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Steckin-type estimates for locally divisible multipliers
in Banach spaces

W. DICKMEIS, R. J. NESSEL, and E. VAN WICKEREN!)

1. Introduction

Let X,, be one of the Banach spaces C,, or L , 1=p<eo, of 2zn-periodic
functions, continuous or Lebesgue measurable on the real axis R with finite norm

n 1/p
Wl = max F@ Whpaei= {5z [ ropas)

respectively. Let C denote the complex plane and

1.1 II, = {p,,ecg,,; Da(u) == . > e, ckEC}

=-n

the set of trigonometric polynomials of degree at most n€N (:=set of natural
numbers). For f€X,, the error of best approximation by elements of IT, is de-
noted by ‘

(1°2) E(fs n) = E(X2n; f’ n) = inf {"f'—pn"Xg,,; pneﬂn}-
Let the rth modulus of continuity of f€X,, be given by (réN)

13 @, (X f, 1) := sup 2’(—1)"[2) f(u+kh)”- .
. {hl=t |lk=0 Xon

In these terms, STECKIN [15] proved in 1951 the following (weak-type, cf. [5]) ine-
quality (f€X,,, n€N)

(1.4) 0 (Xagi i) = A 3 A1 E i £, B)
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which immediately furnishes the classical Bernstein inverse approximation theorem
(cf. [19, p. 331 f1.])). Ten years later, STECKIN [16] considered the Fejér means

n

Fo-a )W) = 2 (1 Jkl/m)f " (k)e

of the Fourier series of f€X,, where for k€Z (:= set of integers) the kth Fourier
coefficient is given by 2nf " (k):= f f(w)e~ " du. Corresponding to (1.4) he established
the inequality (/€ Xa,, n€N) -

L3) 1Fos S~y = A8~ S E(Hosi 1, )

In both cases, Steckin essentially used the same technique, namely Bernstein’s
classical telescope argument, employing the (unique) polynomial of best approxima-
tion in 1951 and the delayed means of de La Vallée Poussin in 1961, respectively.
Moreover, in [16, p. 271] he pointed out that it would be interesting to obtain esti-
mates, analogous to (1.5), for other methods of summation of Fourier series.

It is the purpose of this paper to derive inequalities of type (1.4, 5) for quite
a general class of processes within the abstract framework of Banach spaces, ad-
missible with respect to some Riesz-bounded spectral measure (see also the general
approach given in [1a]).

To this end, multipliers are defined in Section 2 for Banach spaces which are
generated via closure by some orthonormal structure given in terms of a spectral
measure in a Hilbert space. If the spectral measure is Riesz-bounded, then a uniform
bound can be derived for families of radial multipliers of Hardy-type (cf. Theorem
2.1). This enables one in Section 3 to introduce polynomials, potential spaces, and
de La Vallée Poussin means, a basic tool. In fact, Sections 2 and 3 represent a brief
outline of a general framework within which one may successfully treat a number
of classical problems of approximation theory and numerical analysis (for details
see [4], [12], [21] and the literature cited there).

To derive Steckin-type estimates, the concept of locally (globally) divisible
multipliers is introduced in Section 4. Here we are heavily influenced by work of
H. S. SHAPIRO [14] concerned with local divisibility within the Wiener ring of Fourier-—
Stieltjes transforms (see [14) and the literature cited there). In fact, whereas the
present approach is finally based upon some Hilbert space structure (e.g., L?), one
may consult [1] for a different type of extension which deals with the local divisibility
of Gelfand transforms in commutative Banach algebras (e.g., L'). In any case,
a first application of the present concepts leads to the Jackson-type inequality
(4.2) and thus to the global Jackson-type theorem given in (4.3). The actual Steckin-
type estimates are derived in Section 5. It is interesting to note that the Bernstein—
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Steckin telescoping technique indeed extends to the present abstract situation.
In this connection, let us mention that similar arguments in the setting of Besov
spaces may also be found in [2], [10}, 13], [23].

The sharpness of the classical estimates (1.4, 5) was already discussed by Steckm
(cf. [16]) via concrete methods. But this kind of problems can also be dealt with in
the present abstract setting. To this end, Section 6 first recalls a general theorem,
established in [6], [7], which in fact does not need any orthogonal structure. Based
upon some rather mild-conditions upon the spectral measure and the locally divisible
family of multipliers, Corollary 6.2 then shows that the assumptions of the theorem
are indeed satisfied in the present context.

Finally, Section 7 is devoted to some first illustrating applications, emphasmng
the unifying approach to the subject.

2, Multipliers

For a complex Hilbert space H let E be a (countably additive, selfadjoint,

bounded, linear) spectral measure in R¥, the Euclidean N-space (NEN) with
N

inner product xy:= > x;y; and norm |x[:=(xx)"2. Thus, E maps the family
=

% of all Borel measurable sets in R¥ into the set of all self-adjoint, bounded, linear
projections of H such that (B, B;€ X, @ being the void set, I the identity mapping)

() E(B.NBy) = E(B)E(By),
@D (i) E@ =0 ER")=]

(i) E(G B,.)= S EB) (BNB,=9 for ixj).
i=1 =

Let L>(RY, E) be the space of complex-valued, E-essentially bounded functions
7 with norm
2.2 [tlle, g := inf {sup |t ()|; B€Z, E(B) = I}.

ucB

For each t€L™(R", E) the integral T™:= f T(u)dE(u) is a bounded, linear operator

of H into itself (for basic properties and further details see [8, pp. 900, 1930, 2186)).
For a given orthonormal structure (H, E) let X be a complex Banach space

with norm | -|| such that H and X are continuously embedded in some linear

Hausdorff space (this hypothesis should be added in {4], see [23, p. 116]) and

such that. : )

2.3) . BN XMw=H, BOXV =X
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ie., HNX is densein H and X. Then (cf. [4]) € L~(R", E) is called a multiplier
on X if for each fEHNX

(2.4) T'f:= [t@dE@fe HNX, |[T*f| = A|f].
RN

In view of (2.3, 4), the closure of T* (represented by the same symbol) belongs
to [X], the space of bounded, linear operators of X into itself. The set of all
multipliers 7 on X is denoted by M =M(X)=M(X, H, E), the correspondmg
set of multiplier operators 7T by [X],. Setting

@5 Wellae = 1 T"llxy := sup {IT°f1l; fEHNX, | f]l =1},

M is a commutative Banach algebra with unit under the natural vector operations
and pointwise multiplication, isometrically isomorphic to the subspace [X],,<[X].

Let DY, jeN, be the set of real-valued, continuous, strictly increasing func-
tions ¥ on [0, ) with ¥(0)=0 and tl_i’rg Y(t)=-oo, which are (j+1) times dif-
ferentiable on (0, «) with

(2:6) @) FPEVOI=KY() O=k=jt=>0),
@) lim @’'() = 0.

For j=0 set D@:=DW, In view of (2.6) one has

@.7) @O s [WE+uly@lde = K+DY(Q),
0

FYO@) = Ky’ () = KEK+1DY (@ O =k=j+1).
Thus ¥ satisfies
(2.8) oY) =55t (@) (=1,t=0),
since (2.7) implies

¥ (st) Y’ (u) K+1
v f Y(u ) f

Note that Y(z)=1r, y=>0, and Y (t)=log (1+¢) are admissible choices but not
Y(t)=¢€"

Let ¢(g) be a real-valued, positive function on an index set #. For yeDY
and a function ¢, defined on {0, ), the family {rxq,(,?)}‘26 s with 6% (x):=
:=o(p(e)¥(|x])) is said to be of Hardy-type (o, ¥) if o¥, belongs to M, uni-
formly for ¢€.# (cf. [21] and the literature cited there). :

To formulate a criterion for multipliers of this type, assume that for a Banach
space’ X, satisfying (2.3), the spectral measure E is Riesz-(R, j)-bounded for

log

du = log sX+1,
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some jEP -(:=set of non-negative integers), L.e.,

{(l—lxlla)’ for |x| = e
for |x|=>¢

J e(x) =

belongs to M and |7; ,l»=C;, uniformly for all ¢=0.

Theorem 2.1. For some jeP let E be a (R, j)-bounded spectral measure
for X. Let ;/JED(" and let ¢(@) be a positive functton on J. If 6€BV;,,, the
class of ( suﬁ‘iczently smooth) functions satisfying

oo

B 1 . ‘i . o
ol =57 [ #ldeP @) +1im lo ()] <<=,

0

then the family {%(e)} » is of Hardy-type ((p, xﬁ) In fact, |o (Q)HMéA”G”va
where A is independent of o and g€f. '

Note that for Y(t)=t, (¢)=1/9, and F=(0, =) Theorem 2.1 covers the
multipliers of Fejér-type. For further details, including. the fractional extension of
the class BV, however, see [4], [21], [22] and the literature cited there.

3. Polynomials, de La Vallée Poussin means, potential spaces

For'some 5¢P let £ be (R, j)-bounded for-a Banach space X. Let {u.},»
be a family of real-valued, infinitely differentiable functions on [0, ) satisfying

1, O0=1=1+¢2,
O=p(=1, p@®= {0 t=1+¢ /

It follows from Theogem 2.1 that the family {7 ,},

T,y = Thao, () = i(lxl/e) (& 0 > O).

is well-defined in [X],,. The set of polynomxals in X (of radial degree Q>0)
is then defined by (cf. [11], [12]) : .

o=, I,:={fcX;T,,f= f for all &> 0}.
e=>0 :

In the following we shall call a Banach space' X admissible (with respect to (H, E))

if X satisfies (2.3), E is (R, j)-bounded for some jcP, and if the polynomials

are dense in X, ie, II""=X. Obviously, the latter -condition is equivalent

to (e-=) L o ' '

E(f,0) = E(X; f,0) == inf {lp—fl; pell} = o(1),
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where the error of best approximation E(f, g) (cf. (1.2)) is a decreasing function
in =0,

Basic for the present treatment will be the family {L,},., of de La Vallée
Poussin (or delayed) means. For a real-valued, infinitely differentiable function
A on [0, ) satisfying ,

1, 0=1=1,
(3.1) ‘ . 0=A0) =1, A(H= '{O, =2,

set A,(x):=A(|x|/o) ami L¢:= T%. 1t follows from Theorem 2.1 that the operators
L, are well-defined on each admissible space X. In fact, one has-(cf. [11], [12])

Proposition 3.1. Let X -be an admissible Banach space. Then

(32 o= 4 (2 > 0),
(3.3) ' - Lfell,, (feX, o =0),
3:4) L,p=p (pcll, g =0),
(35 LSSl = CE(f,0) (feX, g = 0).

Lemma 3.2. Let X be an admissible Banach space (for j¢ P) and |//€DU’.
Then BY(x):=y(Ix2(x)EM and

(3.6) ‘ 1Bl =CY() (e = 0).

. " Proof. Obviously, w1):=tA(t)€BV;,, so that Theorem 2.1 yields . V¥, ,€M,
uniformly for ¢=0. In view of the identity Co

| :/l”((l;:g )”“(x) = Wiy o) (¥) 4o (x),

(3.6) holds true sincg (cf. (2.8)) ,IIﬂ’fIIMét//(2g)l|vf/¢(20)llMIIAQIIM§C¢/(Q).

Setting BY%:=T#; one may now define via BYg:= Pm B%g the potential

operator B* as a closed, linear operator on the domain

3.7 XV = {geX; ,l_i.r?. |Bég—h)l = 0 for some heX}, -

 called potential space (see [12]). It follows that TCX¥ and
3.8 B! = B*L,, ||B}ltxa= B¢l = C¥ (o).

In particular, X¥ may be equippéd with the seminorm lgly,:=1B%l so ‘that the
K-functional '

(3.9 KD = KX XY f:= inf {Ilf—gll+1]gl}
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1s well-defined for all fe€X, t=0. It defines a seminorm on X for each =0 and
satisfies ’

(.10 Kw U= {!Ifil (fex)

ffl, (fex?).

4. Locally divisible multipliers and Jackson-type inequalities

Throughout the next sections, X is an admissible Banach space for a (fixed)
JjeP. ' '

Definition 4.1. Let DY) with inverse function ¢y~! and let ¢(o) be
a real-valued, positive function on #. A family of uniformly bounded multipliers
{t,},¢5 is called locally divisible (at the origin) of order (¢, ¥) if there exists some
6=0 and a uniformly bounded family {0,},., of multipliers such that

(4.1) 1.(x) = eV (XD 0,(x) (x| = ¥~(5/0(2)))-

If (4.1) holds true for all x¢R¥, e€s, then the family {z,} is said to be globally
divisible. -

Proposition 4.2. Local divisibility implies the global one of the same order.

Proof. Let {r,} satisfy (4.1). Since 1—).(t)=0 for 0=t=1 (see (3.1)),
the function o(r):=(1—A(t))/t belongs to BV,;,;. Thus y,:=0%, and vp:=2%
with @(0)=(2/6)p(0) belong to M, umformly for gef (sec Theorem 2.1).
Moreover, for all. x¢RY,

1= 7o) = BV (XD 1) = (2/5)(p(9)~l'(lxl)xe()c),
) | %) (x) = 9 (@)W ()8, (x) o (), |
' 20(3) = () el + Tl (1 ¥, (x)) = (Y (XDI0() 76 (¥) + 76 (X) 213) 1, (D]

Hence the assertion follows since the terms in [...] are bounded in M, uniformly for
€S ' ’

The global and therefore also the-local divisibility immediately implies that
for any g€XY, g€# (cf. (3.7, 8))

Teg = lim T L,g = ¢()T% lim BYg = @(0)T%B*g.
Thus one obtains (cf. [3], [4])

Theorem 4.3. Let {t }oE 5 be locally divisible of order ((p, V). Then there
holds true the Jackson-type inequality '

4.2) IT=gll = 40 (0)lgly (2€XY, 0€F),
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and therefore the (global) Jackson-type theorem

@“3) TS| = 4:K,(f, 0(0)) (f€X, 0€S).

Indeed, the estimate (4.3) is an immediate consequence of the definition (3.9)
since for any g€ X¥,

ITf| = |T(f~I +1Tgll = 4ol /gl + A 0(2)8ly-
A first application yields for the error of the best approximation
Corollary 44. Let YeDD. Then E(f, 0)=CK,(f, 1/¥(e)) (fEX, ¢=0).

Proof. Let #=(0,) and set v,:=A%,,0(0):=2/¢(g), and t,:=1-—v,

Since 6(¢):=(1—A(t))/tcBV;,, and £ ()= (/@)W (IxD[20%, ()], the family
{z,} is globally divisible of order (1/¢, ¥). Thus Theorem 4.3 implies

1f=Tefll = ITf] = CK¢(f 19 (0))-

Smce v (x)=0 for |x|=¢, one has T'ef¢Il, for any feX (cf. (3.3)) so that the
assertion follows by the definition of E(f, o).

5. Steckin-type inequalities
First observe that in view of (3.4) one has for p,cll,, ¢>0,
BYp, = B¥L,p, = B’p,.

Thus Lemma 3.2 1mphes the following Bernstein-type mequahty for polynomlals
in admissible Banach spaces (p,€11,, ¢=0)

G.1 |Pely = I1Bpl = Biliaillpll = CY (@)l p,ll-
Theorem 5.1. For y&DY one has the Steckin-type inequality
[4
(.2) Ky(f: /o) = (Cife) [ E(f, ¥~ ())du (feX, o > 0),
0

thus for a locally divisible family {re}ee P of order (¢, )

110(0)

(5.3) 1Tl = Ceo(@ [ E( O
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Proof. Obviously, (5.3) follows by (5.2) and Theorem 4.3. To show (5.2),
set Poi=L, 140—Ly 1x-1, K€Z. By (3.5) one has

1Bf1 = ILy-s@of—S+ | Lyree-nf—f = AE(f ¥R =

k-1

= 4,275 [ E(f,y @) du.

ak~8

Since Py f€,, 1o+ by (3.3), the Bernstein-type inequality (5.1) yields by (2.8)
ok -1

|Befly = AW (U @I)IPS] = 45 .‘f, E(f, ¥~ (w) du.
In view of (3.8) one has (k— —)

IIB“’Lw wwafll = |Bh-1@o fIl = A2%[ Il = o(1)
so that for mcZ

2 BRf= 2 B'Ly-eof~B'Ly-w-nf) = B Ly-samf.

ks —o0

Therefore it follows that

Lyramflys | 3 RSl =4s 3 [ B9 @) du=

om-1

=4, [ E(f,¥*w)du.

Now, let ¢=0 be arbitrary and m€Z be such that 2™=g<2"+1 Then by (3.10)
K, (f, 1)0) = Ky(f— Ly-1em f, 1/@) + Ky (Ly-1em £, 1/0) =
= LE(f,¥y12M)+ /)| Ly-1em fly =

2m-1

5 4,2-"D f E(f, ¥~@) du + (43/0) J B @)du =

am

gm-~1

54(,4,,/9) f E(f, Y~ (w) du -+ (4s/0) f E(f, -1(u))du

gm-1

This establishes (5.2) completely

Let us illustrate Theorem 5.1 in connectlon with the multiplier criterion of
Theorem 2.1.

Corollary 5.2. Let o bea complex-valued functton on [0, =), locally dzvzstble
(of order ,(t)=t) in BV;., i.e., there exists an element Y¢BV,., satisfying

12
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2()=1. for 0=t=8 and some 6=0 such that
G4 0() := o (1)t ()€ BV 410

Suppose that {a,,,(e)}‘z€ s is of Hardy-type (¢,¥). Then {c%} is globaily divisible
(in M) of order (¢,y). Moreover, there hold tfrue the Jackson- and Steckin-type

inequalities (f€X, p€S) _
’ 1/9(a)
G.3) - wrmﬂéq&mmmsqmmem-%mw
Proof. In view of Theorem 4. 3 and 5.1 it is sufficient to prove the local divisi-

bility of {%(o) (in M) of order (g,y¥). By (5.4) and Theorem 2 1 the famlly
{6%,} belongs to M, uniformly for g€#. Moreover,

0% (X) = 6@V (XD 04, (x) (e(@Y(x) = 9)

since o(t)=10(t) for 0=t=4. Hence the assertion follows in view of (4.1).

6. Sharpness of Steékin—type inequalities

Let X* be the class of bounded, sublinear functionals on the Banach space X,
endowed with the usual operator norm ||« J|y.. Let w denote an abstract modulus
of continuity, thus'a function, continuous on [0, «) such that

6.1) 0=00) <o) =o@+)=o@+o@) (t=0.
Additionally, we assume that w()=0(), i.e.,
©2 . .. S ‘lir&w(t)'/t =oo,

Moreover, let # be an unbounded subset of (0, ) and-¢ a positive, monotoni-
cally decreasing function .on .9' satisfying

(6.3) o hm ¢(a)
In these terms one has the followmg result (see [61, [7]. .

Theorem 6.1. Let ¢ satisfy (6.3). Suppose that for U,, VEX* there exist
constants C and elements h,€X. with (r, g€.5)

6:4) kel = Ci,
©s Wlxe = Ca,

©s © Wi = Coo @0,
©en . \ [Uehe] = Co,r0(0),

68 llmxnf[Uh[2C5>0 |
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Then for each modulus © satzsfymg (6.1,2) there exists a counterexample f,cX
such that (g )

Wofal = O(w(fp(a))) U, fol # O(w(¢ ().

Suppose that the embeddmg M(X YcL=(RY, E), as assumed by the defini-
tion, is in fact continuous, i.e.,

69  IdersCly @eM).

Corollary 6.2. Let ¢ satisfy (6.3). Consider a locally divisible family
{to}ecs ©M of order (¢, V) for which there exist constants K and Borel sets
{BesCZ wzth ‘

(6.10) _ EB) =0 (2€5),
(6.11) e@VY(x) = Ky (x€B,, 0€S),
. 12) e = K; >0 (x€B,, ¢€ ).

Then Jor each modulus (6 1, 2) there exists a counterexample meX such that (g— o)
o(e)

(o) f E(f,,,, Y @)du = 0((p(2)), ITeful o(w(<p(e)))

Proof. Let a(g) lﬁ—l(KI/(p(Q)) For any BecZX with E(B)=I one has by
(2.1) (i), (6.10) that E(BNB,)=E(B)E(B)=E(B,)=0, thus BNB,=f by (2.1) (ii).
Since A,(x)=1 for x€B, (cf. (3.1), (6.11)), it follows by (6.12) that

SUp [t (X) e (X)] = SUP [5p(x)Ae)(x)] = sUP 7, (x)| = inf |5, (x)| = K;.
x€B x€BNB, x€BNB, x€B,

In view of (2.2) this implies [[toAuqlle, s=K; and hence fiteduqylm=Ks>0 by
(6.9). Therefore, by the definition of the operator norm (see (2.5)) there exists
feEX, llf,lSI such that

6.13) 1% Loy f,|| = |Treatrf,|| = K, > 0.
In order to apply Theorem 6.1 set

1)

he = Lapfer Vof = 2(@) f E(f, ¥~ (u)) du, = | T%f].

ﬁén Hh,||§K5 by (3.2) so that (6.4) is fulfilled. Moreover, (6.5) followé with
C;=1, and (6.8) coincides with (6.13). It remains to show (6.6) since then (6.7)

12*
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would also follow by Theorem 5.1 with C,,=Kg/e(r). But E(h,, ¢~ 1(u)) 0
for u=y(2x(r)) since h.€lly,,,. Thus by (2.8)

¥(2a(r))
Vb = 0(0) f E(h,, Y~ W) du = ¥ (22(n)) 9 (@) 1]l = Ke9(2)/0 (-

7. Applications

In this section some applications to the previous abstract results are given by
studying concrete examples of spaces H, X, spectral measures E, and processes
{zo}- In Section 7.1 we consider spaces of 2n-periodic functions in connection with
one-dimensional trigonometric expansions. It is shown how the present approach
covers, in a unified way, those classical results of S. B. Steckin mentioned in Section 1
as well as related material of R. Taberski and M. F. Timan on Abel—Poisson and
typical means. In fact, the treatment of this example of a discrete expansion may
easily be transferred to other discrete orthogonal systems (Jacobi, Hermite, Laguerre,
etc.; for some details see [la], [4], [8a], [12], [21] and the literature cited there). In
Section 7.2 we consider the Abel—Cartwright means in connection with the conti-
nuous Fourier spectral measure on the Euclidean N-space, subsuming e.g. results of
B. I. Golubov. Finally, Section 7.3 is concerned with a semidiscrete difference scheme
for the numerical solution of ‘the heat equation, the results being related to work
of G. W. Hedstrom, J. Lofstrém, J. Peetre, V. Thomée, and others.

7.1. Classical results in spaces of periodic functions. Concermng the spaces
Xon, set N=1, fi(x):=€**, and for BcZ, fcL,

EB)f= er’] AN CON2

Then E is a spectral measure for the Hilbert space H=L5,. Obviously, E(B)#0
iff BNZs0, so that L=(R, E) may be identified with /=, the set of bounded
sequences {z(k)},.z<C. Moreover, L: NX,, is dense in Lz,, as well as in Xj,,
and the definition (2.4) of a multiplier 7= {r(k)}, =M (Xs,) coincides with the
classical one, i.e., for each fecX,, there ex1sts f'€X2,, such that =(k)f (k)= (f*) (k)
for every k€Z. Since

Itlle, e = sUp [£(K) = SUP [ fillxe = [Taectsnds
keZ kEZ. .

M(X,,) is continuously embedded in [*. By Fejét’s theorem, E-is (R, j)-bounded
on any X,, for j=1 (at least). Moreover, II, coincides with (1.1), and IT is
dense in X.m so-that all the Banach spaces’ Xg‘ are. adm1ssnble (for detalls cf

(113, [12]). , L
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Concerning the rth modulus (1.3) of continuity (réN even), Theorem 5.1
delivers Steckin’s result (1.4).

Corollary 7.1. Let réN be even. Then there holds true the inequality
(f€X21n nEN) ) .

nr

@, (Xoz; f,1/n) = Con™ [ E(Xpg; f, ) du =
0
(1.1)
’ ‘n—1"
=Cn™ 2 U + 1Y E(Xer; £ )
=

Proof. Let #=N and ¢(k):=(1—€*"y. Since o'(t)=(1—€"Y/¢ is infinitely
differentiable on R, the multipliers 6,(k):=0"(k/n)A, (k) belong to M(X,,), uni-
formly for néN. Now 1t (k)=(k/n)0,(k) for |k|=n, so that {7}} is locally
divisible of order (¢,,y,) with ¥, (u)=u", ¢, (n)=n"". Then the first inequality
of (7.1) is a consequence of (5.3), whereas the second one follows by substituting
#'"=t¢ and using the monotonicity of E(f, t).

Note that Theorem 5.1 is not applicable for odd r¢N since the corresponding
potential multiplier  (ik)" is not radial.

To reproduce Steckin’s second result on Fejér sums, let us introduce a more
general class of operators, the typical means

7= 3 -] wn

k=-—n

Corollary 7.2. For reN, ncP, and fcX,,

(n+1)"

1Zrf—flxe, = Cia+1)~" [ E(Xog; f,uM)du =
0

(12) -
=Gt 2 G+ 1Y EXass f,1).

On the other hand, for each modulus (6.1,2) there exists an element f,€X., such
that (t—+0+4, n—oo)

in

(7.3) t [ EQee; fo, ) du = O(0(0),

74 1Z5fo—follxe, # o(w((n+ 1))

Proof. For an application of Corollary 5.2, set S =P, and o(t)=1—(1—1),,
Y(t)=r, o(m)=(n+1)"". Then the multiplier o%,, of Hardy-type (p,¥) cor-
responds to the remainder I—Z!. Since 6(t):=c(t)A(t)/1€BV,, condition (5.4)
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is fulfilled so that (7.2) follows by (5.5). Concerning the sharpness of (7.2), apply
Corollary 6.2 with B,={n+1}. Since (6.10—12) follow with K,=K,=1, one
obtains (7.3, 4) at once.

Obviously, (7.2) for r=1. regains Steckin’s result (1.5) on the Fejér means
whereas for r>1 inequality (7.2) was established in {20]. Concerning the sharpness,
it was shown in [6], [7] that even

lim sup "an(o _fm||X2,,/E(X2u; fwv n) =oco

n—oo

for some element f, satisfying (7.3, 4).
Concerning the Abel—Poisson means, given by (r€(0, 1)=4, f€ Xs,)

RBfi= > MR fs

consider the multiplier p,(k):=rl¥l=¢~I¥lloerl of Hardy-type (o, ¥) with Y(u)=u,
o(r)=llogr|. Since (1—e™"), (1—e A()/teBV,, Corollary 52 delivers (cf.
[18], [20]) -
Corollary 7.3. For the Abel—Poisson means P, one has the Steckin-type
inequality (f€X,,,0<r<1)
1/|logr] .
1BSf~fllx, = Cliogr| [ E(Xen; fiw)du =C
; ° T esj=1a-n
7.2. Abel—Cartwright means in L°(RY). Let L?=L°(RY), Is=p=, N¢N,
be the space of Lebesgue measurable functions on R¥ for which the norm

{@o=" [1fw@Pda® (1 =p<e)
RN
ess Sup lf@)| (p =),

1—r

1A, =

respectively, is finite. For f€L? let #f:=f" be the Fourier—Plancherel transform
of f:

lim [2n)~¥2 [ f)e""du—f"(@): = O,

g—oo :

Jui=e

and & ! the inverse operator. For BcZX let &, be the multiplication projection:

1, u€B,
ot = ety mayi={ o o5

Then E(B):=% "Pg% . is a spectral measure for the Hilbert space H=L? and
L=(R", Ey=L" (cf. [8, p. 1989]). Furthermore, X =LP satisfies (2.3) for 1=p<oo,
and (2.4) coincides with the classical definition of Fourier multipliers, i.e., € M,:=
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=MIP) ff Tf:=F 1f")eLl? |TSfl,=Alfll, for any feL*NL” (cf. [17,
p.94]). Moreover, M,cL™ continuously. Note that E is (R,j)-bounded for
L? if, eg., j=(N-D|l/p=1/2| (cf. [17, p. 114]), and that the polynomials are
dense in L?, where II,=II, , is the set of entire functions on CY of (radial)
exponential type ¢ the restriction to RY of Wthh belongs to LP. Thus, the spaces
L? are admissible for 1=p<oo.
Let yeDY for some j=>(N—1)|l/p—1/2| and ¢()>0 for t=0. Consider
the (generalized) Abel—Cartwright means WY, correspondmg to. the multiplier
q,(,), w(u)y=e*, of Hardy-type (q), Y). Since weEBV;,, for every jEP, the
approximation process WY, is well-defined in [L?], uniformly bounded for
t>0. In particular, Y(u)=e@)=u", =0, yields the standard Abel—Cartwright
means W, (t) which subsume for «¢=1 the Abel—Poisson and for a=2 the Gauss—
Welerstrass means.

Corollary 7.4. Let< l=p<o and j>(N— l)[l/p—1/2| Suppose that Y€ DY,
and let @(t) be a positive function, tending monotonically to zero for t—>0+ (cf.
(6.3)). Then (feL?(RY), t=0) :

1/e(®

(15) WSl = CiKy(fs 0(9) = Ca0 (1) f E(L7; s 1(u>) du.

On the other hand, for each modulus (6.1,2) there exisis a counterexample f,€L?

such that (t—+~0+)
/(1)

(7.6) o (f) f E(L; fo, ¥~ (W) du = 0(w(<p<r)))
(77) llmt)fm fm"p#O(CO((D(t)))

Proof. Obviously, (7.5) follows by Corollary 5.2 since (l—e “")/uEBVlH
for every j€P. Concerning the sharpness of (7.5), set o=1f{, B,={x€R";
1=¢(/eW(x)=2}, and 7,=1—wly,,. Then (6.10—12) . follow - w1th K,=2,
K,;=1—e"1 so that Corollary 6.2 delivers (7.6, 7).

Let us consider- the rate of convergence of the standard Abel—Cartwright
means W (t)f for elements fcLP belongmg to the (radial (cf (1.3)) L1psch1tz
classes (kEN, 0<p=2k)

Lip 5 (L RY); p):= {fe LP®R"); co:,k(L"(RN) fit)= O(t") ‘- 0+}
Since one has (Y (u)=u*; cf. [24]) A
(18) Ky 9= K(LP, (L7)5; £, 1) = Coon(LPRY); £ 1),
Corollary 7.4 rielivers (cf. [9D) |
Corollary 7.5. Let keN, O<a, B=2k, and f€Lipy, (L7; B).
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(i) If O<a<2k, then (t—0+)
o), 0<f<ua,

1.9 IW.(0f—fl, = 0@ |logt]), B=a,
0(11)’ B=a.
(ii) For a=2k one has

(7.10) W.(f~fll, = O@*).

Proof. Obviously, (7.10) follows by (7.5, 8). Concerning (7.9), Corollary 7.4
implies (cf. [19a] for a=1)

(7.11) W) f=fl, = O(& [ E(L?; f, 1) du).

0
By Corollary 4.4 and (7.8) the assumption yields (u— <)
E(f, 4%) = O(Ky, (f, u=%19) = O(0n(L%; f,u"19) = O@~*1),
and the assertion follows by (7.11).

7.3. A semidiscrete difference scheme for the heat equation. In the frame of
Section 7.2, let N=1 and 1=p<<. In order to approximate the exact solution
of the heat equation (x€R, 1=0)

dldt u(x, t) = d*ldx*u(x,t), u(x,0) = f(x)eL?,

given by the Gauss—Weierstrass means
Wo(t) f(x) = @ut)™ 2 [ flx—u)e="" du,

consider the initial value problem for h=0
djdt uy(x, 1) = h'z[ilh(x+h, 0= 2u,(x, 1) +u,(x— h, D}, u,(x,0) = f(x).
This leads to the semidiscrete difference scheme (cf. {2])
wy(+» 1) := Dy() f i= Tonef, dy,,(x) = e=2e/PU=cosxh)
Thus' the multiplier 7, , of the remainder D,(t)—W,(f®) has the representation
(7.12) Tn,o(X) = gue(xh), g, ()= e rU=cosw)_ gl

Lemma 7.6. The family {g,},->o is globally divisible of order (., Y,) with
o(r)=r, Yyu)=u> and satisfies the (local) condition

(7.13) &) = rute= 0, () (ju| = J)

Jor a=2[rn* 6=mn/2, where the family {6,}C M, is uniformly bounded for r=0. More-
over, there exists a constant ¢=0 such that

(7.14) g =c (r(u—2m°=1,Qn =9).
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Proof. Since e""’EMp, uniformly in r=>0 (cf. Theorem 2.1), and

(7.15) lemzra—cosn]l, = =¥ 3

1 k
2T 2r cos ulla, = 1,

the family {g,} is uniformly bounded in M, for r=0. To show (4.1), the Fejér-
kernel o(u):=2u~%*1—cosu) belongs to M, as well as x(u):=(1—o(w))/u® (cf.
Theorem 2.1). Consider the identity

1
(716) g,(u) = I‘uz(l ——a(u)) f e~ U—s)ru? 5—2sr(1—cosu) Jo
0

Since the integral is uniformly bounded in M, (cf. (7.15)), one has global divisibility
of {g,} of order (¢,,y,). Concerning (7.13), set e,(x):=exp [r(ax?—2(1—cosx))].
Since 1—cos x=ax? for |x|=2§, one has for |x|=24:

O=e(@ =1, |egx)|=Crlxle ™, |e/(x)| = Cor(1+rx¥)e >,
In view of (3.1) it follows that

28

le Aallay, = [ xlle, ()25 ()l +2le; (x) A3(2)]| + lef (¥) A5 ()] dx =

-0

28 20
= [ x5 ()| dx+2C; sup x4 ()] [ rxe= dx +
.0 x=0 0
23

+C, f rx(I4rx¥)e v dx = C; <eo,

0

Thus e, A;6M,, uniformly for r=>0 (cf. Theorem 2.1). Therefore one obtains by
(7.16) that for |u|=d

1
g ) = rty(uye=+* f e A=A - e (u)2s(u) ds.
[

Hence (7.13) follows since

1
| [ e e, () 25w) ]|, = Clellov, up lles ol
0 re

Finally, let (2n)*r=9 and (u—2n)?=1/r. Then u?=4/r and

g'(u) —_ e—2r(1—cos(u—2n)) _e—ru2 = e—r(u.-2n)2_e-4 = e-l_e—4 == 0.

Corollary 7.7. For feLP(R), 1=p<eo, and h,t=0

),-z
A7) ID,Of-Wa (DS, = CK(L?, (L7 £, 1) = C:k* [ E(L?; £, uM?) du.
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On the other hand, for each (fixed) t=>0 and each modulus (6.1, 2) there exists a
counterexample f,€L? such that (h—0+)

h-2

1’ [ EQL?; f,,ut) du = O(@@). 1Du(0)f—Waltful, # o(@(h).
0 ) .

Proof. Set #={(h, t); h,t>0} and ¢(h,1)=h%. Since M, 'is dilation-
invariant, i.e., [x(xh)|, =/l the uniform boundedness of {g,} implies that
of {t, .} (cf. (7.12)). In view-of (7.13) one has

Th,(X) = gue(xh) = REx*1x%e~* 0,2 (xl) (x| = 8),
ltx*e —ngx/m(x’?)”M = [I1x? e_‘m‘z"M (0cmsllae, = K

(cf. Theorem 2.1). This implies the local divisibility of order (qo, ¥,), and thus,
(7.17) by Theorems 4.3, 5.1.

In order to apply Corollary 6.2, set og=1/h, ¢(0)=1/¢% and BQ=: {x€R;
t(x—2ng)?=1}. Then (6.10, 11) follow at once, and (6.12) by (7.14) for o=3/2nf'2,

In view of (7.8, 17) one has
1D f~Wa(t*)f N, = Ca(LPR); £, h);

uniformly for ¢=0. This estimate can be improved to the following one which
reflects the behaviour for e.g. t—-0+4+ more precisely.

Corollary 7.8. For feLP(R) and h,t=0
RNy (L7 f, 11/2)+E(L" /s 6/2/1)

wz(L?; f, 11F%). : .
Proof. Apply Theorem 4.3 to o,(x)=a%2x*e~"*" whichbelongs 'to ‘M,

uniformly for t=0, since u®exp(—u2)EBV,.. Obviously, it is globally divisible
of order (¢,, ¥,) so that Theorem 4.3 and (7.8) imply’

(7.19) ITSll, = 4Ky, (f, 1) = Az (LP; S, 1%).
In view of (7.13) one has for all. x€R

@18) O s-wensl, = o’

Th,(X) = Th,r(x)v)~6/2h )+ Th,z(x)(l = Zs/2n (X))::
= (h*[t)o, (%) [a~? 9:/1_:” (?‘/1) ;‘6/2h x)] + Th,e (x) (1 - 'la/m. (x)) .

Hence the first inequality follows by (3.5) and (7.19).

Since {g,} is globally divisible of order (¢, ¥,) (cf. Lemma 7.6), there exists
{v.},>ocM,, uniformly bounded for r=0, such that g(u)=ru®v(u). Hence
T, o(X) = Gype (xh) = txzv,,,!, (xh) -so that the second part of (7.18) follows by Theorem
4.3 and (7.8).
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In Chapter IV of [2] (see also the literature cited there), the fundamental tele-
scoping technique was also used for a parallel treatment of the present example in
order to obtain error bounds on Besov spaces. The approach of this paper, however,
uses the same technique only in the abstract setting in order to derive the estimates
of Theorem 5.1. Consequently, for the concrete example one only needs to verify
the basic divisibility assumptions. This procedure in fact delivers a comparison of
the processes on the whole space.
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