
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then u,=A;'v,¢ H*"(B,) is a solution of (1.12), (1.13). Define an operator G, by
the formula '
G,(v,) = g(x, A7 v, ..., DEA; 10, ...).

Then G,: LI(R")—~LZ(R") is a continuous and compact operator and

(1.15) lim G, (U)"L:(R")

=0 uniformly for g = g,.
ol f2gny~= ||U||L3(R") :

This statement can be verified by means analogous to those used before in
proving Theorem 1. We want only to show the proof of (1.15). Since

A7l = (A7 —A Do+ A7

thus by estimations (0.6) and (0.7) 4;': L}(R")—~H*®*"(B,) is a bounded linear op-
erator and |4, is uniformly bounded for ¢=g,:

(1.16) M ey
||U||L§(R")
for any v€LZ(R") and g¢=g,. Further
(1.17) "AQ_IUIIHz'"(B,,) — oo uniformly for 0=¢, as “v”Li(R") — o0,

since v=A(4A;'v) and A4: H*"(B,)~L*(B,) is a bounded linear operator which
does not depend on g. The equality

G 2@ 18(x, 45*0, ..., DP AT D, )| 3mny R P P
ol 2mm 45 vllg2ms oll L2y

and (1.9), (1.16), (1. 17) imply (1.15).

Thus by use of Schauder’s fixed point theorem we find that there exists a solution
v, of (1.14) (see the proof of Theorem 1), hence u, —A"v EH 2"'(B) is a solution
of (1.12), (1.13).

2. Theorem on approximation

Theorem 3. Suppose that all conditions of Theorem 2 are fulﬁlled. Let (g;)
be any sequence of numbers @;=g, such that lim 0;= 4+ and let Uy, .be a solution

of (1.12), (1.13) for ¢=g;. Then the sequence (g ;)-has a subsequence - (Q ) such that
Jfor any compact KCR" .
@y ' 1im litgy — ¥ lmry = 0.

holds where u*¢ HI™(R") is a solution of (0.9) vanishing at infinity.
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If the solution u of equation (0.9) is unique then for the solutions u; of (1.12), (1.13)
2.2) Lim {lu, — ullgemgy = O
holds with arbitrary compact KCR".
If estimations (0.2), (0.8) are valid, too, then
2.3) o Him gy — s
resp. (in the case of unicity)
(2.4) 22’1‘;10 ||ue — u"HZm(BQ) =0
hold.

Proof. The solutions v,€L2(R") of the equation (1.14) constitute a bounded set
in the Hilbert space L3(R"). If it were not true then there would exist a sequence
(vg) of solutions of (1.14) such that

(2.5) it oy, sy = +o=-

From (1.14) it is clear that

@.6) L 9d) _ S
||U,,'J||L3(R") |Ivg’j”L§(R") ”%’,”L,‘;(R")

By (2.5) and (1.15) the term on the right and the second term on the left in (2.6) tend
to the zero of LZ(R") as j—-oo. The norm of the first term on the left equals one,
thus from (2.6) we have a contradiction.

From the boundedness of the solutions v, of (1.14) and from (1.16) it follows the
boundedness of the functions u,=A4;'v, in H*™(B,).

Consider any sequence of numbers @;=g, such that lim @;=+<. The se-
quence (u, ) of solutions of (1.12), (1.13) with g=gp; is bounded in the norm of
H>™(B,). Hence (u, ) has a subsequence (up)= =(uj) which tends to a function
U, H*~1(B,) in the norm of H*1(B):.

(2.7) Jlil'g "u;'—'uo"HEm—l(Ba) = (.
In view of (1.3) and the mean value theorem it is clear that

|g(x, uj, ..., DPuj, ...)—g(x, uy, ...; DPuy, ...)| =
=c¢ 2 |DPuj—DPuy
[Bl=2m—1
(c, denotes a constant). Thus

28)  lim [z, 4j, ., DPuj, ) —g(X, 1y, .., Dg; ... )P dx = 0.
Bﬂ
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Consider the functions vj=Auj;. Then

2.9 vi+g(x,uj, ..., DPuj, ..)=f

since the functions u} are solutions of the problem (1.12), (1.13) for ¢=¢}. Equali-
ties (2.8), (2.9) imply that the sequence (v}) tends to a function v*€LZ(R") in the
norm of LZ(R" and

(2.10) v* +g(x, up; ..., DPuy, ...) = f.
We shall prove that for any compact KcR"
2.11H lim {|u}— A~ v*|| gemuy = 0.
joew

Since u;-=Ae‘,lu}, thus
.12)

-1
;= A7 0*lwemeiy = 1Ay vf— A7 flmemiay + A7 (0] — ) By

The sequence (v7) is bounded in L2(R") hence by (0.7) the first term on the right in

(2.12) tends to zero as j-oo. Applying the estimation (0.6) to A~*(v;—v*) we find

that the second term on the right in (2.12) tends to zero, too. Thus (2.12) implies (2.11).
From (2.11), (2.7) it follows that

(2.13) uy = A~** a.e.in B,.

Denote A~1v* by «* then u*=u, a.e.in B,, v*=Au* and by use of (2.10) we find
that

Au*+g(x, u*, ..., D?u*, ...)=f, fufther u* tends to zero at infinity. Equality
(2.11) implies the estimation (2.1).

Equality (2.2) can be proved as follows. Assume that the solution u of (0.9) is
unique but equality (2.2) is not valid. Then there exist a compact XCR", a number
&>0 and a sequence (y; ) (#1;) such that 11m g;=+ and

(214) ]]ﬁj—u[]mm(x) =g, j= 1,2, ....

Then by use of the first part of the proof we have that (#;) has a subsequence (&)
such that

2.15) lim 75— flancr = O

where i is a solution of (0.9), vanishing at infinity. Since the solution of (0.9) is
unique, thus #=u and (2.14) is impossible because of (2.15).
If the estimations (0.2), (0.8) are valid, too, then it is easily seen that

llm ”u}—A—lv*”HSM(B ) = 0
Jreo ey
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(see the proof of (2.11)). This equality implies (2.3). (2.4) can be proved similarly if
the solution of (0.9) is unique.

Remark. In [1] and [2] there are formulated sufficient conditions on P and Q
which guarantee that the conditions in Theorem 2 and in Theorem 3 are fulfilled
(see the introduction).
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