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On additive functions satisfying a congruence

I. KATAI

1. Let f, g, u, v be real-valued completely additive functions,
L, =f(n)+gm+1)+um+2)+v(n+3).
We shall prove the following

Theorem. If L,=0(mod 1) for every n=1, thenf, g, u, v assume integer values
Jor every n.

Corollary. If L,=0 for every n=1, thenf, g, u, v are indentically zero-func-
tions.

For the proof of the Corollary see [1].
Let 4y denote the assertion:

Ay: f(N), g(N), u(N), v(N) = 0(mod 1).

Let 2 denote the set of primes. For the sake of brevity we shall put a=b instead of
a=b(mod 1).

'_ We shall prove our Theorem in two steps. First we shall prove Theorem 1,
after then Lemma 1:

Theorem 1. Theorem is true if Ay is true for N=11.
Lemma 1. If L,=0(mod 1) for every n=1, then Ay is true for N=11.

2. Proof of Theorem 1’. Assume that Theorem 1° does not hold. Then
. there exists a smallest N for which 4, does not hold. From L,_,=0(mod 1) it
 follows that o(N)=0 (mod 1). Furthermore,

0= Ly_;=u(N)+ov(N+1)(mod1).

If N+1¢2, then v(N+1)=0(mod 1), and so u(N)=0(mod1). If N+1¢2,
then N is even, and so u(N)=0(mod 1). Hence it follows that f(N)z0 (modl),
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or g(N)Z0(mod 1), and that Ne#. Let N=Pc?. Now we distinguish three
cases:
M fp)=s ePr=n, 20, n£0;

(an f(P)=0, gP)=n n=0;
dID f(P)=¢& g(P)=0, EZ0.

Lemma 2. (1) Let 3P+b=2Z, b=1(mod3), Z+1<2P. Then u(Z)=0,
v(Z)=0.
Q) Let 3P+¢=2U, c=—1(mod3), U+1<2P. Then f(U)=0, g(U)=0.

Proof. (1) We may assume that Z¢2. Since Z= —1 (mod 3), therefore all
the prime factors occurring in Z—3, Z-2, Z—1, Z+1 are smaller than P. From
L, ,=0, L, ;=0 we get that u(Z)=0, v(Z)=0.

(2) We may assume that U€Z. Since U =1 (mod 3), therefore all the prime
factors occurring in U—1, U+1,U+2,U+3 are smaller than P. From L;=0,
Ly_,=0 we get that f(U)=0, g(U)=0.

Case (I). Observing that P—1, P+ 1, P+3 are even numbers with prime factors
<P, we get from Lp_,=0, L,=0 that U(P+2)=-¢, g(P+2)=—-¢&, and so
P+2¢?, 2=—1(mod 3). Similarly, in view of 2P+5=0(mod3), 2P+5=3P,
we see that g(2P+3)=—¢, 2P+3€2. Since 2P—1=0(mod 3), 2| P+1, there-
fore L,p_,=0 implies that u(2P+1)=—-¢, 2P+1€2.

Now we shall prove that 3P+2=20(mod 7), i.e., PZ4(mod7). Indeed, if
7]3P+2, then from Lgp_,=0 we infer that

0 = fBP—1)+g(BP)+u(3P+1),

which gives that f(3P—1)=#0 or u(3P+1)=0, but this is impossible as it was
proved in Lemma 2. Since P#4(mod7), and P, P+2,2P+1,2P+3€2, we get
that P#0,2, 3,4, 5 (mod 7); consequently P=1 or 6 (mod 7).

First, by considering L,p_,=0 we deduce that v(2P+41)=0, and hence, by
Lp_1,=0(mod5), and by taking into account that 5|4P—1 we get that
g@P)+u(dP+1)=0, ie., u@P+1)=—E&. So 4P+1=3R, u(R)=—n. It is ob-
vious that R€Z, since in the opposite case all its prime factors would be smaller
than P. From Lg_,=0, by observing that (R+1)/2<P, we deduce that f(R—2)=n,
and so that R—2€#. Since 3(R—2)=4P-5, therefore f(4P—5)=n, and so

0 =n+g(4P—4) +u(@P—3)+v(4P—2) = n+u(4P—3).

Since 2{/4P—3, 3{4P—3, therefore P%6 (mod 7).
It remains to consider the case P=1(mod 7). Then 3R=5(mod7), R=4
(mod 7), 2R—1=0(mod 7). Let us consider now

0 = Lyg-s = fQR—2)+gRR—1)+u(2R) +v(2R +1).
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Since R, R—2¢2, therefore R=1 (mod 3), consequently 3 |2R+1. Furthermore
QR+1)/3<P+2, and so v(2R+1)=0. Since 4|2R—-2, 7|2R-1, therefore
f(2R—2)=0, g(2R—1)=0, whence u(R)=0, which contradicts u(R)=-—n. So
we have proved that Case (I) cannot occur.

Case (I1). We get as earlier that v(P+2)= —n, P+2¢2, andso P=—1 (mod 3).
Since 3 |2P+1, therefore from L,p_; =0 we infer that u(2P+1)=—n, 2P+1€2.
Lemma 2 implies that f(3P—1)=0, u(3P+1)=0, and so from Lsp_; =0 we deduce
that v(3P+2)=—n, 3P+2€2. Since P, P+2,2P+1,3P+2¢2, therefore P=—1
(mod 5). From L,p_,=0 it follows that »(2P+1)=0, and so by L,_,=0,
5|4P—1, we have

0= Ly, =f@AP-1)+g@P)+u(4P+ 1)+ v(dP+2) = 0+n+u(@P+1)+0,
hence u(4P+1)=—n.
Thus 4P+1=3R, u(R)=—mn, and so R€Z. From Lgz_,=0 we deduce that
f(R—2)=n, R—2€2. Consequently R=1(mod 3). Now we have f(4P—35)=
=f(3(R—2))=n, implying
2.1) 0= Lyp_s=f(4P—5)+g(4P—4)+u(@dP-3)+v(4P-2) =
=n+0+u(@P-3)+v(2P-1).
Now we shall prove that v(2P—1)=0(mod 1). Indeed,
0= Lop_y = f2P~-D+g(2P-3)+u(RP—-2)+v(2P-1),

whence by 5|2P—3 it follows immediately that v(2P—1)=0, and so from (2.1),

u(dP—-3)=—n, 4P—-3€2. Since P, P+2, 2P+1, 3P+2, 4P—3, 4P+ 3¢, there-

fore P=2(mod 7). From 4P+1=3R, R=1 (mod8) we get that P=5 (mod 9).
Let us consider now the relation

0 = f(5P—1) +g(5P) + u(5P+1) + v(5P+2).

We have 7|5P+2, 6|5P—1, and so f(5P-1)=0, v(5P+2)=0, yielding
u(5P+1)=—n. Thus 5P+1=4X or 5P+1=2X with a prime X=>P. First we
consider the case 5P+ 1=4X. Since u(X)z0, therefore from Ly,_,=0 we get that
f(X—-2)%0. But, from P=—1(mod3) we get that X=-—1(mod3), 3|X-2,
(X—2)/3 <P, where f(X-—2)=0.

It remains to consider the case 5P+1=2X, X¢#?. We have u(X)=—n. Fur-
thermore X=2(mod 7). So

0=Lyp=f(X-2)+g(X— 1) +u(X)+v(X+1).
Observing that 7| X—2, 6| X—1, and that X/6<P, we get that

2.2) v X+1) =1.
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Taking into account that 2X+2=5P+3, 9|5P+2, from L;;=0 we deduce that
g(5P+1)=—n, ie., g(X)=—n. This, together with

O0=f(X-D+g@+uX+1)+v(X+2),
3/ X+2, and (X+2)/3<P, implies that

2.3) u(X+1) = 1.
Consequently X+ 1=2Z.

From (2.2) and (2.3) we get that u(Z)=n, v(Z)=n, Z€P. Using (Z+1)/2<P
and 2|Z+1,Z—-1,Z-3, we see immediately that f(Z—-2)=—n, g(Z—-2)=—1,
Z—2¢2. Since 2(Z—2)=X—3, we have g(X—3)=—n. Let us consider the rela-
tion

0=fX-D+g(X-3)+u(X-2)+v(X-1).
In view of X=2 (7), u(X—2)=0. Furthermore 2,3|X—1, and so v(X—1)=0.
Consequently f(X¥—4)=n. But this is impossible, since 3 |X—-4, (X—4)/3<P.

Case (III). From Lp=0 we get that u(P+2)=—¢, P+2€#. Hence P=-—1
(mod 3). Observing that 3 |2P+5, we get from L,p,,=0, that

(2.4) g(2P+3)=¢&, 2P+3cA.
Let us consider now the relation
fBP+4)+g(BP+5)+u(BP+6)+v(BP+T7) = 0.

From Lemma 2 we get that g(3P+5)=0, v(3P+7)=0, thus f(3P+4)=¢,3P+4€2.
Since, P, P+2,2P+3,3P+4¢#?, therefore P=—1 (mod 5).

Furthermore Lyp ;=0 immediately implies that f(2P+3)=0. Thus, by
5|4P+9, we get that

0 = Lyp,o = f(4P+6) +g(4P+T) + u(4P+8) + v(4P+9) =

: =0+g@P+7)+u(P+2)+0,
ie, g@dP+7N)=L.

Let 4P+-7=3E, g(E)=¢, E€?. From Lg_;=0 we deduce that v(E+2)=—¢.
Hence it follows that E=—1 (mod 3) and so P=2(mod9). Now we prove that
u(£)=0. Indeed, in the opposite case from Lp_,=0 it would follow that
Sf(E—2)0, but this is impossible since 3 |E—2, (E—2)/3<P.

So we have that u(3E)=u(4P+7)=0. Then
0 = f(4P+5)+g@P+6)+u(dP+7)+v(4P+8)
= f4P+5)+g(2P+3)+0+v(P+2).

From Lp_,=0 we get that g(P)+v(P+2)=0, and so v(P+2)=0. Using (2.4)
we see that f(4P+5)=-—¢, 4P4+5¢%2. Since P=-—1(mod5), we get that E=1

in
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(mod 5). Consequently 5|2E+3. So
0=fRE+1)+gRE+2)+u(RE+3)+v(2E+4) = fQRE+1)+0+0-¢,
ie, fRE+1)=¢, 2E+1€2. Similarly, 3]|2F—1, therefore
0=fQRE-1)+gRE)+uRE+1)+vQRE+2) =0+¢+u(2E+1)+0,
ie, uQRE+1)=—¢ We have 32E+1)=8P+17, hence
0=f@P+15+g(BP+16) +u(BP+17) +v(BP+18) =
= f(8P+15)+ g(P+2)— £ +v(4P+9).

Since 4| P+4, we get from Lp_,=0 that g(P+2)=0. Also, 5|4P+9 implies
that v(4P+9)=0. Thus we have that f(8P+15)=¢.

Hence 8P+ 15 has to be a prime or the product of 7 and K, where K¢ 2, f(K)=¢.
Assume that 8P+15=7K, f(K)=¢&. Then we get from Lig=0 that u(K+2)=-¢,
K+2¢2 But 8P+15=7K, P=—1(mod 3) imply that 3 | K+2, and hence, by
(K+2)/2<P, u(K+2)=0.

So 8P+15€#. Since P, P+2,2P+3,3P+4,4P+5, 82+15¢2, therefore
P=3 (mod 7). Let us consider now the relation

0 = f(5P+8) +g(5P+9) + u(5P+ 10) + v(5P+ 11).

Since 9 |5P+8,6|5P+11, and u(5P+10)=u(P+2)= —¢, therefore f(5P+8)=0,
v(5P+11)=0, and so g(5P+9)=¢ Then 5P+9=24, or 5P+9=44, where
AP, g(A)=¢&. The second case cannot occur. Let us assume that 5P+9=44,
g(4)=¢&. Then, taking into account that 2| A4A—1, 441, (A+1)/2<P, we get
from L,_,=0 that v(4+2)=—¢. But this is impossible since 3| A4+2.

Let us assume that SP+9=24. It follows from P=3(mod7) that A=5
(mod 7), ie., 7|A+2. Furthermore, 3|A+1, (4+1)/3<P, -consequently
u(A+1)=0, v(4+2)=0, and so L,_,=0 immediately implies that f(A—1)=—¢.
Since 4—1 is an even number and has a prime divisor greater than P, therefore
A—1=2B, Bc?, f(B)=—¢ From Lpz=0 we deduce that u(B+2)=¢£. Since
SP+7=4B, 9| 5P+8, v(P+2)=0, we get

0=f06P+7N+g(BP+8)+u(5P+9)+v(5P+10) = — &+ u(24),
ie.,, u(A)=¢. So we have
fA-)+g(A-D+ud)+v(4d+1) =0.

Since 3|A4—2,A+1, and (A+1)/3<P, therefore f(4—2)=0, v(4+1)=0, and
so g(4—1)=g(B)=—¢&. In view of L,_,=0 this yields that

(2.5) " y(B+2) =t
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Since 2B+4=A4+3, we have that u(4+3)=¢, v(4+3)=¢. Let us consider now

the relation
SA+D+g(A+)+u(A+3)+v(4A+4) = 0.

Since 7| A+2, therefore g(A4+2)=0. Furthermore 3| A+1, 3|4+4. As
(A+1))3 = QA+2)/6 = (5P+11)/6 < P

for P>11, we have f(4+1)=0. We know that v(P)=0 and v(P+2)=0. Since
P, P+2€2, therefore P+4 is a composite number, and so the smallest integer on
which v assumes a nonzero value (mod 1) is =P+6. However,

(A+4)/3 = 24 +8)/6 = (5P+1T)/6 < P+6,

therefore v(A4+4)=0. Consequently u(4+3)=0, contradicting (2.5).
The proof of Theorem 1’ is finished.

3. Proof of Lemma 1. For an arbitrary completely additive function h(r)
we can extend the domain of definition for the set of positive rational numbers by
h(a/b)y=h(a)—h(b). Let us do it for f, g, u, v. For the sake of brevity the relation

f@+g®)+u(c)+v(d) =0 (mod 1)

will be denoted by {a, b, ¢, d), where a, b, c, d are arbitrary positive ;‘ational numbers.
From the additivity it follows that

if {a,b,c,d) and {(4.B,C,D), then <{aAd,bB,cC,dD).

We shall say that (a4, bB, cC, dD) is the product of {a, b, ¢, d) and {4, B, C, D).
It is obvious that {l/a, 1/b, 1/c, 1/d) holds if {a, b, ¢, d) holds.

Let now L,=(n, n+1, n+2, n+3). First we shall express the values f(p), g(p),
u(p), v(p) for primes p=20 as linear conibinations of

K = {f(2), g2), u(2), v(2), f(3), g(3), u(3), v(3)}-
The appropriate formulas will be denoted by F(p), G(p), U(p), V(p). Hence we can
get some linear relations between the values listed in K.
V) = Ly =(2; 3; 2% 5),
UB)=Ly=(3; 2% 5; 2-3),
F(7) = L,Ly* = (7-271; 28.3-1; 2-2.3%; 2),
G(T)=Le=(2-3; 7; 23; 3%,
V(A1) = LgLyt = (2%.3-1; 2-2.3% 2; 11.2-1.3-1),
V(17) = Ly L3?Lg% = (22-373; 2-4; 25; 17.272.37%),
G(5) = Liu(F(NVATD) ™t = (3; 2-3%.5; 211.37% 2. 35),
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V(T) = L,G(5)™! = (22-37% 271.3-%; 2-10.3%; 7.2-1.3-%)
F(11) = Loy L, L5 G(5)~ = (1171.25.3-8; 2-5.3-7; 2-31.37; p-4.3-12),
F(5%) = Ly LoV (5) L'V (T)~" = (5°.273.3% 2%.34; 2113 25.34)

LasLis L2 L L F(5%)
Lygs L1 L3L5G(5)

F(5) = Lys L LyV(13) Ly Lt Lyt = (5-274.3%; 210.3-5; 2-5.3¢; 2-4.3%),
U(T) = FG) Lt = (2-4-3%; 2°.36; 7-1.2-5.34; 2-7.33),
G(13) = Ly UM Ls! = (272-3%; 13.29.37; 270.34; 2-7.3%,
G(11) = FG)V(13)~ Lt = (374 11-1.22.3-1; 2-3; 2-9),
U(17) = FG) L = (27*-3% 28.3-5; 17-1.2-5.34; 2-4.3),
U(13) = F(I) L, V(7)~* = (2*.375; 2-2.3-4; 13.2-2.3%; 2-2.3-7),
U(11) = LG(5)~* = (37%; 372; 11-2-1.3%; 2.3-%),
V(19) = Ly GUD)U(NG(5)™! = (273.371; 210.3-9; 216,36 19.2-1.3-1),
G(1T) = V19) Lt = (277.31; 17-1.210.3-9; 2-17.3¢; 2-11,3-1y,

V(13) = = (2-5.3%; 28.374; 2-4.3%; 13-1.2-1.33)

LesLyLoL; Ly
Ly Ln F(S)G(S) V(1)

U@9) = F(T) L, Lt = (2°-37%; 2-7.3; 19-1.2-2.3; 27.3-7),
G(19) = Ly V(7)~1Ly% = (2-1-3%; 19.2-8.3%; 21.3-3; 2-1.3%),
F(19) = L, UMV(1)~1G(5)~! = (19-275.3; 212.3-10; 2-17,37; 2-6,3-1)

Fi:= L, =(1; 2; 3; 2%,

FAT) =

= (17.2%.37%; 32.2-6; 3.2-4; 2°.3-7),

Foom FOYLy® _ /20 3° %, _2f2_>
2 F(5)3 37’ 215’ > 35 /)
Ly L, LG L] <32 >

F.:= = (= 29.33; 225; 211 318 X

2 Ly, Ly L3V (7)°

F m L133L20L15L2G(5)2L%1 <2 27 327 289 258>
4 T LegLiaLy Ly L, LiF(A9) F(I1) F(5) 3w
Foo Le0AHhUA7) /3 2% 2. _31>

8 L,L,V(T) T \227 34 %
Fs:= L3Li5 — <26.36; 22.322; 253; 263.39>’

L FAD)GATU (T
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= (2%; 25.35; 219; 27.38),

21,33, 222, Qua, 3s>’

Foe Ly LeL L, [}

" Le; Ly

Foo— L3G(5)*L3

8T Lo LEUOT)V(13)

Fooe LeL, LY /37,

ST LL,U(13) ~ \2%°

Foooe Lss L FADNUA9)

10 Lo L3LU(T)F(5) L2

F o L37L8L2L% _<3_9.
W Ll LUAYU3) — \22°
Fooe LooLos Ly LIV(ANV(A3) L]
12-= =

Lya Loy Ly L, F(I1) F(3)°

Let R denote the column vector [f(2,f(3), g(2), g(3), u(2), v(2), v(3)].
formulas Fj, ..., Fi; lead to the linear equation MR=0 (mod 1), where

9
—1
6
-2
6

4

7
-5
13
-2
-7

-7
2

0
1
6
0
1
7

—-23
9
10

—-15 19
9 6

7 27

8§ —4

2 22

5 3

1 11

11 3
-31 2
12 3
12 5

213 . 32 . 1

310
27

26
25
69
1
53
19
27
22
—-25
20
27

42
11
58
-9
63
7
24
14
14
2
18

= <_23_7.’ 2,311; 227; 224.36>’

214

212, 33; 220; 22. 313>’

< 212, 35; 227, 218, 39>.

-5
13
—-17
6

-30
13
9

o QN OO0 \O

The

By using the Gaussian elimination over the ring of integers, we get easily that the
only solution of it is R=0 (mod 1). Hence, by the formulas F(p), ..., V(p) we get
immediately that f(p), g(p), u(p), v(p)=0(mod 1) for p=19.
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