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On additive functions satisfying a congruence 

I. KATAI 

1. Let / , g, u, v be real-valued completely additive functions, 

L„ = f(n)+g(n +1) + u(n + 2) + v(n + 3). 

We shall prove the following 

Theorem. If Ln=0 (mod 1) for every n ^ l , then f g, u, v assume integer values 
for every n. 

C o r o l l a r y . / / L„=0 for every w ^ l , then f g, u, v are indentically zero-func-
tions. 

For the proof of the Corollary see [1]. 
Let AN denote the assertion: 

AN:f(N), g(N), u(N), v(N) = 0 (mod 1). 

Let 2? denote the set of primes. For the sake of brevity we shall put a=b instead of 
a=b (mod 1). 

We shall prove our Theorem in two steps. First we shall prove Theorem 1', 
after then Lemma 1: 

Theorem 1'. Theorem is true if AN is true for JNT^ll. 

Lemma 1. If L„=0(mod 1) for every « s i , then AN is true for N^W. 

2. P roo f of Theorem V. Assume that Theorem V does not hold. Then 
there exists a smallest N for which AN does not hold. From LN_3=0 (mod 1) it 
follows that u(iV)=0(mod 1). Furthermore, 

0 = Ln-2 = u(N) + v(N+1) (mod 1). 

If N+ \i0>, then u(JV+l)=0 (mod 1), and so u(N)=0 (mod 1). If 
then N is even, and so u(N)=0 (mod 1). Hence it follows that f(N)^0 (mod 1), 
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or g(AT)^0(mod 1), and that N£0>. Let N=P£&>. Now we distinguish three 
cases: 

(I) / ( P ) = £, g(P) = n, 

(II) f(P) = 0, g(P) = n, 0; 

(III) /(/>) = «; g(P) = 0, { ¿ 0 . 
Lemma 2. (1) Let 3P+b=2Z, b^l (mod3), Z + l < 2 / > . Then u(Z)= 0, 

u (Z)=0. 
(2) Let 3P + C — 2U, c = - l ( m o d 3 ) , U+l<2P. Then f(U) = 0, g(U) = 0. 

Proof . (1) We may assume that Since Z = —1 (mod3), therefore all 
the prime factors occurring in Z—3, Z—2, Z—1, Z + l are smaller than P. From 
JLz_2=0, Z,z_3=0 we get that u(Z)=0, v(Z)=0. 

(2) We may assume that U£0>. Since U = 1 (mod 3), therefore all the prime 
factors occurring in U— 1, C/+1, U+2, U+3 are smaller than P. From Lv=0, 
Lv_x=0 we get that f(U)=0, g(U)=0. 

Case (I). Observing that P—1, P+1, P + 3 are even numbers with prime factors 
< P , we get from LP^=0, LP =0 that C/(P+2)= g(P+2)=-£, and so 
P+ &>= — l (mod 3). Similarly, in view of 2 P + 5 = 0 (mod 3), 2 P + 5 S 3 P , 
we see that g(2P+3)= 2P+3£0>. Since 2 P - 1 = 0 (mod 3), 2 | P + 1 , there-
fore i 2 p - i = 0 implies that u{2P+\)=~^, 2P+\£&>. 

Now we shall prove that 3 P + 2 ^ 0 (mod 7), i.e., P ^ 4 (mod 7). Indeed, if 
7 | 3P+2 , then from L3P_1~0 we infer that 

0 = / ( 3 P - l ) + , ? ( 3 P ) + w(3P-f-l), 

which gives that / ( 3 P — 1 ) ^ 0 or u(3P+1)=0, but this is impossible as it was 
proved in Lemma 2. Since P=£ 4 (mod 7), and P, P+2,2P+l,2P+3£0>, we get 
that P ^ 0 , 2, 3,4, 5 (mod 7); consequently P = 1 or 6 (mod 7). 

First, by considering L2P_2 = 0 we deduce that v(2P+1)=0, and hence, by 
L 4 P _ 1 =0 (mod 5), and by taking into account that 5 | 4P—1 we get that 
g ( 4 P ) + u ( 4 P + l ) = 0 , i.e., u(4P+l) = - l So 4 P + 1 = 3 P , u(R)=-ri. It is ob-
vious that since in the opposite case all its prime factors would be smaller 
than P. From LR-2=0, by observing that (R+\)/2<P, we deduce that f{R-2)=rj, 
and so that R-2Z&. Since 3 ( P - 2 ) = 4 P - 5 , therefore f(4P-5)=rj, and so 

0 = rj+g(4P-4) + u(4P-3) + v(4P-2) = ri + u(4P-3). 

Since 2f4P—3, 3{4P—3, therefore 6 (mod 7). 
It remains to consider the case P = l ( m o d 7 ) . Then 3P= 5(mod7) , R =4 

(mod 7), 2R — 1 = 0 (mod 7). Let us consider now 

0 = I 2 R _ a = / ( 2 P - 2 ) + g ( 2 P - l ) + «(2P) + y(2P + l). 
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Since R,R — 2£0>, therefore /? = 1 (mod 3), consequently 3 | 2 / ? + l . Furthermore 
(2 / ?+ l ) /3<P+2 , and so «(2R+1)=0. Since 4 1 2 R - 2 , 1 \ 2R-\, therefore 
f(2R-2)=0, g(2R-l)=0, whence u(R)=0, which contradicts u(R) = -rj. So 
we have proved that Case (I) cannot occur. 

Case (II). We get as earlier that v(P+2) = -?/, P+2e&>, and so P= - 1 (mod 3). 
Since 3 | 2P+1 , therefore from L2P_1 =0 we infer that u(2P+l) = -rj, 2P+ \£0>. 
Lemma 2 implies that f(3P— 1)=0, u(3P+1)=0, and so from LSP_1=0 we deduce 
that v(3P+2) = —t], 3P+2£0>. Since P, P+2, 2P+1, 3 P + 2 € ^ , therefore P = - l 
(mod5). From L2P_2=0 it follows that v(2P+\)=0, and so by I ^ . ^ O , 
5 | 4P— 1, we have 

0 = ¿ 4 P . , EE / ( 4 P - \)+G(4P) + U(4P+\) + V(4P+ 2) = 0 + T] + U(4P+ l ) + 0, 

hence u(4P+\) = — >/. 
Thus 4P+1=3/? , u(R)=-r], and so R£0>. From LR_2=0 we deduce that 

f(R—2)=t], R-2£0>. Consequently R = \ (mod 3). Now we have / ( 4 P - 5 ) = 
=f(3(R-2))=ri, implying 

(2.1) 0 = L4P_5 = f(4P— 5) +g(4P— 4) + u(4P- 3) + v(4P- 2) = 

= r] + 0 + u(4P— 3) + v(2 P-1). 

Now we shall prove that v(2P—1)=0 (mod 1). Indeed, 

0 = Lw-4 = f(2P— 4)+g (2P— 3) + u (2P— 2) + v (2P-1 ) , 

whence by 5 | 2P—3 it follows immediately that v(2P—\)=0, and so from (2.1), 
M(4P-3)=-JJ , 4P-3d0>. Since P, P+2, 2P+1, 3P+2 , 4 P - 3 , 4 P + 3 £ ^ , there-
fore P = 2 ( m o d 7 ) . From 4P+1=3/? , /? = l ( m o d 8 ) we get that P = 5 ( m o d 9 ) . 

Let us consider now the relation 

0 = f(5P— 1) +g(5P) + u(5P+1) + »(5P+ 2). 

We have 7 15P+2, 6 15P-1 , and so / ( 5 P - 1 ) = 0 , u(5P+2)=0, yielding 
u(5P+1)= —t]. Thus 5P+1=4A' or 5P+\=2X with a prime X>P. First we 
consider the case 5P+l=4X. Since u(X)^0, therefore from Lx_2=0 we get that 
f(X-2)^0. But, from P= — 1 (mod 3) we get that - 1 (mod 3), 3 | X-2, 
(X-2)/3<P, where f(X-2)=0. 

It remains to consider the case 5P+1 =2X, X£3P. We have U(X)= —TJ. Fur-
thermore X=2 (mod 7). So 

0 = LX.2 = F(X~2)+g{X-\) + u(X)+v(X+l). 

Observing that l\X-2, 6\X-\, and that X/6<P, we get that 

(2.2) v(X+l) = t]. 
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Taking into account that 21 _ +2=5P+3, 9 | 5P+2 , from LbP=0 we deduce that 
g ( 5 P + l ) = - r ç , i.e., g(X)=—t\. This, together with 

0 = f ( X - 1) + u{X+1) + v(X+2), 

3 | X+2, and (X+2)/3<P, implies that 

(2.3) u(X+1) = IJ. 

Consequently Z + 1 = 2 Z . 
From (2.2) and (2.3) we get that u(Z)=q, v(Z)=q, ZÇ&. Using ( Z + 1 ) / 2 < P 

and 2 | Z + l , Z - l , Z - 3 , we see immediately that f(Z-2) = ~rj, g ( Z - 2 ) = ->/, 
Z-2Ï.&. Since 2(Z-2)=X-3, we have g(X-3)~-t}. Let us consider the rela-
tion 

0 = f(X-4)+g(X-3) + u(X-2) + v(X-l). 

In view of X=2 (7), u(X-2)s=0. Furthermore 2,3\X-l, and so u ( Z - l ) = 0 . 
Consequently f(X—4)=rj. But this is impossible, since 3\X—4, (X—4)/3<P. 

Case (III). From LP =0 we get that w(P+2) = - £ , P+2£&>. Hence P = - l 
(mod3). Observing that 3 | 2 P + 5 , we get from L 2 P + 2 =0, that 

(2.4) g(2P+3) = £, 2P+3Î&. 

Let us consider now the relation 

/ (3P+ 4) + g (3P+ 5) + M (3P+ 6) + D (3P+ 7) = 0. 

From Lemma 2 we get that g(3P+5)=0, u(3P-f 7)=0, thus / ( 3 P + 4 ) = 4 , 3 P + 4 € ^ . 
Since, P, P + 2 , 2 P + 3 , 3P+4£0>, therefore P = - 1 (mod 5). 

Furthermore £,2 P + 3=0 immediately implies that / ( 2 P + 3 ) = 0 . Thus, by 
5 | 4P+ 9, we get that 

0 = LiP+6 = f(4P+ 6)+g (4P+ l) + u (4P+ 8) + v (4P+ 9) = 

= 0+g(4P+7) + «(P+2) + 0, 
i.e., g(4P+7)=£. 

Let4P+7=3E,g(E)=£,E€0>. From LE_1=0 we deduce that v(E+2) = 
Hence it follows that E= — 1 (mod 3) and so P = 2 (mod 9). Now we prove that 
u(E)=0. Indeed, in the opposite case from Z.£_2=0 it would follow that 
f(E-2)^0, but this is impossible since 3 | E-2, ( £ - 2 ) / 3 < P . 

So we have that u(3E)=u(4P+7)=0. Then 

0 s / (4P+ 5)+g (4P+ 6) + m (4P+ 7)+ v (4P+ 8) s 

= / (4P+ 5) + g(2P+ 3) + 0 + v(P+ 2). 

From L p - i S 0 we get that g (P )+u(P+2)=0 , and so v(P+2)=0. Using (2.4) 
we see that / (4P+5) = 4P+5Z&. Since P=-l (mod 5), we get that E= 1 
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(mod 5). Consequently 5\2E+3. So 

0 = f(2E+l)+g(2E+2) + u(2E+3) + v(2E+4) = / ( 2 E + l ) + 0 + 0 - £ , 

i . e . , / ( 2 £ + l ) = £ , 2E+\£&>. Similarly, 3 | 2 £ - 1 , therefore 

0 = f(2E-l)+g(2E) + u(2E+l) + v(2E+2) = 0 + £ + w(2£+l ) + 0, 

i.e., M ( 2 £ + 1 ) = - £ . We have 3(2E+ 1)=8P+17, hence 

0 = / (8P+15) + g (8P+16) + M (8P+ 17) +1; (8P+18) = 

= / ( 8 P + 1 5 ) + g ( P + 2 ) - $ + »(4P+ 9). 

Since 4 | P + 4 , we get from L P ^ = 0 that g ( P + 2 ) = 0 . Also, 5 | 4 P + 9 implies 
that u(4P+9)=0. Thus we have that / (8P+15) = £. 

Hence 8P+15 has to be a prime or the product of7 and K, where f(K) = Q. 
Assume that 8 P + l5=7K,f(K)=£. Then we get from LK= 0 that u(K+2)=-f, 
K + B u t 8P+15 = 7AT, P = — 1 (mod 3) imply that 3\K+2, and hence, by 
(K+2)/2^P, u(K+2)=0. 

So 8 P + 1 5 6 ^ . Since P, P+2,2P+3,3P+4,4P+5, 8 ^ + 1 5 € ^ , therefore 
P = 3 (mod 7). Let us consider now the relation 

0 = / ( 5P+ 8) + g (5P+ 9 ) + u (5 P+10) + v (5P+11). 

Since 9 | 5P+8, 6 | 5P+11, and u(5P+lO)=u(P+2)~therefore/(5P+8)=0, 
u ( 5 P + l l ) = 0 , and so g (5P+9)=£ . Then 5P+9=2A, or 5P+9=4A, where 
A£SP, g(A)=£. The second case cannot occur. Let us assume that 5P+9—4A, 
g(A)=£. Then, taking into account that 2\A-l, A +1, (^ + 1)/2<P, we get 
from La_x=0 that v(A +2)=—But this is impossible since 3 | A+2. 

Let us assume that 5P+9=2A. It follows from P=3 (mod 7) that A=5 
(mod 7), i.e., 7 | ^4+2. Furthermore, 3 | A+l, (A + l)/3<P, consequently 
u(A + l)=0, v(A+2)=0, and so LA-X=.0 immediately implies that f(A — l)=—£. 
Since A —I is an even number and has a prime divisor greater than P, therefore 
A-\=2B, f(B)=-£. From LB=0 we deduce that u(B+2)=£. Since 
5P+1=4B, 9 | 5P+8, r ( P + 2 ) = 0 , we get 

0 = f(5P+ 7)+g (5P+ 8) + M (5P+ 9) + z; (5P+-10) = —% + u (2A), 

i.e., u(A)=£. So we have 

/(A - 2) +g(A - 1) + u(A) + v(A +1) = 0. 

Since 3 | A—2, A + l, and G4 + 1)/3<P, therefore f(A-2)=0, u(^ + l )=0 , and 
so g(A — l)=g(B)= — In view of LB_1=0 this yields that 

(2.5) v(B + 2) ee 
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Since 2B+4 = A + 3, we have that u(A+3)=£, v(A + 3)=£. Let us consider now 
the relation 

f(A + l)+g(A + 2) + u(A + 3) + v(A + 4) = 0. 

Since l\A + 2, therefore g(A +2)=0. Furthermore 3\A + l, 3 | A+4. As 

(A +1)/3 = (2A + 2)/6 = (5P+ll) /6 < P 
for P>11, we have f(A + l)=0. We know that i>(P)=0 and i>(P+2)=0. Since 
P, P+2£0>, therefore P + 4 is a composite number, and so the smallest integer on 
which v assumes a nonzero value (mod 1) is s P + 6 . However, 

(A + 4)13 = (2A + 8)/6 = (5P+ 17)/6 < P+6 , 

therefore u(/4+4)=0. Consequently m(^ + 3)=0, contradicting (2.5). 
The proof of Theorem V is finished. 

3. P roo f of Lemma 1. For an arbitrary completely additive function h(ji) 
we can extend the domain of definition for the set of positive rational numbers by 
h(a/b)=h(a) —h(b). Let us do it for f , g, u, v. For the sake of brevity the relation 

f(a)+g(b)+u(c)+v(d) = 0 (mod 1) 

will be denoted by (a, b, c, d), where a, b, c, d are arbitrary positive rational numbers. 
From the additivity it follows that 

if (a,b,c,d) and ( A , B , C , D ) , then (aA,bB, cC, dD). 

We shall say that {aA, bB, cC, dD) is the product of (a, b, c, d) and (A, B, C, D). 
It is obvious that (I/a, lib, 1 jc, Ijd) holds if (a, b, c, d) holds. 

Let now L„=(n, n+l, n+2, n+3). First we shall express the values f(p), g(p), 
u(p), v(p) for primes p^20 as linear combinations of 

K = {/(2), g(2), «(2), v(2), f(3), g(3), «(3), »(3)}. 

The appropriate formulas will be denoted by F(p), G(p), U(p), V(p). Hence we can 
get some linear relations between the values listed in K. 

V(5) = L2 = (2; 3; 22; 5>, 

U(5) = L3 = (3; 22; 5; 2-3), 

F(7) = £7L2-1 = <7-2"1; 23-3"1 ; 2- 2 -3 2 ; 2>, 

G(7) = L6 = (2-3; 7; 23; 32>, 

V(ll) = <23-3"1; 2~2-32; 2; 11 - 2"1 • 3"1), 

K(17)= = <22-3-3; 2 - 4 ; 2 - 5 ; 17-2-2-3- s>, 

(7(5) = L ^ F i l W i l l ) ) - 1 = (33; 2 • 32•5; 2 " • 3~2; 2-35), 
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F(7) = L i G ^ ) - 1 = <22-3-3; 2 -* .3 - 2 ; 2-1 0-33 ; 7• 2'1 • 3_5>, 

F ( l l ) = L n L i L ^ G i S ) - 3 = ( I I - 1 • 25- 3 - 8 ; 2- 5 -3~ 7 ; 2~31-37; 2-4-3~12>, 

F( 53) = L^V&L^VO)-1 = (53- 2~3 • 32; 23-34; 211; 26-34>, 

T/YI — ¿15 ¿12 ¿7 ¿3 _ /0_5 , 5 . «g , _ 4 . , 3 . 1 ,3^ 

L1ML10LILIG(5) 3 ' 2 3 ' 2 ' 2 '3>' 

F(5) = L ^ L ^ V ^ L ^ L ^ L ^ = <5-2~4• 33; 2 1 0 -3- s ; 2- 5 -3 4 ; 2-4-33>, 

t/(7) = F t y L ^ 1 = (2~4-33; 2 9 -3- 6 ; 7- 1 -2~ 5 -3 4 ; 2-7-33>, 

G(13) = ia2£^(7)Z-2"1 = (2_ 3-34 ; 13-29-37; 2- 6 -3 4 ; 2-7-34>, 

G(l l ) = /^(5) ^ ( O ) - 1 ! , ^ 1 = (3~4; l l - 1 - 2 2 - 3 _ 1 ; 2~3; 2-3), 

£/(17) = FtyLis 1 = (2 _ 4-3 2 ; 26-3~5; 17- l -2~ 5 -3 4 ; 2~4-3>, 

{/(13) = F iWLnVCl) - 1 = <23-3-5; 2~2• 3~4; 13-2-2 1-34 ; 2-2-3-7>, 

t / ( l l ) = L.GiS)-1 = (3-1 ; 3- 2 ; 1 1 . 2 " u . 3 2 ; 2.3~4>, 

F(19) = £54G(11)C/(7)G(5)-1 = <2-3 .3~1; 21 0-3-9 ; 2- 1 6 .3 6 ; W ^ " 1 1 ^ " 1 ) , 

G(17) = V19)L£ = <2-7-3-1 ; 17 _ 1-2 1 0-3 _ 9 ; 2~17.34; 2~ n . 3 - 1 >, 

F " 7 ' = ^ ¿ C T G C T ' V . ) 
i/(19) = / ,(17)L2Xü1 = (23-3~6; 2~7-3; 19 - l . 2~ 2 . 3 ; 27-3-7>, 

G(19) = i 1 8 K(7)- 1 £, - , = <2-1-33; 19-2-3-32 ; 2 " - 3 - 3 ; 2-1-34) , 

F(19) = L w t / ^ F i l l ) - ^ ) - 1 = (19-2~6-3; 212.3~10; 2~17-37; 2~6 .3-1>. 

F, : = L 1 = (U 2; 3; 22>, 

F(5)3£j2 _ / 2^ . 3» 2 ^ 
2" F(5)3 \ 3 7 ' 21 5 ' ' 35 

¿340 ¿2 ¿-8G(11)/^ _ / 3 a
 9 \ 

L„L30L3VOf - Y T ' 2 3' 2 ' 2 ' 3 /' 

JT ¿ 1 3 3 ¿ 2 0 ¿ 1 5 G (5)2 Z-F1 / 2 5 8 \ 4- L66L14L8L3L7L6F(19)F(11)F(5) V » Z ° ' Z ' 3 1 7 / ' 

. = ¿32G(11)C/(17) / 3 _ . 
8 ' F(7) \ 2 a ' 3 4 ' ' 29 / ' 

T T15 

^ L33F(11) G(17)U(7) = <2 6-3 6 ; 2 2 - 3 2 2 ; 2M= 263-39>' 
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F,:= Lzi Lq ¿4 L\ 
Lr<>LQ 

= <24; 2 s-35; 219; 27-38>, 

p — L^G(SfL\ _ / 27
 n A 

_ L ^ F j l D U j 19) / 2 ^ . _3f_. J _ . _ 3 2 3 , 2 3 1 , 330/>, 

F „ : = 

L26 L\LzU (7) F (5) L\ 

-̂ 37 ̂ -8 ̂ 4 

L74Z18L2i/(19)C/(13) 

L30L23L45L3K(19)F(13)£Í 

212-33; 220; 22-313), 

310 
; 212 - 3s; 227; 218-3° £92L22L8L3F(11)F(5)2 

Let R denote the column vector [/(2,/(3), g(2), g(3), w(2), t>(2), «(3)]. The 
formulas F2, ..., F12 lead to the linear equation MR=0 (mod 1), where 

M = 

9 - 7 - 1 5 19 26 42 - 5 
- 1 2 9 6 25 11 13 

6 0 7 27 69 58 - 1 7 
- 2 1 8 - 4 1 - 9 6 

6 6 2 22 53 63 9 
4 0 5 5 19 7 8 
7 - 1 1 11 27 24 6 

- 5 7 11 3 22 14 8 
13 - 2 3 - 3 1 2 - 2 5 14 - 3 0 

- 2 9 12 3 20 2 13 
- 7 10 12 5 27 18 9 

By using the Gaussian elimination over the ring of integers, we get easily that the 
only solution of it is R=0 (mod 1). Hence, by the formulas F(p), ..., V(p) we get 
immediately that f(p), g(p), u(p), v(p)=0 (mod 1) for pS 19. 
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