Acta Sci. Math., 47 (1984), 113—115

 On mirimal invariant manifolds and density of operator algebras

HEYDAR RADIJAVI

Let X be a complex Banach space and let U be a subalgebra of Z(X), the algebra
of all bounded linear operators on X. When is 2 strongly dense in £(X), i.e., dense
in the topology of pointwise convergence? This question can sometimes be answered
by examining various lattices associated with 2. The first result of this sort was obtain-
ed by RICKART and Yoob [2, p. 62], a consequence of which is: if the only linear
manifolds (i.e., not necessarily closed subspaces) of X invariant under all membeérs of
A are {0} and ‘X, then A is strongly dense in Z(X). If we denote by £ () the lattice
of all linear manifolds invariant under 91, the hypothesis in this assertion amounts
to saying that % () is trivial, that is, the only nonzero element of £ () is X. We
shall prove the following result.

Theorem 1. Let A be an algebra of bounded linear operators on the Banach
space X. If the nonzero elements of £ (N) have a dense intersection, then A is strongly
dense in B(X%). .

_ Note that the hypothesis of the theorem implies that % () has no closed mem-
bets other than {0} and ¥, i.e., 2 is topologically transitive. It is not known whether
topological trans1t1v1ty for U is sufficient for strong density if X is a reflexive Banach
space. (This is the Transitive ‘Algebra Problém; see [3]). S

Many examples of algebras satisfying the hypothesis of Theorem 1 exist. Here is
a simple, nontrivial example. Fix an orthonormal basis {e,};> , for a separable, infinite-
dimensional Hilbert space §. Let U be the set of all those operators on $ whose
matrices relative to {e;};, are “column-finite”, i.e., each of their columns have finitely
any nonzero entries. It is easy to see that U is in fact an algebra, that every operator
in A leaves the linear span 7~ of {e;};2, invariant, and that, furthermore, ¥~ is con-
tained in every invariant linear manifold of . Another example is the subalgebra
A, of the -above A consisting of finite-rank operators; ¥ is still the intersection . of
all nonzero members of £ ().
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To prove Theorem 1, we shall need a lemma, which seems to be of independent
interest, and which is itself an extension of the Rickart—Yood result referred to
above. We first recall some definitions: An algebra U of linear operators on any
vector space ¥ is called strictly transitive if for x#0 and y in ¥ there exists 4 in
A with Ax=y. More generally, U is strictly n-fold transitive if for any independent
vectors xy, ..., X, in ¥" and arbitrary y;, ..., ¥, in ¥ there exists 4 in W with Ax;=y;
for i=1, ...,n. If N is strictly n-fold transitive for every n, then it is called strictly
dense. The well-known theorem of JAcossoN [1] (see (2, p. 50]) states that 2-fold
transitivity implies strict density. In general, 1-fold transitivity does not imply strict
density. '

Lemma 1. Let A be an algebra of bounded linear operators on the (not neces-
sarily complete) complex normed linear space X. If W is strictly transitive, then it is
strictly dense.

(Note that % is not assumed to be closed in any topology.)

Proof. Suppose U is strictly transitive but not strictly dense. Then by [1], U
is not 2-fold transitive. It follows (as in [2, p. 62]), that there exists a (not necessarily
bounded) non scalar linear transformation T of X onto X that commutes with every
A in A. Now '

(T—a)A = AT —al)

for every scalar o, and thus the nullspace and range of T'—af are invariant linear
manifolds for . It follows from the transitivity hypothesis that T—al is bijective
for every «. Thus r(T) is a bijective linear transformation for every rational function
r,and r(T)A=Ar(T) for all 4 in A.

Fix a nonzero x, in X and let X, be the linear manifold {r(T)x,: r. a rational
function}. Let Wo={4€A: Ax,£X,}. Observe that X, is invariant under ;. For
each A in U, there is a rational function r, such that Ax,=r,(T)x, (r, is unique
because of the bijectivity of »(T) for nonzero r); thus it follows from

Ar(T)xo = r(T)Axy = r(T)r(T)xo = ra(T)r(T)x,

that the restriction of A4 to ¥, is just that of r (7). Conversely, by the transitivity
hypothesis, every r(T') coincides with r,(T) for some A4 in U,. Hence the restriction
of A, to X, is a field. Since this restriction consists of bounded operators on %,,
the Gelfand—Mazur theorem implies that T is a scalar on ¥X,: T | ¥,=al, which
contradicts the bijectivity of 7—af on X. This proves that U is strictly dense.

Proof of Theorem 1. Let ¥ be the intersection of all nonzero invariant
linear manifolds of . Then the restriction of % to ¥ is clearly strictly transitive and
thus strictly dense. Also, U has no closed invariant subspaces, because ¥ is dense in
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X. We use the notation and techniques described in [3, Chapter 8]. As in the proofs of
Arveson’s Lemma (Lemma 8.8) and Lemma 8.11 of {3], it suffices to show that each
graph transformation for U has an eigenvalue; this will imply the strong density of
A in B(X).

Let {x®T1x®...®T,x: x€D} be an invariant graph subspace for A*+Y
for some positive integer n. We must show that each linear transformation T; has an
eigenvalue.

If T; has nonzero null space, we are done. Otherwise, observe that the -invari-
ant linear manifolds D and T;D both contain ¥#; by hypothesis. Hence the identities

AT, =TA on D and AT *=T1T74 on T®

(for all 4 in A) hold on ¥ This implies that T;¥ and T;'¥" are also invariant under
A, and thus contain ¥7 This yields T;%"=%. Now  is strictly dense on ¥ and com-
mutes with the linear transformation T; on ¥, We conclude that T} is a scalar on ¥
and complete the proof.

We conclude with a question an affirmative answer to which would be a generali-
zation of Theorem 1.

Question. If A is a topologically transitive algebra of bounded linear operators
on X and if Z () has minimal nonzero elements, is U necessarily strongly closed
in B(%)?
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