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Linear combinations of iterated generalized Bernstein 
functions with an application to density estimation 

WOLFGANG GAWRONSKI and ULRICH STADTMÜLLER 

Starting from the classical theorem of Weierstrafi (and its various modifications) 
on approximation of continuous functions by means of Bernstein polynomials (and 
its generalizations) in this paper a class of discrete and linear operators is developed. 
These operators are linear combinations of iterates of the original Bernstein type 
operators being constructed analogously to Fejér—Korovkin operators. Generaliz-
ing known results for the classical Bernstein case they approximate smooth functions 
more closely than the Bernstein type operators. Moreover, related operators for ap-
proximating derivatives are developed and these deterministic concepts are applied 
to probability density estimation for computing the mean square error of certain 
density estimators. 

It is well known (e.g. [9] ; [22]) that classical Bernstein polynomials and its various 
generalizations and modifications (such as e.g. generalized Bernstein polynomials of 
Szasz or Baskakov operators) approximate the associated function / with order 
0(1/«) provided the derivative / ' belongs to the class Lip 1. These operators are dis-
crete, linear, and positive. More precisely, they are of form 

where J throughout denotes one of the intervals R, [0, or [0, 1] for simplicity, and 
the functions pjn satisfy pjn (x)s=0, x£J, jd Z, 776 N. More generally, in this paper 
we admit {/>,•„ (•*•')}}!_<„ to be the «-fold convolution of a probability lattice distri-
bution with expectation x (see Section 1) and we refer to (0.1) as a generalized Bern-
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stein function. Then the above order of approximation remains true for (0.1) (e.g. 
[1]; [2]; [3]; [9]; [12, Ch. 7]; [28]; see also Lemma 3). 

In this paper we investigate quantities being related to or derived from the func-
tions (0.1) thereby treating the following topics. 

(i) An improvement of the rate of convergence provided/is sufficiently smooth 
(Section 2), 

(ii) approximation of derivatives of / (Section 3), and as an application, 
(iii) asymptotic of the mean square error (MSE) of an estimator for a probability 

density concentrated on J (Section 4). 
(i) Dropping the positivity of the operator B„ we mention two methods for 

increasing the rate of convergence in case of classical Bernstein polynomials. One of 
them works by forming operators of type 

(0.2) £, ,„:= Z"nB d i „ , 1 a;,€R 
i=1 

(e.g. [4]; [21], where more general singular integral operators with certain differen-
tiability properties are discussed) whereas the second one uses the iterated Bernstein 
operator of Fejér—Korovkin type 

(0.3) Dry.= ^ (J) C— 

[11 and the references given there]. Both approximating functions Lr<n(f\x) and 
£>, „(/; x) are polynomials the approximation order of which is 0(n~r) provided 
/6C2,[0, 1]. Besides the increase of the degree Lr n ( f ; x) has the disadvantage that 
/ h a s to be evaluated at the points j/dji, j=0, ..., >/, /=1, ..., r, whereas the use of 
D r,n(f "> x ) requires the knowledge o f / a t the distinct nodes j/n,j=0,..., n only. We 
use the second approach due to FELBECKER [ 1 1 ] and extend his result cited above to 
operators (0.3) based on (0.1) (Theorem 1). In particular this includes the classical 
Bernstein case treated in [11] which corresponds to {Pj„(x)} as a binomial distribu-
tion and Szasz and Baskakov operators generated by Poisson's and the negative 
binomial distribution, respectively (see also Section 1). 

(ii) If pJn, as a function of x£J, satisfies certain differentiability properties, 
then e.g. in [13], [30], [31] it was shown that the operators (0.1) are simultaneously 
approximating, i.e. 

(¿)V,(/;-v) -/<*>(*), 

77—°°, provided / fulfills certain smoothness and growth properties. However for 
higher derivatives the approximating functions become rather complicated expres-
sions. Hence for approximating the s-th derivative of a function F on J we consider 
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the discrete operators 

(0.4) DW(F; x) := > 

where J is the forward difference operator acting on / Then we prove a theorem on 
uniform approximation and a Voronowskaja property for D ^ (Theorems 2, 3). 

(iii) If J=1 , then motivated by (0.4) in [15], [16], [29] a smoothed histogram type 
estimator was developed for estimating an unknown probability density/concentrated 
on J. More generally, in Section 3 as an estimator for its r-th derivative we consider 

( 0 . 5 ) JV ( x ) : = RF « 2 PJJX)A'^FN 

where FN denotes the empirical distribution function of an iid sample with density 
/ Extending the results in [15; 16; 29] we compute the exact order of magnitude for 
the MSE (Theorem 5) 

which turns out to be ~ c . ;v~4/(2r+3) provided the scaling parameter n is chosen 
subject to H=«(jV)~iV2'3, / is smooth enough and satisfies certain growth condi-
tions. (Throughout an~b„ means that lim ajb„ = ).) Dropping the property of 

O—• e© 

positivity for an estimator of the density itself we construct an estimator suggested 
by the deterministic approximation operator (0.3). We replace (0.5) by (/"=0) 

(0.6) £,.»(*) := n Z a jK(*)^N 

as an estimator for f(x), where aJn(x) depends on pJn{x) only. Then the order of the 
MSE of (0.6) is N-t'lfr+i) when / is smooth enough again (Theorem 4). Comparable 
results for the most popular density estimator, the kernel estimator, give the same 
rate of mean square convergence [23]. 

In this paper we look at the deterministic approximation theorems from a pro-
babilistic point of view, too. This is expressed by the technical treatment of the proofs 
where we use e.g. moment inequalities, Tschebyscheff's inequality, local central limit 
theorems and Edgeworth expansions of lattice distributions. 

1. Auxiliary results 

In this section we collect and prove some lemmata which are basic for the techni-
cal treatment of this paper. We suppose throughout that {PjnO)}"»-«; is 
the «-fold convolution of a lattice probability distribution {/>_,•!(x)} concentrated on 
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<k> 
the integers and satisfying the following conditions: 

(1.1) Pji£C(J), 

(1-2) 2Pn(x) = 1, 2JPjiW = ^ = •= 2 U -xfPjl(x), 
j j J 

(Mk) \m\k(x) := ^ \j-x\k
Pji(x) <oo 

j 

for some N, )ks2, x£J and the convergence of the series is uniform on compact 
subsets of J. Further is assumed to have maximal span equal to 1, and if 
(M t) holds, then we denote by 

mk(x) := 20-x?PjiW j 

the A:-th central moment of {/^(.v)}. For practical purposes obviously such lattice 
distributions are of interest for which the pn are "elementary" functions and the 
convolutions are easily computable in a closed form. Choices of particular interest 
are 

(i) the binomial distribution 

Pj„(x) = (']) x>(l - x)"-\ O g x s l , 

(ii) Poisson's distribution 

(iii) the negative binomial distribution 

(n+j — H xJ __ 

which produce for (0.1) Bernstein polynomials, Szasz and Baskakov operators, 
respectively. (See also the remarks at the end of Section 4.) Moreover, throughout 
U is a compact subinterval of J where <72(x)=(7^>0 holds. 

Lemma 1. Suppose that (Mfc). holds, then 

(») 2JPjn(x) = nx, j 

(ii) 2<J-nxyPjn(x) = no*{x), j 

(iii) 2 \j-nx\kPjn(x) s Ak\m\k(x)nm, where Ak is a positive constant de-
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pending only on k, 

(iv)*) 2U-nxfpjB(x) = k\ 2n(n-1) ... (n-s+1) n - ^ T = 
[*/2] 

= 2 av(x)nV> where the non-specified summation is taken over all integer solutions 
V = 1 

(v1; ...,vk) of the equations v1+2vz +...+kvk = k, s=v1+ ...+vk; moreover, if 
k=2r is even, then 

ar(x) = ^a*'(x). 

Proof , (i), (ii) are trivial and (iii) is a form of Marcinkiewicz's inequality (e.g. 
[25, p. 41]); explicit bounds are given in [24, p. 60], [8]. The first equality in (iv) is 
obtained by using the &-th derivative of the characteristic function of {pJn (x)} com-
puted via [24, Lemma 2, p. 135]. From the latter form the representation as polyno-
mial in n is immediate. This polynomial has degree at most [Ar/2], since mx(x)—0, 
by (1.2) and because \1+2vi+...+kvk=k, vx+...- |-vk>k/2 imply that v x s l . 
Finally the form of ar(x) in case k=2r is given in [7, Corollary 3 of Theorem 2, p. 
294]. 

Using notations and properties of the difference operator in [12, p. 221] and a 
local central limit theorem [24, Theorem 17, p. 207, see also pp. 9, 139] in [14, Lemma 
1] the following lemma is proved. 

Lemma 2. (i) Suppose that (M3) holds, m£N, ¿„>0 and °°. Then 
for U we have 

2 Pin(xT= „ , * „ . . , - ( 1 + 0 ( 1 ) ) , n — , \jln-x\si„ (27ca2(*)n)(m_1)/2 ym 

the o-term being independent of x£ U. 
(ii) If (M t) holds with r, m(iN, k^r+2 and <5„>0 with 5„fn-+°° as n—° 

then for x£U we have 

2 \ArPj-r = / 7 — ' 7 ^ " C r - m • (1 +0(1)), « - oo. 

Again the o-term is independent of x£U and 
o o 

Cr,m := / \Hr(y)\me-m>^dy, 
— o o 

where Hr is the r-th Hermite polynomial defined e.g. in [24, p. 139]. 

*) For ££R, [fl denotes the largest integer not exceeding {, as customary. 

14 
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Finally we mention an approximation theorem together with a Voronowskaja 
property for the operators B„ in (0.1) which is well known and has been treated in 
the literature in various modified versions (e.g. [1], [2], [3], [5], [12], [19], [20], [21], 
[28], [30], [31]) since it can be proved along standard lines we omit a proof. 

Lemma 3. (i) If (Mk) holds for some k^2, and if fdC(J) satisfies f(x)= 
= 0(x*), |x|-<=, then 
(1.3) lim £ „ ( / ; * ) = / ( * ) 

for all x£J. Moreover, the convergence is uniform on compact subsets of J. 
(ii) If (Mk) holds for some ks? 3, and if f£C2(J) satisfies f(x) = 0(xk), 

then 

(1.4) lim „{/?„(/; x ) - / (* )} = n — CO ̂  2, 

for all x£J. Again the convergence is uniform on compact subsets of J. 

Considering instead of (0.1) the modification 
a+D/n 

(1-5) W ; X) := n 2Pj„(x) f f(y) dy 
J j/n 

which can be looked at as generalized Kantorovich functions (cf. [5], [6], [20]) Lemma 
3 remains true provided the right hand side of (1.4) is replaced by 

(1.6) B*(f; x) i (f'(x) + o\x)f"(x)). 

In the sequel for / € C 2 ( / ) we use the notation 

(1.7) B(f- x) := ^ - f " ( x ) . 

2. Iterated generalized Bernstein functions 

In this section we treat topic (i) mentioned in the introduction. That is, generaliz-
ing Lemma 3 and extending partially the results in [11] we improve the rate of conver-
gence in (1.3). Under (Afv), v s2 , we consider the growth condition 

(2.1) mv(x) = 0(xv), |x| -

which in particular is satisfied for the examples cited in Section 1 and more generally, 
when o2(x) is a polynomial of degree at most 2 and pn satisfies the differential equa-
tion <T2(x)p'jx(x) = Pji(x)(j—x) (cf. [13], [21], [30]). Then for functions/defined on J 
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and satisfying f(x)~0(xv), |*| — i n case of an unbounded interval J the iterated 
generalized Bernstein functions 
(2.2) F.(f), r6N0 , 

are well defined and continuous on J. Here B"a:=I is the identity operator, and 
Br

n
+1(f):=Bn(Br

n(f)), r£N0. Further we have by (2.1) and Lemma 1 (iii) 

(2.3) B'„(f;x) = 0(x% | * | , r6N„, 

the O-constant being independent of n. Moreover, Dk „ (defined in (0.3)) can be 
written as 
(2.4) DKn = I-(I-Bn)\ ken. 
Then we prove 

Theorem 1. Suppose that (M t) holds for some k^2r+\, and mv satis-
fies (2.1) and mv£C2r-2(J) for v—2,3,..., 2r. Moreover, assume that feC2r(J) 
and /(2r)(*)=0(**~2r), Then 

lim rf(Dr,n(f-, *)-/(*)) = (-1 y - ^ i f , x) 

for all x£J. Further the convergence is uniform on compact subintervals of J. (The 
powers of B in (1.7) are inductively defined in the same way as those of B„.) 

Proof . We proceed by induction with respect to r (see [11]). If r=1, then 
Theorem 1 is contained in Lemma 3 (ii). Hence we assume the assertion to be true for 
r—1, r s 2 . Let K=[a, b]QJ and for ¿ > 0 we use the notation Kd:—[a—5, 
6+6]. Then we have 

(2.5) f ( y ) = 1 ( y - xy + (y — xyQ(y - *), x£K 
v = 0 V ! 

where e(h)—0, if h—0 and 

(2.6) (y-xrQ(y-x) = 0{(y-*)"), \y\~~> 

uniformly in x£K. Now the Taylor series expansion (2.5) gives (use (1.2)) 

(*„-/)(/; *) = + {{-x)pin(x) = 

2r 1 fW(X) 
= 2 "7TL-fL 2 U-nxyPjn(x) + £„(*)• 

»=2 V! n j 

Using (2.1), the differentiability properties of m, and the growth restriction on / ( 2 , ) , 
by Lemma 1 (iv) we can write the latter identity as 

(Bn-I)(f; x) = 22-Us(*)+ £„(*), . 
5—1 n 

14» 
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where the functions gs are independent of n and satisfy the conditions 

(2.7) *,(*) = A 
and 

(2.8) 

with gl(x)=B(f ; x). Hence it follows that 

tf{Bn-I)'{f -, x) = tf-\Ba-ry-iB{f\ x) + 
(2.9) 

+ ^-'(.B„-iy-1(gl\x) + (B„ — / ) r _ 1 (jf £„; x). 
s = 2 

(Note that Bn can be applied to gs, £„, and B ( f ) , by (2.7), (2.6) and (2.3).) 
Next, for functions f„dC(J) satisfying 

(2.10) / . (*) = o ( A 

uniformly in n we get (see (2.3); M>-0) 

sup \{Bn -1) (/„ ; x)| ^ sup |/„ (x)| + sup |5„ (/„; x)| ^ 
x£K x£K x£K 

S sup |/„(x)| + sup 
xiK xZK 

Z fn (4) Pj'M + SUP 2 fn M Pjn(x) 

= 2 sup |/„(x)| + M sup Z (kl + lW*) = 
xSKgDJ xiK j/niKa M«l / 

= 2 sup |/,(*)| + o i * ] , 

by Lemma 1 (iii). Further, by (2.3) and (2.10) we may apply this estimate to f„(x)= 
= ( J ? „ - / ) r - 2 ( / ; x) and thus we obtain inductively (observe (2.7), (2.8)) 

s u p p n - / ) r - 1 ( ^ s ; x ) | =s 
x£K 

sup 2 g i s r 

2 ' - 1 sup l&WI + o f - i ) , 
f 1 \ 

r < j g 2r — 1 
*€«<,.-!,anj' 

as n—a». Now from (2.9), by the induction hypothesis, we have 

ff-1(Bn-I)'~1B(f; x) - BT-^Bif-, x)) = W ; x) 



I te ra ted general ized Berns te in f u n c t i o n s 213 

and, since A:^2r+1, 

if-(BH-IY-1(g.;x)~0, s^2, 

as n—oo5 uniformly on K. Finally we conclude from (2.5), (2.6), and Lemma 1 (iii) 
that (M, E, <5>0) 

M 
rf\L(x)\ 3= s + Mrf-k 2 Ij-nx\kpjn(x) eH — = 2e 

\j-nx\>Sn yn 

when n is large enough. This and (2.4) complete the proof. 
In later applications (see Section 4) we need a modification of Theorem 1 for 

the generalized Kantorovich operators B* (defined in (1.5)). Putting 

(0.3)* A* . : = ¿ ( / ) ( - W 

we have 
(2.4)* Dt„ = I-(I-Bt)k, k£ N. 

Since the following theorem is proved along the same lines as the preceeding one we 
omit its proof and only state 

Theorem 1*. Under the assumptions of Theorem 1 we have 

lim rf(D?,„(f ; * ) - / ( * ) ) = ( - l) r - 1-8* r(/ ; x) 

for all x£J. Again the convergence is uniform on compact subsets of J. 

3. Approximation of derivatives 

In this section we treat topic (ii) mentioned in the introduction; that is, we prove 
an approximation theorem for the operators (0.4) together with a Voronowskaja 
property. In the sequel A denotes the difference operator defined by Aaj:=aJ+1—aj 
acting on a sequence {a,-} (e.g. [12, p. 221]). For differences of higher order we have 

(3.1) .A'aj = 2o (v) ( - 1 )r_v«;+v> r€N„, 

where A0aj:=aj. 

Theorem 2. Suppose that (M t) holds for some k^2 and F£CS(J), s^O, 
satisfies F(%x)^0(xk), Then 

lim Z><S)(F; x) = F<s>(x) 

for all x£J and the convergence is uniform on compact subsets of J. 
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Proo f . First we note that for F£C,(R) 

(3.2) = 

with some £J n£[j/n , O'+J)/«]. Extending F suitably from / on R we have, by (3.2) 
(e, ¿ > 0 ) 

j 

2 \F<s>(Zjn)-FM(x)\pJn(x).\ 

Further, restricting x to a compact subset of J with positive constants M, M' we get 
(see Lemma 1 (iii)) 

e + M£ + * ) Pj„(x) ^ e + ̂ JW ^ 2e 

if n is large enough. This completes the proof. 
The exact rate of convergence is given by the following Voronowskaja property. 

T h e o r e m 3. Suppose that (M j holds for some k^3 and F£CS+2(J), s^O, 
satisfies F(s+%x) = 0(xk--), Then 

(3.3) lim n(D&(F; x)-F^(x)) = ~(sF(s+1>(x) + tr2(x)'F<s+2>(x)) n — oo Z 

for all x£J, the convergence being uniform on compact subsets of J. 

Remark . If J=0 , 1, then the right hand side of (3.3) can be written as B(F; x) 
and B*(F'; A), respectively. This exhibits Theorem 3 as a generalization of Lemma 
3 (ii) and the corresponding analogue for B*. (See the remarks following Lemma 3.) 

P r o o f of T h e o r e m 3. Extending F suitably from J on R if necessary, since 
F£CS+2(J), we have (OSvSi) 

with j/n^£Jv^(j+v)/n and further, by (3.1), 
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Since, by (3.1), foi aj=jß and j=0 
0, O g | / < i , 

we obtain 

+ 

the 0-term being independent of x as long as x is restricted to a compact subset of J. 
Now Lemma 3 completes the proof. 

In this section l e t /be an unknown probability density concentrated on a known 
interval / . Starting from the empirical distribution function FN based on iid obser-
vations ..., XN having density/, Theorem 2 shows that, f^\x), defined in (0.5), 
is an asymptotically unbiased estimator for the /--th derivative fiT\x) provided / 
satisfies certain growth and smoothness conditions. If / =0, then for various parti-
cular cases in [15], [16], [29] the asymptotic of the MSE was computed. Asymptotic 
distributions for have been derived in [27]. Based on Theorem 1* and Theorem 3 
now we accelerate the mean square convergence, when / =0, and determine the 
asymptotic behaviour of the MSE for f$\x) if r=0. 

First dropping the positivity of /y0) and motivated by Theorem 1* we consider 

as an estimator for fix). 

Theorem 4. Suppose that (M*) holds for some 1, r£N, mv satisfies 
(2.1) and wv€C2r_2(Jr) for v = 2, 3, ..., 2r. Moreover assume that f£C2r(J) and 

4. MSE for density estimators of Bernstein type 

(4.1) 

with 

Dr,„ix):= n % ajnix)AFN\i^ 

(4.2) 

f2'\x)=0(xk-°-'), M-
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(i) If C72(x)>0, then 

E((£>,,n(x)-f(x)T) = {B*'{£X) f + + 
where 

= if r=l 
• 2\no(x) 

\Vm(x)\ S (2'~1)2 f(x) fii+Oi 1), if r > 1. 
\ 2 71 <70 

Here the remainder terms hold uniformly on UQJ and o(x)^o0 for X(LU. 

(ii) If <r2(x) = 0, then as n —«> 

Proof . We decompose 

E({Drin(x)~f(x)f) = {E (D, „ (x)) - f ( x ) f + Var (*)) 

as a sum of bias squared and a variance term. If F denotes the distribution function 
of / , then an application of Theorem 1* yields 

(4.3) E(D,,n(x)) = n 2 ajn(x)AF[^ = 2 ( ' ) (-1 Y'^Vif; x) = 

- D*M\ x) = f(x)+ /?»'(/;x) + o 

where the o-term holds uniformly on compact subsets of J. For the variance we note 
that 

(4.4) C o v ^ l i J . ^ d ) ) ^ ^ ^ ) ^ - ^ ^ ) ) 

and obtain 

(4.5) Var (£,,„(*)) = /i2 2 Cov AFN (£)) ajn(x)akn(x) = 

(i) Suppose that <T2(.Y)=>0. If r = l , then aJn(x)=pJn{x) and, by Lemma 2(i) 
it is easily shown that 

,4.6, = + „ _ „ , 
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uniformly on U. If r^2, then we use a local central limit theorem (see formula (1.4) 
in [14]; or Theorem 1 in [24, p. 207]) and obtain 

BV<j>jn\ x) m _L +o(L), *m, 
V2nno0 KnJ 

where the O-term holds uniformly in x£ U. From this we get, by (4.2), 

IM*)I = + 0 (—) 

y2Ttn<i0 \n) 

and thus, by the remarks following Lemma 3, 
(4.7) ^ ^ A F ^ ^ ^ O ^ ^ i f ^ = 

^TTtro I in) 

uniformly on U. Now a combination of (4.3), (4.5), (4.6), (4.7) completes the proof 
of part (i). 

(ii) Incase <r2(x)=0, we have Pj„(x)=djnx for some ./'€ Z, 5Jk being Krone-
cker's symbol. This implies that ajn(x)—pJn{x)=8jnx, by (4.2). Using (1.6), (4.3) 
and (4.4) we find part (ii). 

In case <72(.%-)>0 obviously the choice n=n(N)~cN2!(lr+t), c>0, N-+ 
yields the estimate (/">1) 

E(Dr,„(.x)-f(.x)f = 0(N-*"itr+% N - co. 

For corresponding kernel estimators (cf. [18, section 4]) 7V~4r/(4r+1) is the exact order 
of magnitude. By more careful estimates of Vn(x) the constant involved in the leading 
term could be reduced. 

Finally we extend Theorem 1 in [16] by 

Theorem 5. Suppose that (Mk) holds for some /c^max (3, r+2), r£N0. 
Further, assume that f£Cr+2{J) and f,+2\x) = 0(xk~2), 

i) If CT2(x) > 0, then 

+ 2n<7*+1(x)N + N K h 

as where cr 2 is defined in Lemma 2. Again the o-terms hold uniformly on U. 
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(ii) If a-{x)=0, then 

W (-) W)2) = + + + ^ O (n-), 

P roo f . Due to the standard decomposition 

= (£(/<-> (x))-f"(x)f + Var(/<'> (x)) 

we treat each summand separately. By Theorem 3 0 = r + l ) and (0.5) we get 
(F ' (x)=/ (*) ) 

. (4.8) £ ( / r W ) = D^>(F- x) = f ' \ x ) + 

1 ((r + l ) / ( ' + 1 > (x) + < r W ( r + 2 ) ( * ) ) + » ({•) + 2„ 

uniformly on compact subsets o f / . For evaluating the variance we use partial sum-
mation (see also [14]) and obtain from (0.5) 

Ur)(v) = (-1 Ytf+12 ArPj-r,n(x)AFN (1) . 

Hence, by (4.4), we have 

„ 2 ( r + l ) ( i \ ' t 

say. For II we have by (4.8) 

(4-9) 11 = 1:0(1), „ - c o . 

Next, by the continuity of / a t x£ U (e, ¿>0) we get 

y y P j _ r A x ) r = iV \jln-x\ss 

0+1)/« _ . f 
~jf—, » / (/00 "/(*)) dy (A'Pj-r^x)y + 

„2(r + l ) / • \ 

say, and 

(4.10) 

Writing (AF(j/n)rs\) 

(4-10) 2 [A 'Pj-rA*)Y-
N \Jln-x\Si 

I I ' s 
- N 2 IVIIJ, 2 Pj + v-r.lWPj + p-r.nix)' 
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the use of Cauchy's inequality combined with Lemma 1 (iii) yields 

II ' = 

Putting this together with (4.8)—(4.10), and Lemma 2 (ii) we have established part (i). 
Incase ff2(x)=0, direct computation of I (note that pJn(x)—5Jinx and x is an 

integer) yields 

N j \n)\r + ?ix-j) N v=o \n )\r—v) 

M2r+1 1 
= JL

W-f(x)V + j j 0(n% n - co,' 

thereby finishing the proof of part (ii). 

Looking at the case <r2(x)>0 we see that the "optimal" choice n=n(N)~ 
~ciV2/(2r+5), c>0, Ar-°° leads to the exact older of magnitude N~iKZr+s) for the 
MSE of Comparable results for the classical kernel estimator give the same rate 
of mean square convergence (e.g. [18]). Finally it should be pointed out that in parti-
cular the estimators (0.5) for the derivatives derived from (0.4) seem suitable rather 
than estimators obtained from by differentiation with respect to x; for such esti-
mators have complicated forms, if r is large. However in practice the computation 
of the coefficients of pJn(x) in (0.5) essentially requires only the evaluation of dif-
ferences for a sequence of integers. 

In this paper we have considered approximating operators and density estima-
tors constructed by a lattice distribution. Motivated by a local central limit theorem 
another example is suggested by 

\2nn 

which can be shown (see [16], [17]) to be a "good" approximation of a lattice distri-
bution with mean nx and variance n (i.e. o2(x) = l). This approach leads to Favard 
operators for (0.1) [10], [17] for which the topics of this paper can be discussed in a 
similar way. 
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