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1. Introduction

The theorems of Jackson and Bernstein as well as those of Ste¢kin and Zamansky
and their converses play a fundamental role in the theory of best approximation
for periodic functions by trigonometric polynomials. These results have been gene-
ralized to the setting of abstract Banach spaces by Butzer and Scherer [7], [8], [9],
who also proved corresponding approximation theorems for sequences of com-
mutative bounded linear operators {7}, satisfying lim T,f=f in the norm

topology as well as so called Jackson and Bernstein-type inequalities (cf. [10]).
This paper is concerned with the latter aspect. The aim is to weaken the as-
sumption upon the sequence {7} in the sense that lim T,f=f needs to hold

only in a certain weak topology. This enables one to handle sequences of operators
converging in the usual weak or weak* topology towards the identity operator.

Our main theorem (Theorem 1) subsumes not only the Butzer—Scherer theorem
(Theorem 2) mentioned above, but also the corresponding results for sequences
of dual operators (Theorem 3), contained in [17], [18]. This theory can be applied
to classical linear approximation processes such as summation methods for Fourier
series or semigroups of bounded linear operators. The further advantage is that it
enables one to investigate processes defined by sequences of the dual operators.
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The paper is divided as follows. After a preliminary section containing defini-
tions and elementary lemmas the general approximation theorem is established in
Section 3. From this result the Butzer—Scherer theorem is deduced in Section 4.
Its dual version together with applications to convolution integrals of periodic func-
tions are dealt with in Section 5.

2. Preliminaries

Let us begin with some basic definitions and results concerning norm-determining
sets and linear approximation processes.

Definition 1. Let X be a normed linear space with norm { -|lx, and let
X’ denote its dual endowed with the usual norm | -{y.. For a linear subspace
A in X’ the characteristic v(.#) is defined as
@1 v(A) :=inf {p.«(f); fEX, |flx = 1}
where p_,(f) is given by ‘
22 pu(f)i=sup{lf'N); fret, Ifx =1} (fEX).

If v(.#)>0, then .# is said to be norm-determining (for X).
It follows from the inequalities

23 V(D) flx =palf) = 1flx  (fEX)

that || -||x and p,(-) are equivalent norms for X, provided .# is norm-determin-
ing. If, in addition, .# is closedin X’, then one has

Lemma 1 (cf. [19, p. 203]). Let F be a subset of a normed linear space X,
and let M be a closed norm-determining subspace of X’. If sup {{f’(f)|; f€F}<eo
for each f'eM; then sup {||flx; fEF}<oo.

Next we introduce the concept of .#-weak convergence in X.

Definition 2. Let .# be a norm-determining set for the linear space X.
A sequence {f,}>, in X is said to be .#-weakly convergent to f€X (#-1lim f,=f), if
n—+oo

lim (f, fi=f)=0 (f€M).

Note that the .#Z-limit is uniquely determined, since f’(f)=0 for all f'€.#
implies =0 by (2.3). Moreover, if .# is closed in X’, then Lemma 1 yields
that every .#-weak convergent sequence is bounded.

Choosing 4 =X’ gives v(X")=1, and it follows that weak convergence is
a particular case of .#-weak convergence. One may also take . =J(X), where
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J is the canonical mapping from X into X”. Again one has v(J(X))=1. and
A-weak convergence in X’ turns out to be w*-convergence (cf. [19, pp. 208, 209]).

Let us finally mention that the only closed norm-determining subspace for
a reflexive Banach space X is X’ itself. This follows from the facts that a closed
subspace of X’ is also w*-closed (cf. [13, p. 422]) and,.on the other hand, a norm-
determining subspace must be w*-dense in X’. For further properties of norm-
determining sets and .#-weak convergence see [1], [12], [19, Sec. 4.4].

Now we consider sequences of bounded linear operators from X into itself
converging .#/-weakly towards the identity.

Definition 3. Let X be a normed linear space, .# a closed norm-determining
subspace of X’, and {T,};>, a sequence of bounded linear operators mapping
X into itself with the properties

@4 T,T.f= T.T.f (feX; mneN:={1,2,..}),
2.5) MA-lim T.f = [ (feX).

Then {T,} is called a commutative, .#-weak linear approximation process on
X (#-LAP).

Note that .# will be assumed to be a closed norm-determining subspace of
X’ when speaking of an .#-LAP on X.

For an #-LAP on a Banach space X the following inequalities hold; the first
is a generalization of the well known uniform boundedness principle for sequences
of strongly convergent operators.

Lemma 2. Let {T,}:o, be an 4-LAP on a Banach space X. Then

2.6) : IT.flx = MIflx®  (feX; neEN),

1 co
v(—,//l)kg(’, | Tuee f— Toers1 flx  (fEX; nEN).

Proof. For fixed fcX the sequence {T,f}>, is an .#-weakly convergent
sequence in X, and it follows by Lemm‘a I that [T, fllx=M,, where M, depends
on f but not on n. Since X is a Banach space one can apply the classical uniform
boundedness principle to deduce (2.6). Concerning (2.7), one has for f’€X’, f€ X that

@7 1Taf— flix =

T~y = ZAT T =T

1) Throughout M denotes a positive constant, the value of which may be different at each
occurrence, even in a given line. M is always independent of the quantities on the right margin.
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Then (2.3) and (2.2) yield the assertion since

VT f~flx = pa(Taf—1) =

=sup{
k=0

S Tl ~ T )| S76t 1N = 1} =

oo

= kZ " n""f_' n""*‘lf"X

3. Order of approximation for .#/-LAP’s

In this section we consider .#-LAP’s converging strongly towards the identity
on certain subsets of X, and investigate the rate of convergence.

3.1. K-functional; Jackson and Bernstein-type inequalities

Definition 4. Let X be a linear space and Y a linear subspace of X with
norms | -||x and | .||y, respectively. The K-functlonal between X and Y IS
defined as

KO, 5 %0 = int (Uil + (i3 7= i+ X o€T) . (FEXG 1 = O)
For fixed f€X the K-functional is nondecreasing on (0, <), and satisfies
G  KGLf; X, 7) =max{l, K@t f; X,Y) (hi>0).
Furthermore, tljgll K(t,f; X, Y)=0 for each feX if and only if Y is dense in X

Definition 5. Let X, Y be given as in Definition 4, .# be a closed, norm-
determining subspace of X', and {7}, an #-LAP on X. If for some a=0
there holds :

(32 ' IITg gllx = Mn~*|glly (g€Y; nEN)

then {T,} is said to satisfy a Jackson-type inequality of order « on X Wlth respect
to Y.
If T,feY forall feX, neN and

3.3 IToflly = Mr*| flix (f€X; neEN),

then {T,} is said to satisfy a (weak) Bemstem-type inequality of order a.on X
with respect to Y. .
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In contrast to (3.3) one would speak of a siromg Bernstein- type inequality,
if T,/€Y forall fexX and

(3.4) - lglly = Mrtlglx (g€ TH(X); neN).
In this respect see also the remarks following Theorem 1. Finally we need

Definition 6. The class of positive, nondecreasing functions ¢ defined on
(0, 1} with rli%rl o(1)=0 and @(l)<e is denoted by @
The following condition on @€ @, a, f=0 will be of interest, namely

3.5 152jZ’St_l2°'fqo(2‘f) =0(r*p®)) (t~0+),
66 g 1227 = 0(+-P0() (r - 0+).

For conditions which are equivalent to (3.5) or (3.6) we refer to the appendix.

Lemma 3. If @€®,a, f=0, then (3.5) implies hm t7%(t)y=oo, and (3.6)
implies hm t~fp(1)=0. In particular, if (3.5) and (3.6) are vaIId then a=>pf. Further-

more, (3 5) zmphes

3.7 ' é’)2’f(p(2‘f) =02%e(27") (k —<).

Proof. One has by (3.5) for t=2"* that (p(1)<M2°‘"<p(2 ). This yields,
again by (3.5),

(m+1)o(1) = M 3S2*9@) = MX"@ ™) (meN),

giving  lim 2"(27")=co. The first assertion now follows by choosing meN
such that 2" *=7"1<2™ since in this case ¢ %@(t)=>2""p(2~™). Concerning
the second part, one has by the convergence of the series in (3.6) that
Jlirg 2'm)Pp(2~m~1)=0, at least for m large enough. If one takes mEN such

that 2'm=1"1<2/*1m, m fixed, then one can complete the proof as before. Finally,
if keP:={0,1,2...} satisfies 2¥=1"1<2**1 then

22""(0(2 = 2 2oQ7)=Mie() = M2*9(2™") (keP),

1s2/=¢-

which is (3.7).
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3.2. The fundamental theorem for approximation processes. Our main results now
read as follows.

Theorem 1. a) Let X be a Banach space, Y a linear subspace of X and
A a closed norm-determining subspace of X’. Further, let {T,}: , be an M-LAP
satisfying Jackson and Bernstein-type inequalities of order a=0 on X with respect
to Y, and let @€ ® be such that (3.5) holds. Then the following assertions are equi-
valent for fcX:

O NTS—Sflx = 0(p(n™) (1<),
(i) K(=f; X,Y) = O(p()) (t—0+).

b) Suppose, in addition, that Z is a Banach space continuously embedded in
X2 such that {T,} satisfies Jackson and Bernstein-type inequalities of order B=0
on X with respect to Z and assume that (3.6) holds for @¢ ®. Then each of the
Jfollowing assertions is equivalent to those of part a) for fcX:

(i) feZ and |T.f—flz=0Fe(@™) (1 —=),

(V) IT.fly=O0(fe@™) @ —).

The proof of this theorem is based on the following four lemmas.

Lemma 4. If X, Y, # and {T,}:, are given as in Theorem 1. a), then
(33 IT.f—flx = MK(n™%,f; X,Y) (f€X; nEN).

Proof. For each representation f=fi+f, with fi€X, £,€Y one has in view
of (2.6) and the Jackson-type inequality (3.2)

1T f—flx = 1T A—Alx+ 1T e~ Fellx = M fillx +n7% ) folly .
Taking the infimum over all such representations yields (3.8).
Lemma 5. Under the assumptions of Theorem 1. a) assertion (ii) implies
IT.fly = O (™))  (fEX; n —~oo).
. Proof. By (2.4) one has for each k€N

T.f= Tn(f_TZ"f')—T2k(.f_Tnf)+nf+
(.9

+j§; [Tos(f— Toi-1f) ~ Toi-1 (f— Tes f)).

?) “Z continuously embedded in X’ means that Z is a subspace of X and that the identity map
is continuous, i.e., in case of normed linear spaces that ||f]lx=M| f|. for all feZ.
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So one deduces by the Bernstein-type inequality on X with respect to Y that

1T flly = M{n*|| f— Tox fllx + 22| f = T.flx + 1 flx +
(3.10)

+ Z 01~ Tuma Uy + 291~ Tuf 1)
This yields by (ii) the inequality
ISl = MU @+ 2500+ I+ 3 RIo @)+ 20-p@ ).
Choosing now k€N such that 2¥"'=»<2* and using (3.7) gives
IT.flly = M{n*o ™)+ flix} (nEN)
which in turn implies the assertion by Lemma 3.

Lemma 6. Under the assumptions of Theorem 1.b) assertion (i) implies (iii).

Proof. For n, N¢éN one has by (24) for fcZ

2T f=Trafllz = 3 1T (f = Tz Nz + | Towss 2 (F = T Nz}

Estimating the terms on the right hand side by the Bernstein-type inequality on X
with respect to Z, (i) yields

kgh; Tz f = Toger1fllz =
(3.11)
=M {gN @2V (127 * ) + 2"+ ) (127} = MrP @ (n™Y)  (n, NEN),

the latter estimate follows from (3.6). Since Z is a Banach space this implies in
particular that there exists a g€Z such that

N
hl]lm 2 (Tnzkf.—— T,,zk«rlf) — g“ =0 (IIEN).
> Jlk=0 V4

On the other hand it follows from (i) that

lim
N-oo

|2 st~ @r-n] =0 @en.

So one obtains by the continuous embedding of Z in X that T,f—f=g¢cZ,
yielding f€Z, since T,f¢Z by the Bernstein-type inequality with respect to Z.
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Furthermore, one has by (3.11)

170f=fllz = ”é; (Toerf— Tnﬁ"‘”‘f )”Z = 0(’;” o) (1 —),

proving assertion (iii).

Lemma 7. Under the assumptions of Theorem 1. b) there holds

(312 IT.flly = Me=?|fl, (f€Z; nEN).

Proof. Since Z is a subset of X, one can deduce (3.10) for f¢Z as in the
proof of Lemma 5. Applying the Jackson-type inequality on X with respect to
Z to the right side of that estimate, yields for each k¢N

IToflly = M 27+ 25070+ 3 (2270070 1 207020 {7+ fx}-
j=1 . o — .

The desired result now follows by choosing k€N such that 2*"1=n<2* and the -
fact that Z' is continuously embedded in X. -

The inequality (3.12) could be regarded as a Bernstein-type inequality of oider
a—B on Z with tespect to Y, if one disregards the general assumptions made
in Definition 5 (e.g. one has not necessarily that ¥ is a subspace of Z or that
{T,} is an #-LAP on Z).

Proof of Theorem 1. The implication (ii)=>(i) follows from Lemma 4.
Conversely, let (i) be satlsﬁed Since T,f€Y for all fEX one has by (1) and Lemma 5
that

K@ S X.0) = |/~ Tfllx +PIT Iy = Mip@D +fre(r)
(t = 0; neN).
This yields (i) by choosing n€N such that- n—1<t-"1=n.

Concerning part b), we proceeded by proving (1v)=>(1)=>(m)=>(1v) Assume
that (iv) holds. Using (2.7) and (2.4) one obtains

1 haid '
1T/~ fllx = W)-;gc’) | Tnos f— Tozisr fllx =

=5 2 (1o~ T (T D+ Togsonf = TysTrarns )

O
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Estimating ‘the terms in curly brackets by the Jackson-type inequality on X with
respect to Y, (iv) gives

ITaf=fllx = M g {29+~ | T flly + (n2) " [ Toerer flly} =
= M S{o02-) + (27"} = Mn~? 3 (2 (n~12)).
j=0 o

So (i) follows by. (3.6). The implication (i)=(iil) was established in Lemma 6 and
(iil)=(iv) can be deduced in the same way as Lemma 35, using (3.12). So the proof
is complete. '

3.3. Remarks. Note that one can always take Z=X in Theorem 1.b). In
this case the JackSpn and Bernstein-type inequalities of order . =0 are obviously
valid, and one has the equivalence of (i), (ii) and (iv) under the assumption of part a)
provided (3.6) holds for £=0.

Theorem 1 could also be stated for famxlles of bounded linear operators
{T3; te(0, 11} dependmg on a continuous parameter ¢ satisfying

TT.f= LIS (feX; 5,160 1), -Jim Tf=f (feX)

instead of (2.4) and (2.5). In this case one has to replace n everywhere by ¢!
and n—<o by t—0+. The only slight modification is that one uses condition (3 5)
instead of (3.7) in the proof of Lemma 5.

The assumption of the commutativity (2.4) in Theorem 1 can be weakend to

Indeed, only this property was used in the proofs. Moreover, it is possible to establish
part a) of Theorem ! without any commutativity assumption, provided the operators
T, satisfy a strong Bernstein-type inequality (3.4) of order. a=0 with respect to
Y together with 7,f¢T,(X) for all n,meN with m=n. Then one can apply
the theory of best approximation to

(3.14) E(f; T,(X)) = inf {I /—gllx; g€T,(X)}
to deduce

1T,/ —flix = O(n=°) = E(f; T,(X)) = 0(n~") = K(**,f; X,¥) = O(t°). |

The final step, namely K, f; X, Y)=0(")=>|T,f—fllx=0(#n"°), then follows
by Lemma 4. The equivalence with assertion (iit) of Theorem 1. a) can also be
proved in this frame. A similar approach in case of strong approximation processes
(cf. Definition 7) can be found in {7],{8]; for results on best approximation see e.g.

{71, (8], [9) [15].
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Another method to obtain the equivalence of assertions (1) and (ii) for non-
commutative operators is to assume the stability condition

(3.15) IT.glly = Mliglly (g€Y; neEN).
In this regard see [3], [14].

4. Applications to particular approximation processes

4.1. Strong approximation processes. In this section we apply Theorem 1 to so
called strong linear approximation processes as well as to their dual versions.

Definition 7. Let X be a normed linear space, and let {7,}:>, be a sequence

of bounded linear operators from X into itself satisfying (2.4) together with
1) lim |IT,/~flx =0 (feX).
Then {7,} is called a commutative strong linear approximation process on X (LAP).

Since (4.1) implies weak convergence of T,f to f, and weak convergence is
a particular case of .#-weak convergence with .#=X", one can apply Theorem 1
to deduce

Theorem 2.a) Let X, Y, ¢ be given as in Theorem 1. a), and {T,}, a LAP
on X satisfying Jackson and Bernstein-type inequalities of order a=0 on X with
respect to Y. Then assertions (1) and (ii) of Theorem 1 are equivalent.

b) If, in addition, Z and ¢ are as in Theorem 1.b), and {T,}:., satisfies

Jackson and Bernstein-type inequalities of order B=0 on X with respect to Z, then
assertions (i)—(iv) of Theorem 1 are equivalent.

This result in the more general setting of intermediate spaces but only for
@(t)=1°, =0 can be found in [7], [8], [9], [10].

4.2. Weak* approximation processes. The LAP {7} of Theorem 2 maps X into
the subspace Y. Hence the dual operators 7, defined by

@2 (LN =Ty (J€Y’; feX)

map Y’ into X’. In order to have {T,} as an .#-LAP on Y’ for a suitable
A in Y”, we need to make some further assumptions. It will turn out that in this
case the Jackson and Bernstein-type inequalities posed upon {7,} imply those
upon {T}.

Lemma 8. Let X,Y be Banach spaces, YCX?3), and {T,)>, a LAP on

n=1

%) “Yc X means that Y is a continuously embedded subspace of X.
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X satisfying Jackson and Bernstein-type inegualities of order a«=0 on X with
respect to Y. Furthermore, assume that

“3) lim |T,g—gly =0 (g€Y).

Then X'CY’ and {T,: <1 5 a J(Y)LAP on Y’ (J being the canonical map

from Y into Y”) that satisfies Jackson and Bernstein-type inequalities of order
o on Y’ with respect to X’.

Proof. Since Y is continuously embedded and dense in X, (density holding
in view of the Bernstein-type inequality and (4.1)), -it follows that X’cY’. Now
one has for f'¢Y’, f€Y that

KL f =1 = K Tf =D = Wl T f—flly = 0() (0 )

in view of (4.3). This shows that T,f” converges in the w*-sense to f’ or equi-
valently, that J(Y) —"Iirg V. f'=f’. Furthermore, the commutativity of the sequence
{T,} implies that of {T,}, and it follows that {7,} isa J(Y)-LAP on Y’. Note
that J(Y) is closed in Y”, since Y is a Banach space. Finally, if I denotes the
identity operator in any space, the Jackson and Bernstein-type inequalities for {7}
on Y’ with respect to X’ follow from (3.2) and (3.3) since (cf. {19, p. 214])

Ty —Ilx, v = [ Tw—1lliy,x1 = Mn~* (meN),
oy x1 = [ Tallix, 1 = Mr® - (€N).

Since for a Banach space Y, J(Y)-convergence is the same as w*-convergence,
in the following we will speak of a w*-LAP instead of a J(Y)-LAP.

Lemma 8 enables one to apply Theorem 1. a) to the sequence {77}. In order
to obtain a counterpart also of Theorem 1. b) we take a Banach space Z such that
YcZcX, and assume that {7,} satisfies Jackson and Bernstein-type inequalities
of order B€[0,a) on X with respect to Z. Then X’CZ’CY’ by Lemma 8, and
it follows from Lemma 7 and Lemma 8 that there holds a Bernstein-type inequality
of order «—f on Y’ with respect to Z* for {7,}. Concerning the Jackson-type
inequality one has

Lemma 9. Let X,Y, {T,}>., be given as in Lemma 8, and assume that
there is a Banach space Z such that YCZcX and {T,} satisfies Jackson and
Bernstein-type inequalities of order B€[0,«) on X with respect to Z. Then {1}
and {T)} satisfy Jackson-type inequalities of order a—B on Z with respect to
Y and on Y’ with respect to Z’, respectively..
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Proof. Since YCZ, one has by (4.3) for f€Y that

1T f—Slz=

]S' Tng.if— T,,zj-l»lf
j=0

=
Z

]MB

=2 {12 (F = Toos s 2+ | Tozs 1 (f — Toes N2}

Estimating the right side first by means of the Bernstein-type inequality on X with
respect to Z, and then by the Jackson-type inequality on X with respectto Y, yields

I/ ~flz = M é; {2 (n27+ =2 + 2 Y (2) = flly =

= Mn=@P|flly (@EN).
This is the first part of the assertion; the second follows by Lemma 8.
We are now in a position to apply Theorem 1 to the dual of a LAP.

Theorem 3.2) Let X,Y be Banach spaces such that YCX, and {T,},
a LAP on X satisfying (4.3) as well as Jackson and Bernstein-type inequalities of
order a=0 on X with respect to Y and let @€ ® be such that (3.5) holds. Then
X'cY’, {T,} defined by (4.2) is a w*-LAP on Y’, and the following assertions are
equivalent for f'€Y’:

O N =Sy = O(o(n™) (n —~<),
() K(@f5Y,X)=0(e@®) (¢—~0+).

b) Suppose that Z is another Banach space such that YCZcCX, and {T,}
satisfies Jackson and Bernstein-type inequalities of order B€[0, a) on X with respect
to Z, and assume, that (3.6) holds for the order o—f instead of for B. Then each
of the following assertions is equivalent to those of part a) for f'€Y’:

(i) f€Z° and T, f'—f'llz = O(m~Po (™)) (n =),
V) 1T fx = O(ro(™) (n >=).

The equivalence of assertions (i), (if) and (iii) is contained in [17], [18] where it
was proved by methods parallel to Theorem 2 in the frame of intermediate spaces.

If the commutativity (2.4) or even (3.13) is dropped, the method of obtaining
equivalence theorems by using a strong Bernstein-type inequality in connection
with the best approximation (3.14) cannot be carried over to the dual case. This is
due to the fact that when passing to best approximation ini dual spaces the strong
Bernstein inequality converts into a Jackson inequality (for dual best approximation)
and, conversely, the Jackson inequality for best approximation converts into a Bern-
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stein inequality. This is entirely different from the situation for .#-LAP as was
shown in Lemma 8. (For best approximation in dual spaces see [9], [17].)

On the other hand the approach using the stability condition (3.15) can always
be applied to the dual case, since the dual stability condition needed, namely
1T,g |y =M|ig’|lx forall g’€X’, n€N, holds for every LAP {7} in view of (2.6).

5. Applications to convolution integrals

5.1. Results for the space C,,. In this section we consider LAP’s generated by
convolution integrals. Let C,, denote the space of all continuous, 2rn-periodic,
complex-valued functions f defined on the real axis R, endowed with the supremum
norm | fl.. A sequence of functions {y, ), in C,, is called an approximate

identity, if f 1) du=2n for all neEN, and nh_rg f 7, (W) du=0 for each

luj=6

§=0. The cor—lvolution integrals of f€C,, with yx, are defined by

61 GN@ =@ = n [ fr—dnddi @eN; xeR).

The ¥, are bounded linear operators from C,, into itself satisfying
(.2 ViVl =VaVofs lIm [V f=flle =0 (f€Co; m, neN).

Hence {V,} isa LAP on C,,.
As subspaces ¥ and Z we take the Banach spaces C% :={f€C,,; f®€C,,}*)
for different values of k€P, endoved with the norm

1Mok =1 O]+ 1 /P, %)
f 7(j) being the jth Fourier coefficient of f, namely

SO=g ["f<u>é-ff"du GeZ:= {0, £1, £2, .}).

Note that V,fe¢C%. for each f€C,, provided y,€C% .
Concerning the function @€ @ we restrict ourselves to the case ¢(t1)=¢° for
some ¢=0. Conditions (3.5) and (3.6) then read a>¢ and B<o, respectively.

4) Derivatives are denote by /™, f®), ... whereas the prime in f”, ¢’ indicates that these are
elements of a dual space.
$) One may also take any equivalent norm, e.g. ||f]|.+ |/®|., in particular ||/||. instead

of {| /1,0 : : ; -
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Theorem 4. Let {7}, be an approximate identity on C,, such that the
associated convolution integrals {V. Y=, (c¢f. (5.1)) satisfy Jackson and Bernstein-
type inequalities of order a=0 on C,, with respect to C3, for some (fixed) rcN.

The following assertions are equivalent for f€C,,, s€P, 6=>0 with os/r<o<a:

O Wf~fle=0@") (n—e),

() K(f; Co, Cop) = 0(°) (1 ~0+),

@) feChe and Wif—flo,s = O@"+=F) (n—e),
i) WSflle,r = O(*™°) (1 =),

Proof. The equivalence of (i) and (ii) follows immediately by Theorem 2. a).
To prove that of (iti) as well as (iv) with (i) or (ii) we have to show that the assumptions
of Theorem 2.b) are satisfied. It suffices to verify Jackson and Bernstein-type
inequalities of order B=uas/r on C,, with respect to Z=Cj3,. This is achieved by

Lemma 10. Let {V,} be given as above, reN, s€P with s<r. If {V,}
satisfies a Jackson-type inequality of order «=0 on C,, with respect to Cj,, then

there holds a Jackson-type inequality of order asfr on C,, with respect to Cj,.
The same holds for the Bernstein-type inequality.

Proof. Consider the integral operator 1* defined for véP on C,, via the
Fourier series .

63 ENE~1" O+ 3 @7 (e

Jj=—o

It is a linear operator from C4_ into C47", p, véP, having the properties

() VWI'f=IV.f (feéCe; nEN; veP),
(5.5 (IPF)® = fE=) (feC8; p, vEN, p = V).
Furthermore, we need Landau’s inequality, namely that

(5.6) IfON% = M N FIEY ISP (feCh)

is valid for u, véN with v=y (cf. [16, p. 138]).
Now one has for f€C;,

Wof—flle = W I f =)L =
= MV f= I LGl f = I N)ONe.

Estimating the first factor by the Jackson-type inequality on C,, with respect to
C;. and using the equality (V, 1"~ )@=V, ((I"~*f)®) together with (2.6) for the

8) The prime at X’ indicates that the term for j=0 is to be omitted.
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second, yields

Wof—flee = M{n={lf " O+ 1T NN NN,

The desired inequality now follows by (5.5).
To prove the second part of the lemma we use (5.6), (2.6) and the Bemstem-
type inequality with respect to Cj;, to deduce

17NN = MIVAIZ INONL = MIFIS 2| f -

The rest is obvious.

Remark. In view of the equivalence of the K-functional with the modulus
of continuity (cf. [4]) one can express assertion (ii) of Theorem 4 in terms of Lipschitz
spaces. Moreover, using the concept of fractional order derivatives (cf. [11]) the
assumptions €N, s€P can be weakend to r=0 and s=0. Note that all results
remain valid when C,, is replaced by L? , 1=p<co,

e

As partiCular examples of approximate identities {y,} one may'téke, e.g., the
kernels {j,}, and {v,}, of Jackson and de la Vallée Poussin, namely

o [sin (nx/2)1"
Jn(x) = nQn® +1) [ sin (x/2)

U, (%) := ((2 ))2' (2cos(x/2))*" (n€N; x€R).

(EN; x€R),

For {j,} there hold Jackson and Bernstein-type inequalities of order 2 w1th respect
to C3, (see (5], [6, p. 100)). Hence Theorem 4 holds for {fxj},. with a=r=2
and s<o<2. In case of {v,} Jackson and Bernstein-type inequalities of order 1
with respect to C3,  are available ([5], [6, p. 113]). So Theorem 4 is valid for
{f*v,}, with a=1, r=2 and s/2<o<l.

5.2. Dual results. If {y,}>>, is an approximate identity on C,,, then one has
in addition to (5.2) that ' '

lim (/)0 =[O = Lim [V, f~fllo e =0 (fECE),

ie., {V,} satisfies the assumptions of Theorem 3, too. Before applying thlS theorem
to the {¥,} we compute the duals of C%_and V,. _

To this end we regard C,, and (C L) as subspaces of @;,, the space of all
2n-periodic distributions (cf. [20, Chap. 11]). On 92,, we consxder the operators
(ke Z)

(ka’)(X)t— 2 NS (e™ (€D,

W = W 1) (€4,

11
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where the convergence is to be understood in the topology of 9;., and the distri-

butional Fourier coefficients are given by f’"(j):=(2n)~(f"(x), e~"7*). For k€N

the operator W* coincides on C%, with the usual kth order derivative, and W*

is the same as I* on C,,. co '
Now we extend the definition of C% ., k€P, to arbitrary k€Z by

Clo = {f"€Di; W*()EC}, IS o= If""(O) + WA ()],

and furthermore set
(Ci) = {f €Dy WH'ECsY, 1 Nicpy = 1f " O+ IWHf ey,

The norm for (C5,)’=Cj, introduced here is equivalent to that which is usually
used.

Since Wy* is a linear homeomorphism from C,, onto C%,, it follows that
the dual operator (Wy*)' defined by

TSy = W) ([€Din; [€CR)
is a linear homeomorphism from (C%)’ onto C;,. Hence one can rewrite
(C) = {f €D Wy b f€Cia).

Coinparing this with the definition of (Ci,)™%, and noting that (W *yf'=
=f""(0)+(~D'W*f", one has that (C%,)’=(C3,)™ in the set theoretical sense.
Concerning the norms, there holds by the properties of (W ") ‘

1 ko = MINTY flici. = M{S" O+ IW ¥ fllcs.} = MIS ez
Since the converse inequality follows by the same arguments, we have proved (cf. [17])

Lemma 11. The spaces (C%) and (Ci,)~* are equal with equivalent norms,
in notation (C%)) =(C3)~*. | (

Note that this result is also valid for arbitrary k€R, working in the fractional
frame.

Next we compute the dual operators ¥, assuming for simplicity {y,},

to be an even approximate identity, i.e., y()=y,(—u) for all nEN ucR, Fxrst
we extend the domain of V, from C,, to 2;, via

Gl = 3 [ D1G)e™ (f'€D; neN)

Jj=—¢t0
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which obviously coincides for f€C,, with (5.1). For the dual ¥, one has in view
of: %, (N=x,(—j) that

VL= (f,V,.f>—' Z Do (J)f N = WS (feCs),

R R

hence V, =V,. (If one drops the assumption Y, to be even, then one would have
V,=Vy;, where (V,f)(x):=(f(-)*x(—-))(x).) Observing these various facts,
we can formulate as a consequence of Theorem 3

Theorem 5. Let {1}, be an even approximate identity on C,, such that
the associated convolution integrals {V, )= | satisfy Jackson and Bernstein-type
inequalities of order a=0 on C,, with respect to C} for some réN. The following
assertions are equivalent for f'€(C} ) =(C3,)™", s€P, 6=>0 with 0<o—oas/r<a:

@ s~ ey = O™ (1 2,

() K(*f"5 (Ci)™" Cin) = O(°) (t ~ 0 +),

(i) fEC) = (€L and WVof ~flicsy-e = O@ ) (1 —oo),
@) W ey, = O+ (1>,

- If .one sets g’:=I'f’, then g'€C;., and each of the following is equivalent
o the corresponding assertion for f”:

@ g’ —£&llc;, = 0(m™7) (n ~<=),
()Y K( &5 Chus (CY) = O() (¢ = 0+),
Gily g'€CTY = (CLy~ and
W7 =g) —Wr=gl; = O(n=o=-) (n —oo),
@) WG le, = 0@ ) (n—o). |
Using the fact that Cj;, is isometrically isomorphic to BV[—m, n], the space of
all complex-valued functions of bounded variation on [—m,n], one can rewrite

statements (1)’ —(iv)’. in terms of functions pu€BV[-=,n]. Note that if g'€Cs,
cbr‘responds to u€BV[—=n,xn], then Vg’ corresponds to  (j, % du)(x):=

=2n) ! f Tnlx—w)du(u);, where F,(u):= f =) du. We omit the details.

It would be of interest to ﬁnd an approxlmatlon process that satisfies the as-
sumptions of Theorem 3 but differs from its dual operator.

1>
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6. Appendix

The aim of this section is to express conditions (3.5) and (3.6) upon @€P by
equivalent ones, which can be verified more easily. Although these results are im-
plicitly contained in [2] we present the proofs for completeness.

Lemma 12. Let ¢€®, o, $=0. a) If A
(6.1) 1) = Ms—*¢p(s) O<s=t=1),.

then assertion (3.5) is equivalent to
@(Ct)

CBen ©¢

6.2)

Jor some C=1.
b) Under the assumption

6.3) sTho(s) =MtPp(t) O<s=t=1)

assertion (3.6) is equivalent, for some C =1, to |

i %

Proof. a) It follows from (3.5) that there exists a constant M >0 such that
25 p2) = Mt=—*¢() (rEN 0=t=2- .

2-ri-l=2i=y-1

(6.4) ol

Since the sum consists of at least r terms, each of which s = 2”v”t‘“(p(2’t) by
(6.1) one obtains ’ :

(6.5) r2=T (2 ) = Mt~*¢(t) (réN; 0=t =2,

Choosing now réN - greater than the constant M ‘in (6.5) yields (6.2) with C =2".
Conversely, let k€N be such that 2*7'<C <2" Then in view of (6. 1) and
(6.2), one can find g, #,€(0, 1) such that

(D)
(66) zku(p(tz k) —-—q (tE(O to))
Now one has for g, mEN satlsfymg 2K~ D= g 1'<>2"'_"o, QMmN < =1 gk that
. ’ . kmg—1
z eey=(3+ 3 )?ﬂw(z )=
1=2/=-1 j i= kmo
m k(v+1)—1 +1)‘ 1
=M+ Z > 2pQ7)= M+Z<o(2 b S o
v=my j=kv v=mg j=kv
2ak_
— M+ 2 (p(z kv)zakv_ —M{1+ 2 2”“'(,0(2 kV)} (tG(O to))

v=my v=my
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Since 2 % <t, for v=m,, one can estimate the latter sum by (6.6) to deduce

akv 5 (2—kv) = Qukm g (3—km G
22k(p(2k)<2k(p(2k)22(mv)(p((2(3lv)k)

v=my

= 2% Z’ qnY = M2Hm,
v=m,

This yields, in view of (6.1),
2 227 = M{1+ 227"} = Mt~*(1) (1€(0, 1))

1=27=¢-1

which is assertion (3.5).
Concerning part b) set lp(t) =1"P¢(t). Then, replacmg t by 27t in (3.6),
one has

SWa2h) = My(2) (eN; 0 <1527,

By (6.3) it follows that Y2~ H=My(t) for j=0,1,...,r, and so
EDY() = MP(2) (rEN; 0 <1=2"7).
This in turn implies (6.4) by choosing r=M and C=2",
Conversely, if (6.4) holds and k€N satisfies 2¢-'<C =2% then
1)
SETCH
for suitable g, 2,€(0, 1). Then one obtains by (6.3) and (6.7) that

6.7 =q<1 (t€(0, 1))

jé::'l’(tz—"’) = S‘ k(t’+21')_1 !P(t2—1) = Mvé:" k.p(t2-kv) =

v=0 j=kv
kv 3
= My g(’, v 2(0 ) = My (9 vgoq" O <1t=1).

This gives (3.6), and so our proof is complete.

It should be mentioned that condition (6.1) is superfluous. Indeed, it can be
shown that it follows from (3.5) as well as from (6.2). The proofs would then become
more intricate. In this respect see [2], where also some further equivalent assertions
to those of part a) and b) can be found.

LTI - o EWITe. A

Using Lemma 12 one can eas1ly “show that o(1): (log 1/0)77, y>0 “satisfies
(3.5) for each a=0, but that (3.6) is violated for each f=0. On the other hand,




166 - S. Ries and R. L. Stens

functions which behave like e~ are not admissible in our theorems since
Jlim 17%e =0 for each a=0 which implies by Lemma 3 that (3.5) cannot

hold So one can handle the case where T,f converges very slowly towards f,
but not the case where it converges very rapidly.
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