On approximation of the solutions of quasi-linear elliptic equations in $\mathbf{R}^{\boldsymbol{n}}$

L. SIMON

Introduction

Let $P=P(D)$ be an elliptic differential operator of order $2 m$ with constant coefficients $\left(D=\left(-i \frac{\partial}{\partial x_{1}}, \ldots,-i \frac{\partial}{\partial x_{n}}\right)\right)$ and $Q=Q(x, D)$ a differential operator of order $2 m$ with smooth coefficients which vanish for $|x|>a$.

For any domain $\Omega \subset \mathbf{R}^{n}$ and any integer $k \geqq 0$ denote by $H^{k}(\Omega)$ the Hilbert space of functions u with the norm

$$
\|u\|_{H^{k}(\Omega)}=\left\{\sum_{|\alpha| \leqslant k} \int\left|D^{\alpha} u\right|^{2} d x\right\}^{1 / 2}
$$

(Sobolev space); $L^{2}(\Omega)=H^{0}(\Omega)$. Further denote by $H_{\mathrm{loc}}^{k}(\Omega)$ the set of functions u satisfying the condition: $\varphi u \in H^{k}(\Omega)$ for arbitrary infinitely differentiable function φ which is equal to zero out of a compact subset of Ω.

In [1] the elliptic equation

$$
\begin{equation*}
A u \equiv(P+Q) u=f \text { in } \mathbf{R}^{n} \tag{0.1}
\end{equation*}
$$

has been considered when $P(\xi) \neq 0$ for all $\xi \in \mathbf{R}^{N}$. It has been proved that if for any $f \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ (i.e. $f \in L^{2}\left(\mathbf{R}^{n}\right), f(x)=0$ if $\left.|x|>a\right)$ there exists a solution u of the equation (0.1) which tends to zero at infinity then the solution is unique. Furthermore, by use of methods of [2] it is easy to show that for this solution the estimation

$$
\begin{equation*}
\|u\|_{\boldsymbol{H}^{2 m}\left(\mathbf{R}^{n}\right)} \leqq c_{1}\|f\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)} \tag{0.2}
\end{equation*}
$$

holds. (c_{1} is a constant which does not depend on f.) In [1] there have been formulated conditions on the differential operators $B_{j}(x, D)$ which guarantee that for sufficiently
large $\varrho>0$ the boundary value problem in $B_{e}=\left\{x \in \mathbf{R}^{n}:|x|<\varrho\right\}$

$$
\begin{equation*}
A u_{e}=f \text { in } B_{e} \tag{0.3}
\end{equation*}
$$

$$
\begin{equation*}
B_{j}(x, D) u_{e}=0 \quad \text { on } \quad S_{e}, \quad j=1, \ldots, m \tag{0.4}
\end{equation*}
$$

($S_{\varrho}=\left\{x \in \mathbf{R}^{n}:|x|=\varrho\right\}$) has a unique solution u_{e} in the Sobolev space $H^{2 n}\left(B_{e}\right)$ and an estimation of the form

$$
\begin{equation*}
\left\|u-u_{\mathrm{e}}\right\|_{H^{2 m\left(B_{e}\right)}} \leqq c_{2}\|f\|_{L_{a}^{2}\left(\mathbf{R}^{m}\right)} e^{-c_{s} e} \tag{0.5}
\end{equation*}
$$

holds, where c_{2}, c_{3} are positive constants which do not depend on f and ϱ.
In [3] similar results are proved when $P(\xi) \neq 0$ for $\xi \in \mathbf{R}^{\boldsymbol{M}} \backslash\{0\}$ but $P(0)=0$ and $(0.3),(0.4)$ is the Dirichlet problem, i.e. $B_{j}(x, D)=\frac{\partial^{j}}{\partial v^{j}}$ where v is the normal vector to S_{e} : Then instead of (0.2) and (0.5) the following estimations are valid: for any compact $K \subset R^{n}$

$$
\begin{equation*}
\|u\|_{H^{2 m}(K)} \leqq c_{1}(K)\|f\|_{L_{a}^{2}\left(\mathbb{R}^{n}\right)} \tag{0.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u-u_{\mathrm{e}}\right\|_{H^{2 m}(K)} \leqq c_{2}(K) g(\varrho)\|f\|_{L_{\alpha}^{2}\left(\mathbf{R}^{n}\right)}, \tag{0.7}
\end{equation*}
$$

where $c_{1}(K), c_{2}(K)$ are constants which do not depend on f and $\varrho, \lim _{\varrho \rightarrow+\infty} g(\varrho)=0$. Under certain conditions estimations of the form (0.2), resp.

$$
\begin{equation*}
\left\|u-u_{\mathrm{e}}\right\|_{\mathbf{H}^{2}{ }^{2}\left(\mathbf{R}^{n}\right)} \leqq g(\varrho)\|f\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)} \tag{0.8}
\end{equation*}
$$

can be shown where $\lim _{\varrho \rightarrow+\infty} g(\varrho)=0$.
In this paper it will be supposed that the differential operators P and Q satisfy the above mentioned conditions of works [1], resp. [3] such that estimations of the form (0.6), (0.7), resp. (0.2), (0.8) hold. Our aim is to consider a quasi-linear elliptic equation of the form

$$
\begin{equation*}
A u+g\left(x, u, \ldots, D^{\beta} u, \ldots\right)=f \text { in } \mathbf{R}^{n} \tag{0.9}
\end{equation*}
$$

where $|\beta| \leqq 2 m-1$ and to prove the existence of a solution of (0.9). Moreover, we are going to prove an estimation of type (0.7), resp. (0.8) for the quasi-linear equation (0.9).

In [4]-[8] there are proved existence theorems on quasi-linear and nonlinear elliptic equations in unbounded domains. These results, however, cannot be applied to the equation (0.9) in the case $P(0)=0$.

1. Existence of solutions

Theorem 1. Suppose that for any $f \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ there exists a unique solution u of (0.1) and for this solution the estimation (0.6) holds. Let $g: \mathbf{R}^{n+N} \rightarrow \mathbf{R}$ be a continuous function (N denotes the number of multiindices β such that $|\beta| \leqq 2 m-1$) satisfying the conditions:

$$
\begin{align*}
& g\left(x, u, \ldots, u_{\beta}, \ldots\right)=0 \quad \text { if }|x|>a \tag{1.1}\\
& \lim _{\left(u, \ldots, u_{\beta}, \ldots\right) \mid \rightarrow \infty} \frac{g\left(x, u, \ldots, u_{\beta}, \ldots\right)}{\left|\left(u, \ldots, u_{\beta}, \ldots\right)\right|}=0 \quad \text { uniformly in } x ; \tag{1.2}
\end{align*}
$$

(1.3) the first partial dervatives of g are continuous and bounded.

Then for any $f \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ equation (0.9) has at least one solution $u \in H_{\mathrm{loc}}^{2 m}\left(\mathbb{R}^{n}\right)$, vanishing at infinity.

Proof. Denote by $A^{-1} f$ the unique solution of (0.1) which vanishes at infinity. Function u is the solution of (0.9) (vanishing at infinity) if and only if $v=A u$ is a solution of the equation

$$
\begin{equation*}
v+G(v)=f \tag{1.4}
\end{equation*}
$$

in $L_{a}^{2}\left(\mathbf{R}^{n}\right)$ where the operator G is defined by

$$
G(v)=g\left(x, A^{-1} v, \ldots, D^{\beta} A^{-1} v, \ldots\right)
$$

We shall first prove that G is a continuous and compact (nonlinear) operator in the Hilbert space $L_{a}^{2}\left(\mathbf{R}^{n}\right)$. By use of the mean value theorem and condition (1.3) we have the estimation

$$
\left|G(v)-G\left(v^{*}\right)\right| \leqq c_{1}\left[\left|A^{-1}\left(v-v^{*}\right)\right|+\ldots+\left|D^{\beta} A^{-1}\left(v-v^{*}\right)\right|+\ldots\right]
$$

(c_{1} denotes a constant) and thus

$$
\begin{align*}
& \left\{\int_{B_{a}}\left|G(v)-G\left(v^{*}\right)\right|^{2}\right\}^{1 / 2} \leqq \tag{1.5}\\
& \leqq c_{1}\left[\left\{\int_{B_{a}}\left|A^{-1}\left(v-v^{*}\right)\right|^{2}\right\}^{1 / 2}+\ldots+\left\{\int_{B_{a}}\left|D^{\beta} A^{-1}\left(v-v^{*}\right)\right|^{2}\right\}^{1 / 2}+\ldots\right] \leqq c_{2}\left\|v-v^{*}\right\|_{L_{a}^{2}\left(\mathbb{R}^{n}\right)}
\end{align*}
$$

because in virtue of (0.6) $A^{-1}: L_{a}^{2}\left(\mathbf{R}^{n}\right) \rightarrow H^{2 m}\left(B_{a}\right)$ is a bounded linear operator. Since A^{-1} is a bounded linear operator and by (1.2)

$$
\left|g\left(x, u, \ldots, u_{\beta}, \ldots\right)\right| \leqq c_{3}\left|\left(u, \ldots, u_{\beta}, \ldots\right)\right|
$$

(c_{3} denotes a constant), thus

$$
\|G(v)\|_{L^{2}\left(B_{a}\right)} \leqq c_{4}\left\|A^{-1} v\right\|_{H^{2 m\left(B_{a}\right)}} \leqq \dot{c}_{5}\|v\|_{L_{a}^{2}\left(\mathbf{R}^{\dot{n}}\right)} .
$$

Hence by use of condition (1.1) we find that for any $v \in L_{a}^{2}\left(\mathbf{R}^{n}\right), G(v) \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ and thus by (1.5) $G: L_{a}^{2}\left(\mathbf{R}^{n}\right) \rightarrow L_{a}^{2}\left(\mathbf{R}^{n}\right)$ is a continuous operator.

From conditions (1.1)-(1.3) it follows that for any $v \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$

$$
\begin{align*}
& \frac{\partial}{\partial x_{j}} G(v)=\frac{\partial g}{\partial x_{j}}\left(x, A^{-1} v, \ldots ; D^{\beta} A^{-1} v, \ldots\right)+ \tag{1.6}\\
+ & \sum_{|\theta| \leqq 2 m-1} \frac{\partial g}{\partial u_{\beta}}\left(x, A^{-1} v, \ldots, D^{\beta} A^{-1} v, \ldots\right) \frac{\partial}{\partial x_{j}}\left(D^{\beta} A^{-1} v\right)
\end{align*}
$$

and $G(v) \in H_{a}^{1}\left(\mathbf{R}^{n}\right)$ (i.e. $G(v) \in H^{1}\left(\mathbf{R}^{n}\right)$ and $G(v)=0$ for $\left.|x|>a\right)$. From (1.6) it is also clear that G maps bounded subsets of $L_{a}^{2}\left(\mathbf{R}^{n}\right)$ into bounded subsets of $H_{a}^{1}\left(\mathbf{R}^{n}\right)$. Hence $G: L_{a}^{2}\left(\mathbf{R}^{n}\right) \rightarrow L_{a}^{2}\left(\mathbf{R}^{n}\right)$ is a compact operator.

Now we shall prove the equality

$$
\begin{equation*}
\lim _{\|v\|_{L_{a}^{2}\left(\mathbb{R}^{n}\right) \rightarrow \infty}} \frac{\|G(v)\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}{\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}=0 \tag{1.7}
\end{equation*}
$$

Denote $A^{-1} v$ by u then

$$
\begin{equation*}
\frac{\|G(v)\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}{\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}=\frac{\left\|g\left(x, u, \ldots, D^{\beta} u, \ldots\right)\right\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}{\|u\|_{H^{2 m}\left(B_{a}\right)}} \cdot \frac{\|u\|_{H^{2 m}\left(B_{a}\right)}}{\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}} \tag{1.8}
\end{equation*}
$$

In virtue of the boundedness of A^{-1} the second factor on the right hand side is bounded. Moreover, $\|u\|_{H^{2 m\left(B_{a}\right)}} \rightarrow \infty$ as $\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)} \rightarrow \infty$ since $v=A(u)$ and $A: H^{2 m}\left(B_{a}\right) \rightarrow$ $\rightarrow L^{2}\left(B_{a}\right)$ is a bounded linear operator. Thus to prove (1.7) we have only to show that

$$
\begin{equation*}
\lim _{\|u\|_{H^{2 m}\left(B_{a}\right) \rightarrow \infty}} \frac{\left\|g\left(x, u, \ldots, D^{\beta} u, \ldots\right)\right\|_{L_{a}^{2}\left(\mathbb{R}^{n}\right)}}{\|u\|_{H^{2 m}\left(B_{a}\right)}}=0 \tag{1.9}
\end{equation*}
$$

For any positive number $b>0$

$$
\begin{align*}
& \int\left|g\left(x, u(x), \ldots, D^{\beta} u(x), \ldots\right)\right|^{2} d x= \tag{1.10}\\
&= \int_{\left|\left(u(x), \ldots, D^{B_{u}}(x), \ldots\right)\right|>b}\left|g\left(x, u(x) ; \ldots, D^{\beta} u(x), \ldots\right)\right|^{2} d x+ \\
&+\int_{\left|\left(u(x), \ldots, D^{\beta} u(x), \ldots\right)\right| \leqq b}\left|g\left(x, u(x), \ldots, D^{\beta} u(x), \ldots\right)\right|^{2} d x .
\end{align*}
$$

By (1.2) for any $\varepsilon>0$ the number $b>0$ can be chosen such that

$$
\left|g\left(x, u(x), \ldots, D^{\beta} u(x), \ldots\right)\right| \leqq \varepsilon\left|\left(u(x), \ldots, D^{\beta} u(x), \ldots\right)\right| .
$$

Thus
(1.11)

$$
\begin{aligned}
& \int_{\left\{\left(u(x), \ldots, D_{B_{u(x)}}, \ldots\right) \mid>b\right.}\left|g\left(x, u(x), \ldots, D^{\beta} u(x), \ldots\right)\right|^{2} d x \leqq \\
& \leqq \varepsilon^{2} \int_{B_{a}}\left|\left(u(x), \ldots, D^{\beta} u(x), \ldots\right)\right|^{2} d x \leqq \varepsilon^{2}\|u\|_{H^{2 m\left(B_{a}\right)}}^{2} .
\end{aligned}
$$

For a fixed $b>0$ the second term on the right in (1.10) is bounded because g is continuous and $|x| \leqq a,\left|\left(u(x), \ldots, D^{\beta} u(x), \ldots\right)\right| \leqq b$. Therefore from (1.10), (1.11) we have (1.9) and equality (1.7) is proved.

Since $G: L_{a}^{2}\left(\mathbf{R}^{n}\right) \rightarrow L_{a}^{2}\left(\mathbf{R}^{n}\right)$ is a continuous compact operator satisfying (1.7), thus by use of Schauder's fixed point theorem we can prove that the equation (1.4) has at least one solution $v \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ for any $f \in L_{a}^{2}(\mathbf{R})$. By (1.7) we can choose a number $\varrho_{0}>0$ such that

$$
\|v\|_{L_{a}^{2}\left(\mathbb{R}^{n}\right)}>\varrho_{0} \quad \text { implies } \quad \frac{\|G(v)\|_{L_{\alpha}^{2}\left(\mathbb{R}^{n}\right)}}{\|v\|_{L_{a}^{2}\left(\mathrm{R}^{n}\right)}}<\frac{1}{2} .
$$

Set $F(v)=f-G(v)$. Then the operator F is bounded in $L_{a}^{2}\left(\mathbb{R}^{n}\right)$, i.e.

$$
\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)} \leqq \varrho_{0} \quad \text { implies } \quad\|F(v)\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)} \leqq \varrho_{1},
$$

since G is bounded in $L_{a}^{2}\left(\mathbf{R}^{n}\right)$. Let ϱ denote the number $\max \left\{\varrho_{0}, \varrho_{1}, 2\|f\|\right\}$. Then F maps the sphere $\left\{v \in L_{a}^{2}\left(\mathbf{R}^{n}\right):\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)} \leqq \varrho\right\}$ into itself, because $\|F(v)\| \leqq \varrho_{1} \leqq \varrho$ if $\|v\| \leqq \varrho_{0}$ and

$$
\|F(v)\| \leqq\|f\|+\|G(v)\| \leqq \varrho / 2+\|v\| / 2 \leqq \varrho \quad \text { if } \quad \varrho_{0} \leqq\|v\| \leqq \varrho .
$$

Moreover, F is a continuous and compact operator, hence by Schauder's fixed point theorem F has at least one fixed point. Thus equation (1.4) has at least one solution $v \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ and then the function $u=A^{-1} v \in H_{\mathrm{loc}}^{2 m}\left(\mathbf{R}^{n}\right)$ is a solution of (0.1), vanishing at infinity.

Consider now the following boundary value problem in $\boldsymbol{B}_{\boldsymbol{e}}$:

$$
\begin{gather*}
A u_{e}+g\left(x, u_{e}, \ldots ; D^{\beta} u_{e}, \ldots\right)=f \quad \text { in } \quad B_{e} \tag{1.12}\\
B_{j}(x, D) u_{e}=0 \quad \text { on } \quad S_{Q}, j=1, \ldots, m \tag{1.13}
\end{gather*}
$$

Theorem 2. Assume that the conditions of Theorem 1 are fulfilled. Further suppose that if $\varrho \geqq \varrho_{0}$ then for any $f \in L_{a}^{2}\left(\mathbf{R}^{\prime \prime}\right)$ the problem (0.3), (0.4) has a unique solution $u_{e} \in H^{2 m}\left(B_{\varrho}\right)$ and the estimation (0.7) holds. Then for any $\varrho \geqq \varrho_{0}$ and $f \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ the problem (1.12), (1.13) has at least one solution $u_{e} \in H^{2 m}\left(B_{e}\right)$.

Proof. Denote by $A_{e}^{-1} f$ the unique solution $u_{e} \in H^{2 m}\left(B_{Q}\right)$ of the problem. (0.3), (0.4). If $v_{e} \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ is a solution of

$$
\begin{equation*}
v_{e}+g\left(x, A_{e}^{-1} v_{e}, \ldots, D^{\beta} A_{e}^{-1} v_{e}, \ldots\right)=f \tag{1.14}
\end{equation*}
$$

then $u_{e}=A_{e}^{-1} v_{e} \in H^{2 m}\left(B_{e}\right)$ is a solution of (1.12), (1.13). Define an operator G_{e} by the formula

$$
G_{Q}\left(v_{Q}\right)=g\left(x, A_{Q}^{-1} v_{Q}, \ldots, D^{\beta} A_{Q}^{-1} v_{Q}, \ldots\right)
$$

Then $G_{e}: L_{a}^{2}\left(\mathbf{R}^{n}\right) \rightarrow L_{a}^{2}\left(\mathbf{R}^{n}\right)$ is a continuous and compact operator and

$$
\begin{equation*}
\lim _{{ }^{\Delta n} L_{L_{a}^{2}\left(\mathbb{R}^{n}\right)^{+\infty}}} \frac{\left\|G_{\varrho}(v)\right\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}{\|v\|_{L_{a}^{2}\left(R^{n}\right)}}=0 \quad \text { uniformly for } \varrho \geqq \varrho_{0} . \tag{1.15}
\end{equation*}
$$

This statement can be verified by means analogous to those used before in proving Theorem 1. We want only to show the proof of (1.15). Since

$$
A_{e}^{-1} v=\left(A_{\varrho}^{-1}-A^{-1}\right) v+A^{-1} v
$$

thus by estimations (0.6) and (0.7) $A_{a}^{-1}: L_{a}^{2}\left(\mathbf{R}^{n}\right) \rightarrow H^{2 m}\left(B_{a}\right)$ is a bounded linear operator and $\left\|A_{\varrho}^{-1}\right\|$ is uniformly bounded for $\varrho \geqq \varrho_{0}$:

$$
\begin{equation*}
\frac{\left\|A_{e}^{-1} v\right\|_{H^{2 m}\left(B_{a}\right)}}{\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}} \leqq c_{1} \tag{1.16}
\end{equation*}
$$

for any $v \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ and $\varrho \geqq \varrho_{0}$. Further

$$
\begin{equation*}
\left\|A_{e}^{-1} v\right\|_{H^{2 m}\left(B_{a}\right)} \rightarrow \infty \quad \text { uniformly for } \quad \varrho \geqq \varrho_{0} \quad \text { as } \quad\|v\|_{L_{a}^{2}\left(\mathbb{R}^{n}\right)} \rightarrow \infty \tag{1.17}
\end{equation*}
$$

since $v=A\left(A_{a}^{-1} v\right)$ and $A: H^{2 m}\left(B_{a}\right) \rightarrow L^{2}\left(B_{a}\right)$ is a bounded linear operator which does not depend on ϱ. The equality

$$
\frac{\left\|G_{\varrho}(v)\right\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}{\|v\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}=\frac{\left\|g\left(x, A_{e}^{-1} v, \ldots, D^{\beta} A_{e}^{-1} v, \ldots\right)\right\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}{\left\|A_{\varrho}^{-1} v\right\|_{H^{2 m\left(B_{a}\right)}}} \cdot \frac{\left\|A_{e}^{-1} v\right\|_{H^{2 m\left(B_{a}\right)}}}{\|v\|_{L_{a}^{2}\left(\mathbb{R}^{n}\right)}}
$$

and (1.9), (1.16), (1.17) imply (1.15).
Thus by use of Schauder's fixed point theorem we find that there exists a solution v_{e} of (1.14) (see the proof of Theorem 1), hence $u_{e}=A_{e}^{-1} v_{e} \in H^{2 m}\left(B_{e}\right)$ is a solution of (1.12), (1.13).

2. Theorem on approximation

Theorem 3. Suppose that all conditions of Theorem 2 are fulfilled. Let (ϱ_{j}) be any sequence of numbers $\varrho_{j} \geqq \varrho_{0}$ such that $\lim _{j \rightarrow \infty} \varrho_{j}=+\infty$ and let $u_{e_{j}}$ be a solution of (1.12), (1.13) for $\varrho=\varrho_{j}$. Then the sequence $\left(\varrho_{j}\right)$ has a subsequence $\left(\varrho_{j}^{*}\right)$ such that for any compact $K \subset \mathbf{R}^{n}$

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|u_{e_{j}^{*}}-u^{*}\right\|_{H^{2 m}(K)}=0 \tag{2.1}
\end{equation*}
$$

holds where $u^{*} \in H_{l o c}^{2 m}\left(\mathbf{R}^{n}\right)$ is a solution of (0.9). vanishing at infinity.

If the solution u of equation (0.9) is unique then for the solutions u_{e} of (1.12), (1.13)

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty}\left\|u_{\varrho}-u\right\|_{H^{2 m}(K)}=0 \tag{2.2}
\end{equation*}
$$

holds with arbitrary compact $K \subset \mathbf{R}^{n}$.
If estimations (0.2), (0.8) are valid, too, then

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|u_{e_{j}^{*}}-u^{*}\right\|_{\mathbf{H}^{2 m}\left(\mathrm{~B}_{e_{j}^{*}}\right)} \tag{2.3}
\end{equation*}
$$

resp. (in the case of unicity)

$$
\begin{equation*}
\lim _{\boldsymbol{e} \rightarrow \infty}\left\|u_{\boldsymbol{e}}-u\right\|_{\boldsymbol{H}^{2 m}\left(B_{\boldsymbol{e}}\right)}=0 \tag{2.4}
\end{equation*}
$$

hold.
Proof. The solutions $v_{e} \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ of the equation (1.14) constitute a bounded set in the Hilbert space $L_{a}^{2}\left(\mathbf{R}^{n}\right)$. If it were not true then there would exist a sequence ($v_{e_{j}^{\prime}}$) of solutions of (1.14) such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|v_{\varrho_{j}^{\prime}}\right\| \sum_{L_{\alpha}^{2}\left(\mathbf{R}^{n}\right)}=+\infty \tag{2.5}
\end{equation*}
$$

From (1.14) it is clear that

$$
\begin{equation*}
\frac{v_{Q_{j}^{\prime}}}{\left\|v_{Q_{j}^{\prime}}\right\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}+\frac{G_{Q_{j}^{\prime}}\left(v_{Q_{j}^{\prime}}\right)}{\left\|v_{Q_{j}^{\prime}}\right\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}}=\frac{f}{\left\|v_{Q_{j}^{\prime}}\right\|_{L_{a}^{2}\left(\mathbf{R}^{n}\right)}} . \tag{2.6}
\end{equation*}
$$

By (2.5) and (1.15) the term on the right and the second term on the left in (2.6) tend to the zero of $L_{a}^{2}\left(\mathbf{R}^{n}\right)$ as $j \rightarrow \infty$. The norm of the first term on the left equals one, thus from (2.6) we have a contradiction.

From the boundedness of the solutions v_{e} of (1.14) and from (1.16) it follows the boundedness of the functions $u_{e}=A_{e}^{-1} v_{e}$ in $H^{2 m}\left(B_{a}\right)$.

Consider any sequence of numbers $\varrho_{j} \geqq \varrho_{0}$ such that $\lim _{j \rightarrow \infty} \varrho_{j}=+\infty$. The sequence ($u_{e_{j}}$) of solutions of (1.12), (1.13) with $\varrho=\varrho_{j}$ is bounded in the norm of $H^{2 m}\left(B_{a}\right)$. Hence $\left(u_{e_{j}}\right)$ has a subsequence $\left(u_{e_{j}^{*}}\right)=\left(u_{j}^{\prime}\right)$ which tends to a function $u_{0} \in H^{2 m-1}\left(B_{a}\right)$ in the norm of $H^{2 m-1}\left(B_{a}\right)$:

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|u_{j}^{\prime}-u_{0}\right\|_{H^{2 m-1}\left(B_{a}\right)}=0 \tag{2.7}
\end{equation*}
$$

In view of (1.3) and the mean value theorem it is clear that

$$
\begin{gathered}
\left|g\left(x, u_{j}^{\prime}, \ldots, D^{\beta} u_{j}^{\prime}, \ldots\right)-g\left(x, u_{0}, \ldots ; D^{\beta} u_{0}, \ldots\right)\right| \leqq \\
\leqq c_{1} \sum_{|\beta| \leqq 2 m-1}\left|D^{\beta} u_{j}^{\prime}-D^{\beta} u_{0}\right|
\end{gathered}
$$

(c_{1} denotes a constant). Thus

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{B_{a}}\left|g\left(x, u_{j}^{\prime}, \ldots, D^{\beta} u_{j}^{\prime}, \ldots\right)-g\left(x, u_{0}, \ldots, D^{\beta} u_{0} ; \ldots\right)\right|^{2} d x=0 \tag{2.8}
\end{equation*}
$$

Consider the functions $v_{j}^{\prime}=A u_{j}^{\prime}$. Then

$$
\begin{equation*}
v_{j}^{\prime}+g\left(x, u_{j}^{\prime}, \ldots, D^{\beta} u_{j}^{\prime}, \ldots\right)=f \tag{2.9}
\end{equation*}
$$

since the functions u_{j}^{\prime} are solutions of the problem (1.12), (1.13) for $\varrho=\varrho_{j}^{*}$. Equalities (2.8), (2.9) imply that the sequence $\left(v_{j}^{\prime}\right)$ tends to a function $v^{*} \in L_{a}^{2}\left(\mathbf{R}^{n}\right)$ in the norm of $L_{a}^{2}\left(\mathbf{R}^{n}\right)$ and

$$
\begin{equation*}
v^{*}+g\left(x, u_{0} ; \ldots, D^{\beta} u_{0}, \ldots\right)=f \tag{2.10}
\end{equation*}
$$

We shall prove that for any compact $K \subset \mathbf{R}^{n}$

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|u_{j}^{\prime}-A^{-1} v^{*}\right\|_{H^{2 m}(K)}=0 \tag{2.11}
\end{equation*}
$$

Since $u_{j}^{\prime}=A_{e_{j}^{*}}^{-1} v_{j}^{\prime}$, thus

$$
\begin{equation*}
\left\|u_{j}^{\prime}-A^{-1} v^{*}\right\|_{H^{2 m(K)}} \leqq\left\|A_{Q_{j}^{*}}^{-1} v_{j}^{\prime}-A^{-1} v_{j}^{\prime}\right\|_{H^{2 m(K)}}+\left\|A^{-1}\left(v_{j}^{\prime}-v^{*}\right)\right\|_{H^{2 m}(K)} . \tag{2.12}
\end{equation*}
$$

The sequence $\left(v_{j}^{\prime}\right)$ is bounded in $L_{a}^{2}\left(\mathbf{R}^{n}\right)$ hence by (0.7) the first term on the right in (2.12) tends to zero as $j \rightarrow \infty$. Applying the estimation (0.6) to $A^{-1}\left(v_{j}^{\prime}-v^{*}\right)$ we find that the second term on the right in (2.12) tends to zero, too. Thus (2.12) implies (2.11).

From (2.11), (2.7) it follows that

$$
\begin{equation*}
u_{0}=A^{-1} v^{*} \quad \text { a. e. in } \quad B_{a} . \tag{2.13}
\end{equation*}
$$

Denote $A^{-1} v^{*}$ by u^{*} then $u^{*}=u_{0}$ a.e. in $B_{a}, v^{*}=A u^{*}$ and by use of (2.10) we find that
$A u^{*}+g\left(x, u^{*}, \ldots, D^{\beta} u^{*}, \ldots\right)=f$, further u^{*} tends to zero at infinity. Equality (2.11) implies the estimation (2.1).

Equality (2.2) can be proved as follows. Assume that the solution u of (0.9) is unique but equality (2.2) is not valid. Then there exist a compact $K \subset \mathbf{R}^{n}$, a number $\varepsilon_{0}>0$ and a sequence $\left(u_{\tilde{\theta}_{j}}\right)=\left(\tilde{u}_{j}\right)$ such that $\lim _{j \rightarrow \infty} \tilde{\varrho}_{j}=+\infty$ and

$$
\begin{equation*}
\left\|\tilde{u}_{j}-u\right\|_{H^{2 m}(K)} \geqq \varepsilon_{0}, \quad j=1,2, \ldots \tag{2.14}
\end{equation*}
$$

Then by use of the first part of the proof we have that $\left(\tilde{u}_{j}\right)$ has a subsequence $\left(\tilde{u}_{j}^{\prime}\right)$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|\tilde{u}_{j}^{\prime}-\tilde{u}\right\|_{H^{2 m}(K)}=0 \tag{2.15}
\end{equation*}
$$

where \tilde{u} is a solution of (0.9), vanishing at infinity. Since the solution of (0.9) is unique, thus $\tilde{u}=u$ and (2.14) is impossible because of (2.15).

If the estimations (0.2), (0.8) are valid, too, then it is easily seen that

$$
\lim _{j \rightarrow \infty}\left\|u_{j}^{\prime}-A^{-1} v^{*}\right\|_{\left.H^{2 m(B} B_{e_{j}^{*}}^{*}\right)}=0
$$

(see the proof of (2.11)). This equality implies (2.3). (2.4) can be proved similarly if the solution of (0.9) is unique.

Remark. In [1] and [2] there are formulated sufficient conditions on P and Q which guarantee that the conditions in Theorem 2 and in Theorem 3 are fulfilled (see the introduction).

References

[1] Л. Шимон, Об аппроксимации решений граничных задач в неограниченньх областях, Дифференциальные уравнения, IX, 8 (1973), 1482-1492.
[2] Б. Р. Вайнберг, Принципы излучения, предельного поглощения и предельной амплитуды в обпей теории уравнений с частными производными, Успехи Матем. Наук, 23, 3 (129) (1966), 115-194.
[3] L. Simon, On elliptic differential equations in \mathbf{R}^{n}, Ann. Univ. Sci. Budapest, 27 (1984), to appear.
[4] D. E. Edmunds and J. R. L. Webr, Quasilinear elliptic problems in unbounded domains, Proc. Roy. Soc. London, Ser. A, 337 (1973), 397-410.
[5] J. R. L. Webb, Boundary value problems for strongly nonlinear elliptic equations, J. London Math. Soc. (2), 21 (1980), 123-132.
[6] F. E. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Nat. Acad. Sci. USA, 74 (1977), 2659-2661.
[7] F. H. Michael, An application of the method of monotone operators to nonlinear elliptic boundary value problems in unbounded domains, Ann. Univ. Sci. Budapest, 25 (1982), 69-84.
[8] F. H. Michael, An elliptic boundary value problem for nonlinear equations in unbounded domains, Ann. Univ. Sci. Budapest, 26 (1983), 125-139.

