
Acta Sci. Math., 47 (1984), 3—39 

Topological quasi varieties 

DAVID M. CLARK* and PETER H. KRAUSS 

A quasi variety is a class of algebras defined by a set of quasi equations 
A =» V, 

where each and W are equations. This well known notion can be generalized in 
many ways to accommodate the need for more powerful means of expression. The 
notion studied in this paper encompasses two such generalizations going into different 
directions. In one direction we follow GRATZER and LAKSER [11] who introduce 
structures with operations and relations. They then generalize a result of M A L ' C E V 

[17] to this setting: A class of structures is a quasi variety if and only if it is closed 
under the formation of isomorphic images, substructures and reduced products. 
Continuing in this direction ANDREKA, BURMEISTER and NEMETI [1] consider partial 
algebras and prove the corresponding result. In another direction we follow TAYLOR 

[22] who considers, topological algebras and introduces a new type of (infinitary) 
topological atomic formula to express net convergence. He then generalizes a result of 
BIRKHOFF [3] to this setting: A class of topological algebras is definable by topological 
atomic formulas if and only if it is closed under the formation of continuous homo-
morphic images, subalgebras and direct products. In this paper we shall consider 
topological structures (with operations, partial operations, relations and a topology) 
and introduce topological atomic formulas to talk about the topology. Since these 
new atomic formulas are infinitary, we have to allow for infinite conjunctions in 
topological quasi atomic formulas 

where each <Pt and W are atomic formulas and I is a set. A topological quasi variety 
is a class of topological structures defined by a class of topological quasi atomic 
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formulas. In this setting we show that a class of topological structures is a topological 
quasi variety if and only if it is closed under the formation of topological isomorphic 
images, substructures and direct products. 

The definition of this notion was motivated by the observation that topological 
quasi varieties naturally arise in the numerous topological duality theorems in the 
literature. In each case a category anti equivalence is established between the quasi 
variety generated by a finite algebra ^ and the class of compact members of the 
topological quasi variety generated by a finite topological structure P having the 
same universe as ^p. Accordingly we call the class of compact members of a topolo-
gical quasi variety a compact topological quasi variety. It easily follows that a class 
of compact topological structures is a compact topological quasi variety if and 
only if it is closed under the formation of topological isomorphic images, compact 
substructures and direct products. 

Duality theory is a rather recent topic in universal algebra and the primary 
sources are DAVEY [6] and DAVEY and WERNER [7] . We are mostly interested in their 
notion of full duality and we review the conceptual framework in which this notion 
is introduced. We then give a new characterization of this notion in terms of hull-
kernel closed sets which not only tends to clarify the situation but also leads to new 
duality results. We show that there is a full duality for the (quasi) variety generated 
by an arbitrary finite algebra having a near unanimity term and only simple non-
trivial subalgebras. This includes all dual discriminator algebras and unifies previous 
results for quasi primal algebras, distributive lattices, weakly associative lattices, 
median algebras, Kleene algebras and DeMorgan algebras. The full duality results 
for quasi primal algebras, weakly associative lattices and median algebras were claim-
ed by WERNER [ 2 3 ] and DAVEY and WERNER [7] , however their proofs are not correct. 
So we not only vindicate their claims but also establish them in a much broader 
context. 

Topological quasi atomical theories appear to be an interesting topic for the logi-
cian and — as far as we have been able to ascertain — some of the most obvious 
problems in this area are still open. We have addressed ourselves to the question of 
axiomatizability and have come up with axiomatizations of several topological quasi 
atomical theories, many of which arise in the context of duality theory. 

Altogether, we have attempted to put some rather diverse but extremely interest-
ing recent developments in universal algebra and model theory into a unifying perspec-
tive. 
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1. Topological quasi varieties 

In this section we define topological quasi varieties and investigate their basic 
properties. Special features are a suitable treatment of partial operations and the 
introduction of an infinitary first-order language which permits us to express many 
relevant topological facts. 

Given is a similarity type t determined by a set Op of operation symbols, a set 
POp of partial operation symbols and a set Rl of relation symbols. A topological 
structure X of similarity type t has a (non-empty) topological space X for a universe, 
for each n-ary operation symbol f£Op has a continuous 72-ary operation fx: Xn-*X, 
for each «-ary partial operation symbol g£POp has a continuous w-ary partial 
operation gx: D-*X, where D=dom (gx)^Xn is the (possibly empty) domain of 
gx, and for each n-ary relation symbol r~RI has a closed 71-ary relation rx^X", 
where X" is endowed with the product topology. In all constructions involving 
topological structures operations and relations behave as usual so that we shall 
only mention them in case something extraordinary or unexpected is happening. 
Although all topological constructions are standard as well, we shall be a little more 
explicit in this area because there are some subtleties which are easily overlooked. 
The situation is quite different with partial operations. There are several options 
available here which have been pursued in the literature (see, e.g., GRATZER [10]). 
Thus we have to make our choices quite explicit in this area. X is called an algebra 
in case it has neither partial operations nor relations, i.e. POpU Rl=0. 

To begin with, for Y to be a substructure of X(in symbols YQX) we require that 
Y is a subspace of X and for all g£POp, gYQgx and dom (gy)=dom (g x)D Y". 
For <p to be a continuous homomorphism from X to Y (in symbols q>: X— Y) we 
require that q> is continuous and for all g£POp, if xgdom (gx), then <px£dom (gY) 
and (pgx(x)=gY(<px). In the presence of partial operations and/or relations homo-
morphisms are afflicted with some peculiarities which cause much trouble and 
confusion in this area. To be more specific, if cp: X—Y, then the following condi-
tions are not necessarily satisfied: 

(1) If g£POp and /¿»xcdom (gr), then there exists >'6dom (gx) such that 
<px=q>y. 

(2) If rdRl and (px£rY, then there exists y£rx such that <px = (py. 
Notice that (1) implies that (p(X)^Y is closed under gY, i.e. (p(X) determines 

a substructure of Y, but not vice versa. The fact that <p(X) may fail to determine a 
substructure of Y will be an important issue later. This situation seriously affects 
the definition of surjective homomorphism and homomorphic image, and there are 
several options available for these notions. The notion of injective homomorphism 
is not entirely clear either. Fortunately we do not have to get involved in these trou-
blesome decisions because we only have to consider embeddings where the require-
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ments are quite clear. Consequently we shall use the notions "injective" and "surjec-
tive" only for mappings. <p is called a (topological) embedding (in symbols cp: X ||—• Y) 
in case cp is a continuous homomorphism and an injective mapping whose inverse 
is continuous, where 

(i) for all g€POp, x6dom (gx) iff <p.Y€dom (gY): 
(ii) for all r£RI, x£r* iff (px£rr. 

<p is called a topological isomorphism (in symbols cp: X ||—»• Y) if, in addition, cp is a 
surjective mapping (equivalently, if (p has a two-sided inverse). Now it is clear that a 
topological embedding is a topological isomorphism with a substructure. For the 
direct product Y=J]{Xi j / £ / ) of the set of structures {X,-1 /£ /} we require that Y 
is endowed with the product topology and that for all g£POp and all ydY", 

y £ dom (g r) iff j(i ')6dom(gx i) for all i£l, and 

gY(y0, •••,)'n-i)(Q = g x ' (y o(0, ••• > J'n-i(')). 

By a trivial structure we mean a one element structure with all partial operations and 
relations nonempty. For example, the direct product /7(X ( | /'€0) of the empty set 
of structures is trivial. 

If / £ / , then the projection 

17<X/U'€/> 

is afflicted with both peculiarities mentioned above, i.e. (1) and (2) both may fail 
although Kj clearly is a surjective mapping. 

If J f is a class of topological structures then I X , SJf and S c J f denote the 
classes of topological isomorphic images, substructures and compact substructures 
of members of jf respectively, and P X denotes the class of direct products of non-
empty subsets of First we show that our definition of direct product is correct 
for the category we have defined. 

Lemma 1.1. (Transfer Principle). Suppose / V 0 and for each i£l, <Pi'. Y—X{. 
Then there exists a unique i/r Y—JJ (Xf | z£/) such that for all i£l, <p;= n^ij/. 

Proof . Suppose g^POp and j6dom(g r ) . By hypothesis, for every /£/, 
<p,-j>£dom (gx>) and <pigr(y)=gx'(<piy). Thus ifry(i)£dom (gx') for all / £ / and 
therefore <fiy£dom (gz), where Z = / J (X; | /£ / ) . Finally, ¡¡sgY(y)(i)=(pigY(y)=: 

=gx,(<P,y)=gxi*l'y(0)=gz(>l>y№ for all iO. 

Next we show that the usual separation properties can be augmented to obtain 
subdirect representations in this setting. 

Lemma 1.2 (Separation Principle). For any nontrivial structure Y, Yd ISPJf 
if and only if 
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(i) If x, yd Y, where x^y, then there exist X^o/f and (p: Y—X such 
that (px^q>y. 

(ii) If gePOp and >4 dom (gY), then there exist X£jf and q>: Y-~X 
such that (py $ dom (gx). 

(iii) If rf RI and then there exist Xg jT and cp: Y—X such that 
<py$ r*. 

(iv) If D is a subset of the power set of Y directed by inclusion, 5: D-~Y is a 
net in Y and y£Y, where 5d -+• y, then there exist Xf jf and <p: Y—X such 
that (poddd-%- (py. 

P r o o f . The necessity of (i)—(iv) is obvious. So assume (i)—(iv). We consider 
all instances mentioned in conditions (i)—(iv), and for each instance we choose 
X^jf and <p: Y-*X "witnessing" its occurrence. So let X ; £ j f , Y—X,, 
where be a set of "witnesses". By the Transfer Principle, there exists unique 

i p - . Y ^ n w a ) 

such that for all /£/, cpi—n^oxj/. We shall show that \\t is a topological embedding. 
As usual, the witnesses for (i) make i// an injective mapping. To show that t¡z-1 

is continuous it suffices to establish that is a closed mapping. So suppose WQY, 
where i//(JV)Q^(Y) is not closed. Then there exists y£Y such that ipy is a limit 
point of ip(W) but ip(y)$\p(FV). Let D be the set of U<I-Y such that ip(U) is 
a neighborhood of ipy. D is directed by inclusion. For each U£D there exists 
¿U£Y such that ipodU£ip(U)r\ip(W). Thus ipo§Uu^D ipy. If du"-^ Y, 
then by construction we obtain from (iv) and Y^X, such that 
(Pio8UV4~ <Piy and therefore n^tpoSU ^¡oi/zy, contradicting net conver-
gence in direct products. Thus 5U v-iDy so that y is a limit point of W, but W. 
It follows that fV is not closed so that i / ' - 1 is continuous. 

Next, suppose g£POp and y§ dom (gr). Then by construction we obtain 
from (ii) and rp£: Y—Xi such that <pty^ dom (¿/X')- Thus ipy(i)$ dom (g*-) 
and therefore i / ^ d o m (gz), where Z = / J (Xi j /£/). 

Since the witnesses for (iii) take care of the relations, ip is indeed a topological 
embedding. 

The Separation Principle considerably simplifies for compact Hausdorif 
structures. 

C o r o l l a r y 1.3 (Compact Hausdorif Separation Principle). Let X be a class 
of Hausdorff structures and let Y be a nontrivial compact structure. Then Yd ISCPJf 
if and only ifY satisfies (i), (ii) and (iii) of Lemma 1.2. 
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P r o o f . By the proof of Lemma 1.2, it clearly suffices to show that under the 
assumption of (i), (ii) and (iii) of Lemma 1.2 i j / i s continuous. This however follows 
from the fact that Y is a compact space, \// is an injective mapping and JJ(XI | /£/> 
is a Hausdorif space. 

C o r o l l a r y 1.4 (Compact Hausdorff Separation Principle for Algebras). 
Let Of be a class of Hausdorff algebras and let Y be a nontrivial compact algebra. Then 

IScP Jf" if and only if distinct members of Y can be separated by continuous homo-
morphisms into members of . 

R e m a r k 1.5. DAVEY and WERNER [7] denote conditions (i) and (iii) of Lemma 
1.2 by (SEP) and claim that a compact Y belongs to ISCP^T just in case it satisfies 
(SEP). In the presence of partial operations this is not correct and it requires a good 
deal of technical detail work to correct their arguments in this case. Unfortunately 
we shall have to get involved with this issue in Section 3. 

Now we introduce just enough language to determine IS^P-yf as a topological 
quasi variety. Let Vb be a proper class of variables. We define the class Tm of fini-
tary terms as usual building up terms from variables using both operation and par-
tial operation symbols. We have two types of atomic formulas. First the (finitary) 
algebraic and relational atomic formulas 

T % A, RTQ TJ... TN _ I , 

where r, o, T0, ..., r„_1£Tm, % is the identity symbol and / (¿Rl, and secondly 
the (infinitary) topological atomic formulas 

where (D, is a directed set, t: D Tm is a net in Tm and Tm. A topolo-
gical quasi atomic formula is an expression of the form 

or 

where is a (possibly empty) set of atomic formulas and ¥ is an ato-
mic formula. 

An assignment of the variables in the topological structure X is a mapping 
x: Vb-^X. For x£Tm we define by simultaneous recursion the two notions "T 
is defined for .v (in X)" and "rx[x]£X" in case T is defined for x. 

(1) If v£Vb, then v is defined for x and ux[x]=:x(i>). 
(2) If f£Op, then / T 0 . . . T „ _ 1 is defined for x iff T0 , ..., T„_! are defined for x, 

and then ft0...Tn_1
x[x]^fx(tx[xl ..., TJJLJX]). 

(3) If g£POp, then gz0... T„_! is defined for x iff T0, ..., rn_t are defined for x 
and <T*[X], . . . , T*_Jx])€dom (gx), and then gT0...Tn_1

x[x]=gX(X*[x],..., T*_X[X]). 
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Next we define the notion of satisfaction for quasi atomic formulas. 

X != <x ~ T [ X ] 

if a and R are defined for x and <TX[X] = T X [ X ] . 

X | = /'t0...T„_1[X] 

if T0, . . . ,!„_! are defined for x and < T * [ X ] , . . . , T * _ 1 [ X ] ) € / , X . 

if all Td, d£D, and a are defined for x and tJ[X] <rx[x]. 

X n A ^ I UA}=>¥[x] 

if there exists C_£A such that or X h ^ f x ] , Finally 

X )= 

provided for each c£A. Notice that for each "disjunctive" topological 
quasi atomic formula <f> there is a finite set of "implicational" topological quasi 
atomic formulas which are equivalent to <2> in any nontrivial structure. 

A topological structure X is called a model of a class E of topological quasi 
atomic formulas (in symbols X\= Z) if for every and every x: Vb-*X, 
X ^ $ [ x ] . A class J f of (compact) topological structures is called a (compact) 
topological quasi variety if there exists a class I of topological quasi atomic for-
mulas such that X is the class of (compact) models of I. The topological quasi 
atomical theory of j f (denoted by Th t q aX) is the class of topological quasi atomic 
formulas iP such that each member of Jf is a model of The (compact) topological 
quasi variety generated by Jf is the class of (compact) models of Th t q aJf. 

Example 1.6. Some facts which hold in all topological structures by their 
very definition are expressible by topological quasi atomic formulas which there-
fore become logically true. As usual we shall write i= in case Xf= <P for all 
topological structures. To begin with, notice that for g^POp and x£X" we have 

x£dom (gx) iff X N i i o . - s . - i ^ m - V i W 

so that ia=gv0...vn-lmgv0...vn-.1\ On the other hand, 

N gV 0---V„-l ~ Vn=>gVo---»«-l % gv0. ..vn„1 

so that for x£Xn+1 we have 

x6graph (gx) iff X N « t>„[x]. 
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Now let (D, be a directed set and v: D-*Vb". Then 

t=[ A g{v(d)o, *g(»(d)o, "J -

=> [g(v(d)0, ...,v(d)n^)-^g(u0, ..., U.-0] 

because for each topological structure X, gx is continuous. Similarly we can express 
with topological quasi atomic formulas that / * is continuous and rx is closed, 
where f£.Op and r£RI. We can also say "the graph of gx is closed", where 
gePOp: 

[A g(o(<0o, ~ »GO. A A «,] =>g(«0, ..., w„-i) « u.. 
¿tD ¡Sn 

Let this formula be abbreviated by Cl(g). Now ^Cl(g) , but X|=Cl(g) in case 
X is Hausdorff and gx is a full operation on X. Of course, this observation applies 
to the graphs of operations as well. 

Example 1.7. Consider the class of topological abelian groups (A, + , —, 0). 
Then a discrete abelian group is torsion if and only if it is a model of the single 
topological atomic formula m\vm-&°0. 

Next we shall consider preservation properties. 

Lemma 1.8. (i) Suppose XQY, x is a term and x: Vb-*X. Then x is defi-
ned for x in X if and only if x is defined for x in Y. Moreover, in this case rx[x] = 
= xY[x]. 

(ii) Suppose <p: X—Y, x is a term and x\ Vb-*X. If x is defined for x, then x 
is defined for <pox and (pxx[x\ = xr[(pox]. 

(iii) Suppose Y= f j (Xi | z£/), x is a term and x: Vb — Y. Thenx is defined 
for x if and only if for every /£/, x is defined for »/¡ox. Moreover, in this case 
rr[x](0=Tx'[7r;ox] for all i£I. 

Lemma 1.9. (i) Suppose XQY, is an atomic formula and x\ Vb-*X. 
Then X\=<P[x] i f f Y\=<P[x]. 

(ii) Suppose cp: X—Y, <P is an atomic formula and x: Vb-~X. Then X|= 
N $ [A] implies YF= $[<pox]. 

(iii) Suppose Y—JJ (Xj | /£/), <P is an atomic formula and x\ Vb-~Y. Then 
Yt=<P[x] i f f X.-NiPfoox] for all i£L 

Corol la ry 1.10. Topological quasi atomic formulas are preserved by I, S 
and P. 

Now we prove a technical lemma which characterizes continuous homomor-
phisms with a fixed domain Y, where we have YQVb. Choose a: Vb-*Y where 
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a(v) = v for v£Y. Next define E to be the set of all algebraic and relational atomic 
formulas <P with variables from Y where Y\=$[a\, and all topological atomic 
formulas id a with variables from Y, where D is a subset of the power set of Y 
directed by inclusion and Yt=rd

d$P <?[a]. 

Lemma 1.11. A map cp: Y-*X is a continuous homomorphism if and only if 
for each X^= <P[(poa]. 

Proof . One direction follows from Lemma 1.9 (ii), so assume cp: F—X and 
X\=$[<poa] for each We claim that cp: Y^X. Indeed, consider g^POp 
and (x0, ..., x^^edomig*) . Then 

Y t= gxo.-.x^! % 
and therefore 

X N gx0...x„_! % gxo-.-^-jfiiooa]. 

It follows that ((px0, ..., ^x„_1)£dom (gx). Considering the atomic formula 
...x„_! % xn, where gv(x0, ..., x„_1) = xn, we establish that 

<pgY(x0, ..., xn_x) = gx((px0, ..., (px„-1). 

Operations and relations are treated similarly so that we are left with showing that tp 
is continuous. So suppose WQX is closed and is a limit point of <p_1{W). 
Let D be the neighborhood system of y. D is directed by inclusion. For each UdD 
there exists WdUr\<p-^(W), and 8Uu^"z. In other words, Y \= SU U£P z[a], 
so that X\=8Uu^Dz[<poa]. Thus <podUv^D tpz, where cpodUdW for all 
U£D. Since W is closed, <pzC-W and therefore z6(p~1(H/). 

Theorem 1.12. YglSPJf if and only if Y|=Th l q aX. 

Proof . Assume yf=Th t q aJf . We shall establish conditions (i)—(iv) of the 
Separation Principle. Without loss of generality we may assume that Y^Vb. 
Let x, y£Y, where x^y, and define E as in Lemma 1.11. Then 

Y?= A { I > | 0 £ E } => x y[a] 

and therefore there exist X£K and b: Vb—X such that 

X A{4>|<Z>£l}=>x % y[6]. 

Define (p: Y^X by <p(v) = b(v), v([ Y. By the choice of variables we may assume 
that b — (poa. Since X|=$[<poa] for each <p: Y—X by Lemma 1.11. 
Since (p(x)9i(p(y), condition (i) of the Separation Principle is established. The 
other conditions are proven by the same argument. Now check that the assertion is 
also true when Y is trivial. 
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C o r o l l a r y 1.13. A class X of (compact) topological structures is a (compact) 
topological quasi variety if and only if X is closed under I, S(E), and P. 

Example 1.14. Since a subspace of a compact topological space is not neces-
sarily compact, by Theorem 1.8, the class of compact topological structures is not 
in general a topological quasi variety. This forced us to introduce the notion of a 
compact topological quasi variety in the metalanguage. 

As mentioned in the introduction, M A L ' C E V [17] shows that a class J F of algebras 
is a quasi variety if and only if it is closed under the formation of isomorphic images, 
subalgebras and reduced products, and A N D R É K A , BURMEISTER and NÉMETI [1] 

have generalized this to partial algebras. It turns out that there is no corresponding 
result for topological quasi varieties because they are not closed under ultrapowers. 

Lemma 1.15. Let X be any topological structure and let U be a nonprincipal 
ultrafilter on an infinite set I. Then the quotient topology on Xjj is the indiscrete topo-
logy. 

Proof . Let cp: X1—X^ be the canonical mapping, MQX' a basic open 
set in the product space, and let x£X'. Choose y£M which differs from x on a 
finite set. Since U is nonprincipal, {/£/1 ,x:(z)=j/(/)}££/. Thus x/U=y/U(i(p(M) 
so that q>(M)=Xlj. The assertion follows at once. 

Now a definition of the ultraproduct Xj, can only be considered adequate if the 
canonical homomorphism cp: X'^-X^ is continuous. Thus the topology on X\j 
has to be trivial. Hence, if X is a non-trivial Hausdorff structure, then X\j is not 
Hausdorff. It follows from Example 3.2 that no topological quasi variety containing 
a non-trivial Hausdorff structure is closed under ultrapowers. 

2. Compact (topological) quasi varieties equivalent to (algebraic) quasi varieties 

In this section we shall investiate a method of generating compact topological 
quasi varieties which has been recently developed in duality theory. This method 
yields many interesting examples of compact quasi varieties which play an important 
role in the literature. The foundations of (topological) duality theory were laid in 
DAVEY [6]. In a recent paper DAVEY and WERNER [7] give an expansive exposition of 
duality theory which contains some important advances yielding new applications. 
The idea of central interest to us is their notion o f f u l l duality. Unfortunately DAVEY 

and WERNER [7] contains some claims concerning full duality whose proofs are not 
correct in case partial operations are involved. This then yields some applications 
that are not justified. In this section we shall develop a theory of full duality which 
hopefully is both correct and substantially contributes to better understanding of this 
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notion. Moreover, our approach yields new full duality results which vindicate and 
generalize the unestablished claims of Davey and Werner. For this purpose we shall 
(almost) completely adopt the notation and terminology of DAVEY and WERNER [7] 
and shall briefly review the setting of their investigation. 

To begin with, we shall simultaneously deal with two distinct similarity types: 
A type t of algebras determined by a set Op of operation symbols, and a type t 
of topological structures determined by a set Op of operation symbols, a set POp 
of partial operation symbols and a set Rl of relation symbols. Given is a finite, 
non-empty set P, an algebra <^=(P,f^)fi0p of similarity type t, and a topological 
structure P=(P, fpgp,rp)fe0p g€P0p>r€RI of similarity type t, where P is 
endowed with the discrete topology. In addition we require that P and satisfy the 
two equivalent conditions of the next lemma: 

Lemma 2.1. The following are equivalent: 
(i) Each operation, non-empty partial operation and non-empty relation of P 

determines a subalgebra of a power of 
(ii) Each operation is a continuous homomorphism from a power of P into P. 

The purpose of this requirement is to secure Lemma 2.2. 
We now consider the (algebraic) quasi variety jSf=ISP^P as a category, where 

for each 9t, S) denotes the set of homomorphisms / : 21-23. Simul-
taneously we consider the compact (topological) quasi variety ^?0=ISCPP as a 
category, where for each X, Y£i%0, &0(X, Y) denotes the set of continuous homo-
morphisms cp: X—Y. Notice, since P is a compact Hausdorff space, X£SCPP 
if and only if X is a closed substructure of a direct power of P. 

Lemma 2 . 2 . (DAVEY and WERNER [7]). (i) For each SlgJSf, «P) deter-
mines a compact substructure of PA. 

(ii) For each X£<%0, &„(X, P) determines a subalgebra of 

For each let Z)(9I) be the compact substructure of PA determined by 
D(A)=£C(% <P), and for each Xe.<%0, let E(X) be the subalgebra of determined 
by E(X)=a0(X,P). For each f€&(%93) and g£D(B) define D(f)(g)= 
=gof, and for each <p€^0(X, Y) and \p£E(Y) define E((p)(ij/)=\l/o<p. 

Lemma 2.3. (DAVEY and WERNER [7]). D is a contravariant functor, i.e. 
(i) D(Sl)€«o, 
(ii) D ( / ) : D ( » ) - D ( 5 0 , 
(iii) D(fog) = D{g)oD(f). 

Lemma 2.4 (DAVEY and WERNER [7]). E is a contravariant functor, i.e. 
(i) £(X)€J2f, 
(ii) E(<p): E(Y) - E{X), 
(iii) E(<poij/) = E(\l/)oE(q>). 
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This setting suggests a natural concept of duality. E is called a dual representa-
tion for i f if E is onto objects, i.e. for each SlÇJSf there exists Xe@0 such that 
'ii^E(X). DAVEY and WERNER [7] set up a situation where such a dual represen-
tation is achieved canonically. For each 2t£i? and ai A define the projection 
en(a)=na: Z)(2l)—P, and for each XÇâê0 and x£X define the projection e x (x )= 

Lemma 2 . 5 (DAVEY and W E R N E R [7]) . D and E are adjoint to each other, and 
e% and sx are embeddings in i f and respectively, i.e. 

(i) e a : Sill— £¿>(21). 
(ii) e x : X l|~—DE(X) is a topological embedding onto a closed subspace of 

pEQQ 

(iii) For each h££t? (21, 23) and <p£@0(X, Y), the following diagrams commute: 

2t - X 2 • Y 
eai| |eo sx| |eir 

(iv) There is a one-to-one correspondence between i f (51, is(X)) and â?0(X, i)(2I)) 
defined by the commuting diagrams 

S i l l — £Z)(2i) X\\-^-~DE(X) 

EM D(g) 

E{X) £>(21) 

i.e. g=E(D(g)oex)oem and (p=D(E(<p)oen)oex. 

In this setting DAVEY and WERNER [7] define their notions of duality and full 
duality. 

De f in i t i on 2 . 6 (DAVEY and WERNER [7]) . (D, E) is called a duality if for 
every 21€if, em: Sill-»-ED(21) is an isomorphism.: 

Clearly, if (D, E) is a duality, then E is a dual representation for i f . Moreover, 
in this case for each 2l£ if there is a canonical choice for a representative in 
namely i>(21). Thus all members of the (algebraic)'quasi variety are uniformly 
represented as algebras of continuous functions. 

The notion of "full duality" concerns the "uniqueness" of the representation. 
For this purpose DAVEY and WERNER [7] consider full subcategories 
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Def in i t ion 2 . 7 (DAVEY and WERNER [7]) . Let (D, E) be a duality and let 
o be a full subcategory. (D, E) is called full between & and Sf if for 

every XdSf, ex: X \ \-*-DE(X) is a topological isomorphism. 

Now it appears to us that this relativized notion of full duality is rather mislead-
ing because in a sense it is completely superfluous. This situation then tends to dis-
tract from the real "issue of full duality". To say more precisely what we mean, let 
D(Jif)QSfQâiï0 be a full subcategory. Ey denotes the restriction of E to i f , and is 
called a category anti-equivalence between if and i£ if it is onto objects, full (i.e. 
forany X, YÇ.S? andany h: E(Y)-+E(X), thereexists cp: X—V such that h=E(<p)) 
and faithful (i.e. for any <p, \li££f(X, Y), if E{<p)=E{\p) then (p = \p). In this 
setting the last condition is actually redundant: 

Lemma 2.8. E is faithful. 

Proof . Suppose E(cp)=E(ij/), where cp, if/: X—Y, and let /_: Y[|—• P1. Then 
for each i£l, niox^E(Y). Thus for all x£X, 

E(<P)(.ntox)(x) = E(il/)(niOx)(x), 

XiZvix) = 7liXlj/(x), 

%cp{x) = # ( x ) , 

(pipe) .= ij/(x). 
This establishes that <p=\j/. 

Similarly we say that D is a category anti-equivalence between ££ and ¿f if it 
is onto objects, full and faithful. Again we may forget about the last condition. 

Lemma 2.9. D is faithful. 

Proof . Similar to the proof of Lemma 2.8. 

Lemma 2.10. Suppose {D,E) is a duality and is a full sub-
category. If {D, E) is full between £ and Sf, then D: J a n d Ey: are 
both category anti-equivalences which are inverse to each other in the sense that 

ED(31) <& far all %<L<£\ DE(X) ^ X for all X£Sf. 

Proof . By Definitions 2.6, 2.7 and Lemmas 2.8, 2.9 both D and E are onto 
objects and faithful. To show that D is full, let S I , and (p: D ( 9 3 ) - J D ( 9 I ) . 

Define h=e%loE(<p)oen. Then h: 21-«-93 and by Lemma 2 . 5 (iii), 

E(<p) = e9ohoe? = ED{h). 

It follows from Lemma 2.8 that cp—DQi). This establishes that D is full, and to 
show that E is full we argue similarly using Lemma 2.9. 
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Now if £ is a dual representation for if then the "natural notion of uniqueness" 
is category anti-equivalence. Again in the Davey—Werner setting more is required: 
Each 916 i f can be canonically recaptured from its canonical representation £>(21). 
This is an extremely tight connection so that the next (purely category theoretical) 
observation is not surprising. 

Lemma 2.11. Suppose (D,E) is a duality and is a full sub-
category. Then (D, E) is full between i f and Sf if and only if I ^ = L D ( i f ) . 

Proof . If (D,E) is full between i f and SF, then W=\D(G) by definition. 
Conversely, consider A6i f . In Lemma 2.5 (iv) set X=D(2I) and <p=idD(/1). Then 
we obtain the following commuting diagrams: 

By Lemma 2.4, £(idD(x4))=id£I)(^) and therefore ^=id£ D ( y l )oe a=e2 I . It follows 
that D(g) is bijective and hence is bijective. Now we obtain at once from Lemma 
2.5(iii) that for any X£LD(if), e x : X\\-+-DE(X) is a topological isomorphism. 

This observation reveals that any duality is full in exactly one way. The "issue 
of full duality" appears to be the task of identifying the category ID(if) , i.e., to give 
a comprehensible description of the topological structures belonging to this category 
in terms of their topology and their structure. It does not appear that the Davey— 
Werner definition of full duality is helpful in this respect. In an attempt to carry out 
this task we shall first give a description of the category LD(if) which is completely 
independent from the category theoretical construction, i.e. which does not involve 
the adjoint contravariant functors D and E. For this purpose we introduce the notion 
of hull-kernel closed subset of a power of P. This notion plays an important role in 
sheaf representation and has been investigated in a much more general context in 
KRAUSS and CLARK [16 ] . However, for our purposes it suffices to consider a limited 
version which we shall give a self contained treatment. For each non-empty set S, 
let 3rs be the subalgebra of <P(pS) (ISP^-freely) generated by the set {7t s | j£S} 
of projections. For A, T£ FS define 

and for an arbitrary subset ZQ-P5 define the hull-kernel closure X of X by 

3 1 £ 0 ( 2 * ) 

EDW 

D (21) I D E D (21) 

rna) 

Dm 

Eq(<x, t) = {x€Ps|«7(x) = t(x)} 

X = N { E q ( f f , T ) | * G Eq( f f , T)}. 
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In other words, y£X if and only if <j(y)=T(y) whenever <T, T£Fs and O-(X)=T(X 
for all x£X. In particular, each member of nxFs has a unique extension in nxFs 

so that n x $ x X is called hull-kernel closed if X=X. 

Lemma 2.12. For any X, T g / ^ , 
(i) X g Z , 
00 X=X, 

(iii) XQY implies XQY. 

Lemma 2.13. Every hull-kernel closed subset of P5 is closed in the product 
topology. 

First we shall give a characterization of hull-kernel closed sets which will reveal 
the role of partial operations in the topological structures of similarity type t. 

Lemma 2.14. Suppose and XQPs. If for every f : nx g s — ̂  there 
exists x£X such that f=nx, then X is hull-kernel closed. 

Proof . If y€X, we can define f : Xxfts"^ by f{nxa) = (j{y). Choose x£X 
so that f=nx. Then for any s£S, 

x(s) = ns(x) = 7tx(7r,) =f(nx(ns)) = 71 Jy) = >>(» 

so that y=x£X. 

Now suppose SIQ^J7 and / : 2 1 — W e can view / as an /-place partial 
operation on P. For each non-empty S. we can canonically lift / to an /-place 
partial operation / on Ps. The domain o f / is defined by 

A= {x£(Ps)l\nsox<iA for all 

and / : is defined by J{x){s)=f(nsox). We call X<gPs closed under / 
if J(x)£X whenever xdXT\A. 

Lemma 2.15. Suppose 5 ^ 0 and XQ Ps. Then X is hull-kernel closed if and 
only if X is closed under every / , where 2l£SP^> and f : 21 — 

Proof . Assume X is hull-kernel closed, 2 1 ^ ' , / : 21-<P and xdX'C\A. 
Since gs is generated by {7rs | sdS}, each member of Fs is of the form t5s(7tSo, ... 
...,ns ), where x is an /¡-place term. So suppose 

X g E(tZS(KSo, ... , 0*s(nSl), ... , nSn_J). 
Then 

•^(n^ox, ..., nSn_iox):I - P 

2 
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and therefore for each /£/, 

= T*(X(»)(jo), * ( 0 ( J - i ) ) = n ^ X x i O ) = 

= (-v(0) = . . . , 7r5n_l0x)(l). 
Thus 

- , * , „ - , ) ( / « ) = T*(f(x)(s„), ... ,/(*)(*„-,)) = 

= *V(f(Xs„°x), •••,f(xs„-1°x)) =f(**'(Xso°X, ..., n^ox)) = 

= f{o*(ltHOX, ...,TlSn_xOX))= G*s{nSa, •••,nSn_1)(J(x)). 

This establishes that f{x)£X=X. 
- Conversely, suppose for all 3i£SP<p and / : — X is closed under / . 

Consider and / : n x D e f i n e x£Ps by x(s)=/(nx(jis)). 
We shall show that x£X and f=nx. So consider nxFsQ(Ps)x and / : tzxFs^P^. 
Let T(>') =y for all y£X. Clearly nsoz^nxFs for all s£S and therefore z^nxFs. 
By hypothesis, / ( T ) £ X and for each s£S, 

/( T)(J) =f(nsoT) = f ( i t M ) = x(s). 

Thus x=J(t)£X. Finally, for each s£S, 

= x(s) = ns(x) = ^(^(TT,)). 

Since g s is generated by | J £ . S } , f=nx. By Lemma 2.14, A" is hull-kernel closed. 

C o r o l l a r y 2.16. Every hull-kernel closed set XQPS, where St60, determines 
a substructure XQPS. 

Proo f . Suppose g£POp. By the requirement Lemma 2.1 (i), gpQPn+1 

determines a subalgebra of g" !1. Thus Z>=dom (gp) determines a subalgebra 
X>g<Pn and gp: Thus by Lemma 2.15, X is closed under gpS: D^PS. 

L e m m a 2:17. For every StGJSf, D{A)^=Pa is hull-kernel closed. 

Proo f . Consider To simplify notation, we take y>=(P, + ) , 
where + is binary. Then for any a, b£A, na, nb, na+b£FA. Thus for any f£D(A), 

*.+»(/) - /(«+b) = № +№ = T i a ( f ) +**(/) = (*«+nb){f). 

This shows that D(A)QEq(na+b, na+nb). It follows that for any g£D(A), 
Ka+b(g)=(na+nb)(g) and therefore g(a+b)=g(a)+g(b). Thus g£D(A) and 
D(A)^D(A). 
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Let S^PP be the class of topological structures X, where for some 5V0, 
XQP11 is hull-kernel closed, and let @hk=lShk¥P. 

Theorem 2.18. is a full subcategory. 

Proof. Use Lemma 2.13, Corollary 2.16 and Lemma 2.17. 

Next we shall characterize duality in terms of hull-kernel closed sets. 

Lemma 2.19. For each fdD(Fs) there exists xdPs such that /= nx. 

Proof. Define xdPs by x(s)—f(n^. Then for any sdS, 

f M = x(s) = ns(x) = nx(ns). 

Since {Tts|i€5'} generates f=nx. 

Lemma 2.20. 2l€lSP^B if and only if there exist non-empty S and hull-kernel 
closed X^PS such that 21 = 7rx <ys. 

Proof. Suppose 2l£lSP^3. Then there exist non-empty S and / : <ys-> 21, 
and there exist / and g: 2 I | | — . For each id I consider. 

Let h^ii iogof. Then /¡¡60(/-s) and by Lemma 2.19, there exist XidPs such 
that h =nx . Let ; A'={xl-1 idl}. Then for any o, idFs the following assertions are 
equivalent: 

f(o) = /(r). 

For all id I, nigf{t) = nigf(x). 

For all id I, /ij(<7)=/ii(r). 

For all id I, n
x{a)=nxt CO-

nx{a) = nx(T). 

Thus 21 = = nx 5s ' and we may assume that X—X-. 

Lemma 2.21. For any non-empty S and closed XQPS, nx$SQE(X). 

Proof. Check directly that for each s£S, tix(ns): X-+P is continuous. Since 
5s is generated by {7ts | .ygS'}, by induction for each T£Fs, nx(r): X-+P is conti-
nuous. The remainder of the assertion follows from the requirement Lemma 2.1(iii). 

2* 
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Now in Lemma 2.5(iv) set 31 — nx^s and i: rcx0rsll—~E(X) tbe injection map-
ping to obtain the following commuting diagrams: 

E(X) 

X | | — Z ) £ - ( X ) 

\ Í 
D(nx%s) 

D(0 

•D{nx 5s) is a topological embedding onto a closed 

Clearly §x(x) = nx: 

L e m m a 2.22. <5X: X | 
subspace of P"xFs 

Proo f . Adjust the proof of Lemma 2.5 (ii). 

L e m m a 2.23. <5X: X ||—»- D(nx%s) is a topological isomorphism if and only if X 
is hull-kernel closed. 

Proo f . If <5X is a surjective mapping then, by Lemma 2.14, X is hull-kernel 
closed. Conversely, assume X is hull-kernel closed. By Lemma 2.22 it suffices to show 
that 8X is a surjective mapping. Indeed, let / 6 D(nx Fs) and consider 

% 
By Lemma 2.19, there exists x£Ps such that fonx=nx. We shall show that x£X. 
Consider A, T(LFS, where XQEq(A,T). Then NX{A) = NX(X) and therefore 
/(TI^(<x)) = / ( % ( T ) ) . Thus n x o=n x T, i.e., <T(X)=T(X). This establishes that 
X£Eq(cr, T), SO x£X—X. Now we obtain for any s£S, 

f(nx(nsj) = nx(ns) = nx(nx(ns)). 

Since {7is! generates f=nx—5x(x). 

C o r o l l a r y 2.24. If X is hull-kernel closed, then E(X) = kx^s if and only if 
• FD(nx 5s) is an isomorphism. 

Proof . Returning to the definition of <5X we obtain from Lemma 2.23 the follow-
ing commuting diagrams: 

ds l l - ^ 5 - » ED{nx 0fs) 

E ( I X ) 

X I I - ^ U D E ( X ) 

Dfads) 

D(i) 

The assertion follows at once. 
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Now we obtain the promised characterization of duality in terms of hull-kernel 
closed sets: 

Theorem 2.25. (D,E ) is a duality if and only if for every non-empty S and 
every hull-kernel closed XQPS, E(X)=nx 

Proof . One direction follows immediately from Corollary 2.24, and for the 
other use Lemmas 2.5, 2.20 and Corollary 2.24. 

Notice that in case (D, E) is a duality, then in particular for any non-empty S, 
E(Ps)=tys. Next we give a description of the dual category ID(£P) which does not 
depend on the category theoretical construction: 

Theorem 2.26. Suppose (D,E) is a duality and 0 is a full 
subcategory. Then (D, E) is full between <£ and if if and only if £f=3%hk. 

Proof . By Theorem 2.25, for every non-empty S and every hull-kernel closed 
XQPS, ex=5x. Thus by Lemma 2.24, (D, E) is full between and 0thk. The 
remainder of the assertion follows from Lemma 2.11. 

Now the "dilemma of full duality" becomes apparent: The definition of hull-
kernel closed structures X£ShkPP does not involve the topology of the space X 
and the structure of X (in terms of the similarity type T!) but involves the ISP^S-free 
structures of similarity type t ! The code to translate between the two similarity types 
is given by Lemma 2.1. Unfortunately this code is so involved that the description 
"topological isomorphs of hull-kernel closed substructures of powers of P" con-
sidered as a description of the category Mhk in terms of the topology and the structure 
of its members is so circuitous that it is practically incomprehensible. Now the 
authors have not been able to find a single example of a duality result in this setting 
where a comprehensible description of the dual category 3thk is given in terms of the 
topology and the structure of its members unless Mhk=0tü. Thus the "issue of full 
duality" appears to be the question: 

"When is Mhk = á?0?" 

which by Theorem 2.26 translates into the question: 

"When is the duality full between <£ and á?0?" 

In fact every "full duality result" the authors are aware of implicitly involves showing 
<%h k—. To make this explicit we shall conclude this section by describing those 
circumstances of duality which yield 0¿hk=3ftü. Moreover, we shall see that under 
these circumstances we will always obtain the stronger conclusion S W F C PP=S C PP, 
i.e. closed subspaces of powers of P are hull-kernel closed. Since all of this is rele-
vant only in case (D, E) is a duality, we shall state an important result of DAVEY 
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and WERNER [7] which yields duality in all cases considered by them. The key is 
their interpolation condition: 

(IC) For all non-empty finite T and XQPT,. every ¡¡/: X—P is the restriction of 
a T-ary term function of P̂ (i.e. nx$T=E(X)). 

Theorem 2.27 (DAVEY and WERNER.[7]). If POpURI: is finite and (IC) 
holds, then (D, E) is a duality. 

Most applications of this theorem can be obtained from a special case which 
was proven independently by the authors and R. McKenzie. A (k+ l)-ary term x 
is called a near-unanimity term for if for any a, b£P, 

xp(a, b, ...,b) — xp(b, a,b, ...,&) = ••• = xF(b, ..., b,a) — b. 

This notion was introduced by BAKER and PIXLEY [2]. They prove that (IC) holds in 
case $ has a (k+l)-ary near-unanimity term and P is chosen to have all subalgebras 
of as relations. 

Coro l l a ry 2.28 (Clark, Krauss and McKenzie). Suppose ^ has a (k + l)-ary 
near unanimity term and let P=(P,r)ris?fc. Then (D,E) is a duality. 

Now we shall investigate circumstances yielding &hk—£%0 under the hypothesis 
of Theorem 2.27, covering all "full duality results" that have come to our attention. 
.We start with a strengthening of Theorem 2.27: 

Theorem 2.29. If POpURI is finite and (IC) holds, then for every non-empty 
S and every closed XQPS, E(X)=7txgs. 

Proof. It is easy to verify that this is what DAVEY and WERNER [7] actually prove, 
although they don't state it. 

Coro l l a ry 2.30. If POpURI is finite and\ IC) holds, then if and 
only if S W T P P = S C P P , i.e. "closed sets are hull-kernel closed". 

Proof . Suppose and X £ S C P P . By Theorem 2.26, ex : X | | - » - Z > £ ( X ) 
and therefore, by Theorem 2.29, ex: X\\-*-D(nx^s). Thus E X = < 5 X and X is hull-
kernel closed by Lemma 2.23. 

Thus in the setting determined by the hypothesis of Theorem 2.27, a duality 
(D, E) is full between and M0 if and only if "closed sets are hull-kernel closed." 
Now DAVEY and WERNER [7] give sufficient conditions for this to occur which we 
shall look at next. Actually we shall take a little detour and look back at Lemma 
2.15. This tells us that taking all homomorphisms from subalgebras of arbitrary 
powers of into $ as (infinitary) partial operations of P would even yield Shk¥P= 
=SPP. Now to begin with this would force us to introduce infinitary partial opera-
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tions and to consider a similarity type with a proper class of partial operation sym-
bols, clearly going beyond the formal scope of our setting. Moreover, the hypothesis 
of Theorem 2.27 actually commits us to finitely many (finitary!) partial operation 
symbols! On the other hand, notice that once we have obtained a duality from The-
orem 2.27, then adding finitary ^5-homomorphisms to Op U POp while keeping 
POp finite preserves (IC) and does not affect whereas in general it will "cut 
down" SCPP. If we finally succeed to obtain ShkPP=ScPP achieving full duality 
this way, then in general we will have blown up the similarity type t to a size which is 
too unwieldy for applications, so that the issue of "reducing the similarity type by 
removing redundancies" arises. There may also be some practical advantages to 
"rearranging the similarity type" by treating certain relations as partial operations or 
operations. Frequently all of this can be accomplished without disturbing full duality. 
Let FLT F2 be sets of operations, Glt G2 sets of partial operations and R,, R2 sets 
of relations on P respectively, where F2<==FI, G2QG1 and R1QR2. Suppose that 
p i=<^/,^'->/eF1 ,9eG l >r6K1 and P 2 = ( P , / , g , r> / € i , „ s € G ! , r e R ! both satisfy the 
conditions of Lemma 2.1. We say that ¿^UGiUi?! generates R% if for every 
non-empty finite T and XQPf, if \¡/: X—Px then preserves all relations of R2 

(and hence ift: X—P2). 

Lemma 2.31. Suppose i^UGiU/?! generates R2. 
(i) / / P 2 satisfies (IC), then Px satisfies (IC). 

(ii) If SA ,PP2=SCPP2 , then S^PP 1 =S C PP 1 . 

Altogether these observations suggest the following 

Ful l D u a l i t y S t ra tegy 2.32. Step 1: Choose t such that POpURI is finite 
and (IC) holds. 

Step 2: Increase Op U POp keeping POp finite until S M PP=S C PP. 
Step 3: Decrease Rl, possibly treating certain relations as partial operations or 

operations, until Op U POp U Rl is a minimal generating set of the set of relations 
chosen in Step 1. 

All full duality results we have looked at can actually be obtained following the 
Full Duality Strategy (where in some cases one or more steps may be skipped) and 
we shall present selected samples later in this section. First we shall give several tests 
to check whether Step 2 of this strategy has been successfully completed. 

Lemma 2.33. If POp=0, then the following three conditions are equivalent: 
(i) ShkFP=ScT>P. 
(ii) Every substructure of a finite power of P is hull-kernel closed. 
(HK) For every non-empty finite T, XQPT and y£PT—X, there are two 

T-ary term functions of which agree on X but not at y. 
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Proof . (HK) is just a full statement of (ii), and (i) implies (ii) trivially. So 
assume (HK) and let XQps be closed, z£Ps—X. Then there is a basic clopen set 

UT — {x£Ps\nTz = nTx}, 

where TQS is finite, z£UT and X f ] UT—0. It follows that y=nTz$ nTX. Now 
there exists an embedding h: 5 r II—* 5s which sends the projection n„ considered 
as a generator of 5r> to the projection n, considered as a generator of 5s- Since 
POp=0, nTX determines a substructure of PT. By hypothesis there exist a, x£FT 

such that A and T agree on nTX but not at y. Thus h(a) and h(x) agree on X but not 
at z. This shows that X is hull-kernel closed and (i) is established. 

Coro l l a ry 2.34. Suppose POp = 0, Rl is finite and (IC) holds. Then the duality 
(D, E) is full between <£ and if and only if (HK) holds. 

Proof . Use Theorem 2.26, Corollary 2.30 and Lemma 2.33. 

DAVEY and WERNER [7] proceed somewhat differently introducing the condition. 
(E3)f If T is finite and X g Y g p r where X^Y, then there are distinct <p, 

ip: X—P which agree on X. 
Now it turns out that in the presence of (IC) the conditions (E3)f and (HK) 

are equivalent: 

Lemma 2.35. (E3)F+(IC)=>(HK)=>(E3)F. 

Proof . Assume (E3)f and (IC) and let X g P T and y£PT-X where T is 
non-empty finite. Let Y be the substructure of PT generated by 1 U {j>}. By (E3)f 

there are distinct (p, i]/£E(Y) which agree on X, and therefore not at y. By (IC), 
(p and i¡/ are restrictions of T-ary term functions of 

Next, assume (HK) and let X g y g P T , where T is finite. Consider any ydY—X. 
By (HK) there are a, x£FT which agree on X but not at y. By Lemma 2.21, nYa, 
nyx£E{Y). This establishes (E3)F. 

Now we obtain an adjusted version of the Second Full-Duality Theorem of 
DAVEY a n d WERNER [ 7 ] : 

Coro l l a ry 2.36. Suppose POp = 0, Rl is finite and (IC) holds. Then the duality 
(£), E) is full between jSf and if and only i/(E3) f holds. 

Proof . Use Corollary 2.34 and Lemma 2.35. 

In those cases where POp^Q we shall obtain Step 2 of the Full Duality Stra-
tegy by a completely different approach. A finite non-trivial algebra is called 
filtral if all congruences on subdirect products of subalgebras of P̂ are induced by 
filters on the index set. Using J6NSSON [14] it is not hard to verify that is filtral if 
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and only if it generates a congruence distributive variety and its non-trivial sub-
algebras are all simple (cf. KRAUSS [15]) . So let ^ be a filtral algebra, let K be the 
set of non-trivial isomorphisms between non-trivial subalgebras of ^3 and let E 
be the set of elements of P which determine a trivial subalgebra of Consider 
P=<P,if, e\ e K t B i E . 

T h e o r e m 2.37. S M P P = S C P P . 

Proo f . Let X G P S be closed, and / : By Lemma 2.15 we 
must show that X is closed under / . So consider xdX1, where nsox£A for all 
s£S. We have to show J(x)£X, where f(x)(s)=f(nsox). If / has constant value 
e£E then f{x)=e£X, since X c p s Otherwise, since'ip is filtral, there is an ultra-
filter U on I such that for a, b£A, 

f(a)=f(b) iff Eq(a, b)£U, h(a) = p iff a~x(p)^U. 

Since / and h have the same kernel, there exists an isomorphism jj:/i(2I) ||-»-/(2l) 
such that f=tjoh. It follows that /=/ /*o/ j , where r\* is the canonical extension of rj 
to X. Since XQPS, X is closed under t\x, so that J(s)£X iff K(x)£X. Since X is 
closed, for R(X)£X it suffices that for any finite TQS, nTR(s)£nTX. For each 
t£T set 

h(x)(t) = h(Tt,oX) = pt£P, 
and let 

M = n (ntox)~\pt). te.T 

Then MeU. Consider any /£M. Then for any t£T, 

* I ( 0 = (JT,O*)(I) = p, = E(x)(t). 

This establishes that nTE(x)£nTX. 

Gathering what we have found we can now state a very general result with many 
immediate applications. If the finite nontrivial algebra $ has a k+\-ary near unani-
mity term we perform Step 1 by taking all members of as relations for P accord-
ing to Corollary 2 . 2 8 . Now MITSCHKE [18] has shown that such an algebra always 
generates a congruence distributive variety. Thus P is also filtral just in case its 
non-trivial subalgebras are all simple. In this case we can do Step 2 by adding the set 
K of non-trivial isomorphisms between non-trivial subalgebras of as partial 
operations of P and the set E of elements which determine a trivial subalgebra of ^ 
as constants of P according to Theorem 2.37. Step 3 remains as a clean-up operation 
which uses Lemma 2.31 and relies on more special properties of the algebra ^3. 

T h e o r e m 2.38. Suppose 3̂ has a k+1 -ary near unanimity term and only simple 
non-trivial subalgebras. Let F, G and R be sets of operations, partial operations and 
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relations on P respectively, where EQF, KQG and If 

? = (Pi T> 8 ' f ) r i R , g i G , f ( . F 

satisfies the conditions of Lemma 2.1 and JiUGUF generates then (D, E) 
is a full duality between ISP<P and ISCPP. 

A non-trivial finite algebra p̂ is called a dual discriminator algebra if the dual 
discriminator on P, defined by 

is a term function of ^p. This notion is due to F R I E D and PIXLEY [9]. In this case the 
dual discriminator serves as a 3-ary near unanimity term on and forces nontrivial 
subalgebras to be simple, so Theorem 2.38 applies. 

Co ro l l a ry 2.39. If *P is a dual discriminator algebra and 

then (D, E) is a full duality between ISP<P and ISCPP. 

DAVEY and WERNER [7] give many examples of full duality applying their Second 
Full Duality Theorem. Three of these applications are not correct (quasi primal 
algebras, weakly associative lattices and median algebras) because in those cases 
POp^0. These erroneous arguments also appear in WERNER [23]. Now it turns out 
that all three examples are dual discriminator varieties and we can still establish 
their claims as consequences of Theorem 2.38. As additional applications of Theorem 
2.38 we consider primal algebras, quasi primal algebras, distributive lattices (where 
P̂ is a dual discriminator algebra which is not quasi primal) and De Morgan algebras 

(where ip is a filtral near unanimity algebra which is not dual discriminator). Finally 
we give an application of Corollary 2.34 considering semi lattices with unit (where 
is neither filtral nor near unanimity). The reader will easily convince himself that 
the remaining examples in DAVEY and WERNER [7] can be treated similarly. 

Example 2.40: Pr imal a lgebras . A non-trivial finite algebra is called 
primal if every (finitary) operation on is a term function. Clearly a primal algebra 
has a 3-ary near-unanimity term. Moreover, it is simple and has neither proper sub-
algebras nor nontrivial automorphisms. Let P={P), i.e. take Op U POp URI=0. 

Theorem 2.41. If ty is a primal algebra, then (D,E) is a full duality between 
ISP^P and ISCPP. 

Proof . HUE=0 and the subalgebras of ^32 are <P2 and the diagonal of <P2. 
It follows at once that 0 generates S$P2. The assertion follows from Theorem 2.38. 
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Example 2.42: Quas i p r ima l a lgebras . A non-trivial finite algebra & 
is called quasi primal if the ternary discriminator on Q, defined by 

n , . f x if x y 
Iz if X = y 

is a term function of Q. Since dQ(x, y, z)=tQ(x, tQ(x, y, z), z), a quasi primal 
algebra is a dual discriminator algebra and Theorem 2.38 applies. To carry out Step 
3 of the Full Duality Strategy in this case, several options appear to be available 
and we choose the setting of DAVEY and WERNER [7]. Let H be the set of all isomor-
phisms between all subalgebras of Q together with the empty mapping and let 
Q=(Q, n, c>,€H. .en-

Theo rem 2.43. (D, E) is a full duality between ISPQ and ISCPQ. 

Proof . The subalgebras of G2 are exactly the direct products of subalgebras 
of Q and the isomorphisms between subalgebras of Q. It easily follows that HUE 
generates SQ2. The assertion follows from Theorem 2.38. 

Example 2.44: D i s t r i b u t i v e lat t ices. Let J)=({0,1}, A, V> be the two-
element lattice generating the (quasi) variety of distributive lattices. Then 

(x Ay) V (x Az) V (yhz) 

defines the dual discriminator on {0,1} and Theorem 2.38 applies. Let 
D = < { 0 , 1 } , S , 0 , 1 > . 

Theorem 2.45. (£>, E) is a full duality between ISP® and ISCPD. 

Proof . 35 has no non-trivial automorphisms and it is easy to verify that 
U{0,1} generates ST)2. The assertion follows from Theorem 2.38. 

Example 2.46: Weakly assoc ia t ive la t t ices . $B=(W, A, V) is called 
a weakly associative lattice if it satisfies the lattice axioms with the exception , that 
the associative laws are replaced by the weak associative laws 

((xAz)VO>Az))Vz = z, ((xVz)AO>Vz))Az = z. 

This notion is due to FRIED and GRATZER [8]. A weakly associative lattice has the 
unique bound property if any two elements have unique upper and lower bounds. 
FRIED and PIXLEY [9] show that a non-trivial finite weakly associative lattice is a filtral 
algebra if and only if it is a dual discriminator algebra if and only if it has the unique 
bound property. So let <S&={W, f\,\j) be a non-trivial finite weakly associative 
lattice with the unique bound property. Then Theorem 2.38 applies. Let H be the 
set of all isomorphisms between all subalgebras of SB together with the empty 
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mapping, let ^ be the ordering on any fixed two-element subalgebra of 2B and let 
W=(W,^,r¡,e)neB¡eíE. 

Theorem 2.47. (D, E) is a full duality between ISP2B and ISCPVV. 

Proof . WERNER [23] shows that { ^ J U Z / U F generates S 2 B 2 . The assertion 
follows from Theorem 2.38. 

Example 2.48: Median algebras . Let 9Ji2=({0, 1}, d), where d is the 
dual discriminator on {0, 1}. Then Theorem 2.38 applies. The only automorphism of 
5№2 is defined by 0' = 1 and l ' = 0 . Let M2=<{0,1}, = 5 , 0 , 1). 

Theo rem 2.49. (D, E) is a full duality between ISP9Jl2 and ISCPA12. 

P roof . WERNER [ 2 3 ] shows that { ' } U { D , 1} generates S9JI 2 . The asser-
tion follows from Theorem 2.38. 

Example 2.50: D e M o r g a n algebras. The (quasi) variety of DeMorgan 
algebras is generated by the algebra 9Ji=({0, a, b, 1}, A> V, 0,1, where 
({0, a, b, 1}, A, V, 0, 1) is a bounded lattice with a and b incomparable and ~ is 
the unary operation defined by ~ 0 = 1 , ~1—0, ~ a = a , ~¿>=6. It is easy to check 
that 501 has only simple subalgebras and 

m(x,y,z) = (xAy)V(xAz)V(yAz) 

is a 3-ary near unanimity term for SDÍ. This time niw is not the dual discriminator 
on 9JÍ, and BLOK and P IGOZZI [4 ] check that the dual discriminator is not a term 
function of 9JI at all. Now let ^ be the partial ordering 

on {0, a, b, 1} and let a be the automorphism of 9JI that interchanges a and b. Let 
M = <{0, a, b, 1}, S,a). 

Theo rem 2.51. (D,E) is a full duality between ISPSDi and ISeP/W. 

Proof . DAVEY and WERNER [7] verify that {^}U{a} generates all 45 sub-
algebras of 2H2. The assertion follows from Theorem 2.38. 

Example 2.52: Semi la t t i ces with uni t . Let <3=({0,1}, A, 1) be the 
two-element semi lattice generating the (quasi) variety of semi lattices with unit. 
Now take S=({0,1}, A, 1). 

Theorem 2.53. (D, E) is a full duality between ISPS and ISCPS. 
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Proo f . DAVEY and WERNER [7] verify (IC) and (E3)F, and we verify (HK) 
directly: Choose T finite, X g S 7 , y£ST-X. Let 

z = t\{x£X\x 
Now define a, T£F t , by 

<r = A{n,|z(/) = 1}, r = A{jr,b(0 = 1}. 

Since y$X,z>y so there exists tZT such that z{t)— 1 and y(i)=:0. Thus ff(j>)=0 
but i(y)= 1. However for any x£X, if x =£y then x S z so that (7(X) = T(X) —1, 
whereas if x ^ y then X ^ Z so that CT(X)=T(X)=0. This establishes (HK). Now 
use Corollary 2.34. 

3. Axioms for topological quasi atomical theories 

In this section we shall present examples of (compact) topological quasi varie-
ties and investigate their topological quasi atomical theories. 

E x a m p l e 3.1. A topological space is T0 if distinct points have distinct neigh-
borhood systems. Consider the empty similarity type t, i.e. Op[JPOpURI=0, and 
let P 0 ={0,1} be the Sierpinski space with open sets 0, {0}, {0, 1}. Then for any 
topological space Y the following are equivalent: 

( i) Ye I S P P 0 , 

(ii) Y t= [ u d ^ L v 0 h v d ^ L v , 
(iii) Y is a T0-space. 

P roof . The equivalence of (ii) and (iii) is obvious and (i) implies (ii) by Corollary 
1.10. Finally assume (iii). We shall verify conditions (i) and (iv) of the Separation 
Principle. Suppose x, y£Y, where x^y. Then, say, there exists an open neigh-
borhood U of x, where y$U. Define 

JO if zeu, 
* ( * > = l l if 

This establishes condition (i) of the Separation Principle. Suppose D is a subset of 
the power set of F directed by inclusion, 8: D — Y is a net in Y and ydY, where 
8d*%- y. Then there exists an open neighborhood U of Y such that <5 is not even-
tually in U. Now define <p as before and condition (iv) of the Separation Principle 
is established, (i) of the assertion now follows from the Separation Principle. 

This example shows that the class of T0-spaces is a topological quasi variety in 
any similarity type. 
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Example 3.2. A topological space is Hausdorff if and only if limits of convergent 
nets are unique. Thus a topological structure X (of any similarity type t!) is Hausdorff 
if and only if for any directed set (D, and any net v: D-»Vb, X is a model of 

Thus the class of topological Hausdorff structures is a topological quasi variety in 
any similarity type. While our axioms are simple and uniform they constitute a 
proper class, and we claim that this is essential. 

Lemma 3.3. For each regular cardinal x there is a compact topological space Xx 

which is not Hausdorff but whose subspaces of cardinality less than x are zero-dimen-
sional (i.e. have a basis of clopen sets) Hausdorff. 

Proof . For Xy take the set y.+2 with subbasis consisting of all sets U(J{x) 
and i /U{* + l} where UGx is an open interval. 

Coro l la ry 3.4. Let I be the topological quasi-atomical theory of Hausdorff 
spaces. Then every subset Xa of I has a model which is not Hausdorff. 

Proof . Let x be a regular (e.g., successor) cardinal larger than the number of 
variables occurring in the formulas of X0. We verify that X x |= I 0 . Let <P£Z0 

and choose a: Vb^Xx. Let Y be the subspace of Xx determined by the images 
under a of the variables that occur in <i>. Without loss of generality we may assume 
that a: Vb-*Y. Since Y has smaller cardinality than Y\= 4>[a\ by Lemma 3.3. 
It follows from Lemma 1.9(i) that Xx\=$[a]. 

Example 3.5. Consider the empty similarity type t, i.e. OpUPOpURI = 0, 
and let P be a finite set with at least two elements carrying the discrete topology. 
Then for any topological space Y the following are equivalent: 

(iii) Y is a zero-dimensional Hausdorff space. 

Proof . The equivalence of (i) and (ii) follows from Corollary 1.10, and (i) 
implies (iii) trivially. Finally assume (iii). We shall verify conditions (i) and (iv) 
of the Separation Principle. Suppose x, y£Y, where x^y. Since Y is a zero-dimen-
sional Hausdorff space, there exists a clopen neighborhood U of _Y, where y$ U. 
Choose a, b£P, where a^b and define 

This establishes condition (i) of the Separation Principle. To establish condition (iv) 
we proceed just as in Example 3.1. 

w] =• u % w. 

( i ) Y Ç I S P P , 

(ii) Y(=Th(qaP, 
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This example shows that the class of totally disconnected Hausdorff structures is 
a topological quasi variety in any similarity type. 

The difference between Examples 3.1 and 3.2 on the one side and Example 3.5 
on the other forces us to broach the subject of "axiomatizability" of a topological 
quasi atomical theory. Intuitively speaking, a theory is axiomatizable in case it is 
"intelligible" and, roughly speaking, this means that axioms for the theory can be 
"explicitly written down" in some sense. Well-known technical expliciations of this 
notion then follow suit, which in the case of infinitary languages (like ours!) require 
rather sophisticated machinery. Without getting involved in all of this (and we shall 
not!), it is clear that in Examples 3.1 and 3.2 we have explicitly written down axioms 
for the topological quasi atomical theories of T0-spaces and of Hausdorff spaces 
respectively, whereas in Example 3.5 we have not explicitly written down axioms for 
the theory of zero-dimensional Hausdorff spaces. The reason is simple: We have not 
been able to. Since further inquiries into this matter require considerations going 
beyond the scope of this paper, we shall leave it at that. 

Example 3.6. Let t be the similarity type of topological Abelian groups 
(G, 4-, —, 0), and let C be the circle group of real numbers modulo the integers with 
the quotient topology. By Pontryagin's Duality (PONTRYAGIN [21]), for any compact 
topological structure Y, Y£lScPC if and only if Y is a compact Abelian group. 

Of course, the axioms for Abelian groups (trivially) "axiomatize" the topological 
quasi atomical theory of topological Abelian groups. However, that the class of 
compact Abelian groups is generated (as a compact topological quasi variety) by C 
is a highly nontrivial observation. 

Now we shall turn to the examples of Section 2. Each "full duality result" 
obtained from Corollaries 2.34, 2.36 and Theorem 2.38 yields two category anti-
equivalences 

D : ISP^ - ISePP, £:ISCPP - ISP^S 

between the (algebraic) quasi variety I S P a n d the compact (topological) quasi 
variety ISCPP which are inverse to each other (Lemma 2.10). The primary goal of 
this kind of "unique representation" is to gain insight into the quasi variety ISP^p 
from ones knowledge of the compact quasi variety ISCPP (at least this appears to be 
the original motivation for "duality results"!). An obvious prerequisite for success 
is that one "knows" which topological structures X belong to ISCPP. Now in a 
sense one does because the definition of the quasi variety ISCPP contains a clear 
description of its members. However, this description is not very helpful to "decide" 
whether a given topological structure X does belong to ISCPP or not. In fact the 
Compact Hausdorff Separation Principle (Corollary 1.3), which really just spells 
out the description "topological isomorph of a compact substructure of a power of 
P", rarely is helpful in this task. What is needed is a description of the members of 
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ISCPP in terms of their topology and structure which does not involve "constructions". 
Now in Section 1 we have done exactly that. We have found the "right" language to 
characterize the members of ISCPP as the compact models of the topological quasi 
atomical theory of P. But in general this is not an "intelligible" description in the 
sense that it is not possible to "decide" whether a given topological quasi atomic 
formula <P of this language does belong to Thtqa P or not. What is required is an 
"axiomatization" of the topological quasi atomical theory of P. Now we have already 
run into trouble with that task failing to axiomatize the topological quasi atomical 
theory of zero dimensional Hausdorff spaces in Example 3.5. Fortunately what is 
required in the examples arising in the setting of Section 2 is something more special: 
We need to find an "axiomatization" of the topological quasi atomical theory of the 
compact topological quasi variety ISCPP, and this we can do. 

Example 3.7: Boolean spaces. Returning to the setting of Example 3.5 we 
show that we can axiomatize the compact topological quasi variety ISCPP of Boolean 
spaces. Let BL denote the class of all formulas 

=>x ^ y 

where Y is a compact space, I is defined as in Lemma 1.11 and x and y are two 
points of Y which are not separated by clopen sets. Then for any topological space Y 
the following are equivalent: 

(i) Y£ISCPP; 
(ii) Y is a compact model of BL; 

(iii) Y is a Boolean space. 

Proof . The equivalence of (i) and (iii) follows from Example 3.5. Next assume 
(iii). To prove (ii) it is sufficient, by Lemma 1.10 and (i), to verify that P\=BL. 
Accordingly consider 

=>• x ^ y 

in BL as above, b: Vb^P such that P\= <t>[b] for each <£61. By Lemma 1.11 
<p: Y-*P, where <p(v)=b(v). If bx^by, then (p~1(bx) and (p~L(by) are clopen 
sets separating a* and j . Thus bx—by and therefore Pt=(.v%j')[i]. 

Conversely assume (iii) fails. Since Y is compact there must be distinct members 
x and y of Y which are not separated by clopen sets. But then 

{4>|<P6I} => x % y 

is a formula of BL not satisfied by Y, and we conclude that (ii) fails. 

As in Example 3.2, the size of the axiom system cannot be reduced. 

Coro l l a ry 3.8. Let I be the topological quasi-atomical theory of Boolean spaces. 
Then every subset I0 of I has a compact model that is not Boolean. 
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Proof . The proof is exactly the same as in Corollary 3.4 since every zero-dimen-
sional Hausdorff space can be embedded in a Boolean space. 

The axiom system BL will be incorporated into our subsequent examples. Before 
we continue we should like to make a few comments on the nature of this axiomati-
zation of the topological quasi atomical theory of Boolean spaces. Although it 
appears to be a "reasonable" axiomatization of the (infinitary) first-order theory 
under consideration, it does not appear to be a mathematically useful characteri-
zation of Boolean spaces. Now the usual definition of Boolean spaces obviously 
translates into a simple higher order definition in the language under consideration. 
Thus item (ii) of Example 3.7 may be viewed as a (mathematically useless) first-
order axiomatization of the compact quasi variety I S C P P , whereas item (iii) may be 
viewed as a (mathematically useful) higher-order axiomatization. This pattern will 
reoccur in all subsequent examples. 

C o r o l l a r y 3.9 (Hu [13]). 7/^J is a primal algebra, then (D, E) is a full duality 
between ISP^S and the category of Boolean spaces. 

Proof . Use Theorem 2.41 and Example 3.7. 

Example 3.10: Boo lean / / - spaces . Return to the setting of Example 2.42. 
Actually, we shall consider a more general setting where Q is an arbitrary non-trivial 
finite algebra, H is the set of all isomorphisms between all subalgebras of Q together 
with the empty mapping, and E is the set of elements of Q determining a trivial sub-
algebra of Q. 

Now take Q—{Q, T], E)NEH EIE and consider each RJ£H as a partial operation 
symbol, and each e£E as an individual constant to determine the similarity type t. 
DAVEY and WERNER [7] call a topological t-structure X=(X, r j x , e x ) n Z H e € E 

a Boolean H-space if 
(i) X is a Boolean space. 

(ii) Each r)x is a homeomorphism between closed subspaces of X. 
(iii) (t]oy)x=rixoyx. 
(iv) (t,r\yf=rixnyx. 
(v) If r\ is the identity on Q, then t]x is the identity on X. 

(vi) 0X=0. 
(vii) If e£E and t] is the identity on {<?}, then t]x is the identity on {<?*}. 
(viii) If e0, ex£E and rje^elt then qxe*=ex. 
We need a topological fact whose verification is straightforward. 

Lemma 3.11. Let Xand Y be compact Hausdorff spaces, X0QX and g: X0-*Y. 
Then (the graph o f ) g is closed in XX Y if and only i f X 0 and g(X0) are both closed and 
g is continuous. 

2 
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Using this lemma we observe that the definition of Boolean H-space translates 
directly into topological quasi equational axioms: 

Lemma 3.12. Let id be a nontrivial finite algebra. Then a compact t-structure 
X is a Boolean H-space if and only if it is a model of 

(i)' BL. 
(ii)' CL(»;), rju^r\v=>u^v, where tj^H and C1(JJ) is defined in Example 1.6. 

(iii)' t]5u^voyu^v, where r],S,yd.H and r\o5=y. 
(iv)' yuzzv-e>[riu^vf\duzz:v], where y,t],d£H and y = t]DS. 
(v)' rjv^v, where t] is the identity on Q. 

(vi)' 011 T 6 v. 
(vii)' t]u^vo[u^ef\v~^e\, where t] is the identity on {e}. 
(viii)' t]e0^e1, where <?0, e^E and rje0=ei. 

Proof . The equivalence of (i) and (i)' is Example 3.7 and the equivalence of 
(ii) and (ii)' follows from Lemma 3.11. The remaining equivalences are straightfor-
ward. 

Our goal is to prove that the topological quasi variety generated by Q is exactly 
the class of Boolean //-spaces. This will require a somewhat detailed examination 
of the consequences of the axioms (i)'—(viii)' for Boolean //-spaces. While some 
parts of our argument may be found in Davey and Werner's proof of SEP, a cor-
rect proof of the Compact Hausdorff Separation Principle appears to require that 
we reproduce our argument in full. To do so we introduce some more specialized 
notation. If and X is a Boolean //-space, we let " l ^ " denote the identity on 
A and "XA" the domain of 1*. Moreover, we write "1„" for the empty map: 
le=Q£H, and for the domain of 1*: XB=0QX. 

Lemma 3.13. Let X be a Boolean H-space, r]£H, 21 and 23 subalgebras of Q. 
(i) 1* is the identity on XA. 

(ii) If t] has domain A, then r\x has domain XA. 
(iii) xAnB=xAnxB. 
(iv) 2 Ig© implies XAQXB. 
(v) o r 1 ) * ^ * ) - 1 . 
Proof , (i) lAf)lQ=lA so l i n i * = l * n i x = l * . Thus l * g l z . 
(ii) Let YQX be the domain of t\x. r)olA=r] so rixolx=rix so YQXA. 

Then t]~1ori = lA, so ( t i~ 1 ) x ° r i x =l A ^ ly . It follows that l x = l y so XA=Y. 
(iii) XAn,=dom lJn_B=dom ( l ^ n i B ) x = d o m ( \^r \ \ x )=X A C\X B . 
(iv) Use (iii). 
(v)' Let ri have domain A. Then tj~1or] = lA so (tj~1)xot]x=lx. It follows 

that (f /x)_ 1 i ( i7_ 1)x Replacing tj by rj~\ we obtain [ O T 1 ) * ] - 1 ^ * so ( f / - 1 ) x g 
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Lemma 3 .14 (DAVEY and WERNER [7], 2.7, (3)) . Q is injective in the category of 
Boolean H-spaces. 

Our proof of the Compact Hausdorff Separation Principle will depend on finding 
"many" continuous homomorpbisms from a Boolean Я-space X into Q. We say 
x£X is a fixed point of rjx, ij€H, if л: is in the domain of t]x and цхx=x. Now 
define 

Hx={t]£H \ x is a fixed point of t]x} 

and let S x be the subalgebra of С consisting of all elements fixed by each member of 
Hx. Notice that every morphism q>: X—Q takes x into Sx. Let Ex={ex \ e£E} 
and let Hx be the substructure of X generated by x: 

Hx={rjxx | >]£H, x in the domain of t]}UEx. 

Lemma 3.15. Let X be a Boolean H-space, x£X. 
(i) X€Xa if and only if <5, с St. 

(ii) If x$Ex, then |5Я |>1. 
(iii) If x=ex£Ex, then Sx={e}. 
(iv) If a£Sx, then there is a (p: Hx->-Q such that (p(x)=a. 

Proof , (i) If х£Хл then x is a fixed point of 1* so each element of Sx is a 
fixed point of lA. Thus SXQA. Conversely, let SXQA. By definition of Sx, 

hx = iQnn{ri\rieHx} 
so, by (iv), 

= l i n n f r ^ e t f j . 

The right contains (x, x) so the left does as well, and x£Xs . Now SXQA so, by 
(3.13, iv), х а Х ф Х А . 

(ii) Since X£XSX by (i), and XA=Q, we obtain Sx7±№. Suppose Sx= {<?}• 
Then edE so by (3.10, vii) we would have {ex}QEx. 

(iii) Consider x=ex£Ex. Then ex is the only fixed point of i f (3.10, vii), 
so SXQ {e}. But if ex is a fixed point of tjx: XA-+XB, then 

0 ^ I х = ЛХПГ1Х= ( l enri) x . 

Since 0 X =0, 1 eQri so t\e=e£Sx. 
(iv) If x=ex£Ex, then Sx= {e} so by (viii) Hx—Ex and we define q>(cx)=с 

for c£E. Now suppose c,d£E and t]xcx=dx. Then 

(cX, d x ) 0 ? ° r i X ° l ? = i h ° t ] o l c f И 0. 

Consequently ldot}olc?£0 so t](c)—d and (p(t]xcx)=(p(dx)=d=tj(c)=t](<pcx). 

3* 
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Next consider x$Ex. Then {rjxx \ r\£H}C\Ex=® so that, in view of the 
preceding paragraph it remains to find an ¿/-preserving map 

4r:{ti*x\ti£H} 

If r] has domain A and x£XA, the domain of tjx, then by (i) a£A. Moreover, if 
t]xx=yxx then x is a fixed point of (yx)~1°r]x~(y~1or])x, by (3.13, v), so a is 
a fixed point of y -1oi\ and r\a—ya. It follows that tp is well defined by ip(rixx)=tja. 

Theorem 3.16. Let Q be a nontrivial finite algebra, Q = (Q, e ) , e r / i e i E . 
For a t-structure X the following are equivalent: 

(0 xascj>Q. 
(ii) X is a compact model of (i)'—(viii)'. 

(iii) X is a Boolean H-space. 

P r o o f , (ii) and (iii) are equivalent by Lemma 3.12 and (i) implies (ii) by Corollary 
1.10. It remains to show that a Boolean H-space X satisfies the conditions of the 
Compact Hausdorff Separation Principle, Corollary 1.3. 

We first consider x, y£X where x^y. By Lemma 3.14 we need only find 
HxUHy-*Q separating x and y. If x,y£Ex, then HxUHy=Ex and we take 

yex=e (3.15, iv). Otherwise, assume x$Ex. If y£Ex take any Hx—Q 
(3,15, iv). If y$Ex and HxC\Hy=Ex, take any (p:Hx-*Q, Hy-»Q and let 
x=<pUi/t. 

Finally, suppose x$Ex, y$Ex and Hx=Hy. Let rjxx=y. By (3.15, i) Sx 

is contained in the domain of rj. We claim that some member of Sx is not fixed by 
t]. Indeed if tja=a for all a£Sx then would have / / f l l s = l s so »7*01* = 1 * . 
But x£Xs (3.15, i) and rjxx=y^x. Choose a£Sx so that tja^a. Let <p: Hx-*•Q 
take x to a (3.15, iv). Then <p(y)=<p(t]xx)=ri<p(x)=r]a?i<p(x). 

To verify the second condition, choose x not in the domain t)x. Let rj have 
domain A. Then x$XA. By (3.15, i), SX^A. Choose a(LSx—A and <p: Hx^Q 
taking x to a. By Lemma 3.14 cp extends to a \f/: X-»Q where tp(x)—a is not in 
the domain of rj. As there are no relations we obtain (i) from Corollary 1.3. 

C o r o l l a r y 3.17. If SI is a quasi primal algebra, then (D,E) is a full duality 
between ISPQ and the category of Boolean H-spaces. 

Proof . Use Theorems 2.43 and 3.13. 

Example 3.18. Bounded Pr ies t ley spaces. Return to the setting of Exam-
ple 2.44. A topological structure (X, is called a Priestley space if X is a parti-
ally ordered Boolean space and for each x, y£X, if x£xy then there is a clopen 
increasing set containing x but not y. (X, 0X, l x ) is a bounded Priestley space 
if (X, is a Priestley space with bounds 0X and l x . Now for each choice of a 
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bounded partially ordered space Y=(Y, 0r, l y ) where Y^Vb, and any 
x, y(LY, where x^yy and every clopen increasing set containing x also contains y, 
define I as in Lemma 1.11 and let ip be the formula 

=*x ^ y. 

Let BPS denote the class of all such \¡/. Then for any topological structure Y the follow-
ing are equivalent: 

(i) Y€ISCPD. 
(ii) Y is a compact model of BPS and the axioms for bounded posets. 

(iii) Y is a bounded Priestley space. 

P roof . Assume (i). To prove (ii) we must show, by Corollary 1.10, that 
D\=BPS. Let t¡/£BPS as described above, b: Vb^D where D\=<P[b] for 
each <l>dl. By Lemma 1.11, (p: Y-+D where <p(v)=b(v). Since q> is a homomor-
phism 9 _ 1 (1) is a clopen increasing set. Now if cp(x) = l we conclude x£<p -1(l) 
so j€<p_1(l)- It follows that <p(x)^<p(y), i.e., D|=(x^j;)[fe]. 

To prove (ii) implies (iii), assume that Y is a compact bounded partially ordered 
space that is not a Priestley space. Without loss of generality we assume Y^Vb. 
Then there are x, y£Y where x^Yy but every clopen increasing set containing x 
also contains y. Defining I as in Lemma 1.11 we obtain 

=» x s y 

in BPS not satisfied by Y. Thus (ii) fails. 
Finally, it is easy to see that (iii) gives the conditions of the Compact Hausdorff 

Separation Principle from which we obtain (i). 

C o r o l l a r y 3.19 (PRIESTLEY [19], [20]). (D;E) is a full duality between I S P S 
and the category of bounded Priestley spaces. 

Proof . Use Theorem 2.45 and Example 3.18. 

We shall omit the axiomatization of the topological quasi atomical theories of 
ISCPW (Example 2.46) and of ISCPA12 (Example 2.48). 

Example 3.20: D e M o r g a n a lgebras . We first observe that by omitting 
all references to the bounds 0 and 1, in the previous example we would obtain a 
system PS of axioms for all Priestley spaces (X, =x). Now return to the setting of 
Example 2.50. Then for any topological structure Y the following are equivalent: 

(i) Yeis cPM, 
(ii) Y is a compact model of PS, the poset axioms and 

aau % w, u = v => old = au. 
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Proof , (i) implies (ii) by Corollary 1 . 1 0 and D A V E Y and W E R N E R [ 7 ] show that 
the conditions of the Compact Hausdorff Separation Principle follow immediately 
from (ii). 

Co ro l l a ry 3.21 ( C O R N I S H and F O W L E R [5]). (D, E) is a full duality between 
ISP9J5 and the category of all Priestley spaces with an order inverting homeomorphism 
of order two. 

Proof . Use Theorem 2.51 and Example 3.20. 

Example 3.22: Boolean semi la t t ices with unit. Return to. the setting 
of Example 2.52. Then for any topological structure Y=(Y, A, 1) the following are 
equivalent: 

(i) Y£ISCPS; 
(ii) Y is a compact model of BL and the axioms for commutative semi lattices 

with unit. 

Proof . By Example 3.7 we only have to show that (ii) implies (i). Under the 
hypothesis of (ii) D A V E Y and W E R N E R [7] verify the conditions of the Compact Haus-
dorff Separation Principle for Algebras. 

Coro l l a ry 3 . 2 3 ( H O F M A N N , MISLOVE and STRALKA [ 1 2 ] ) . ( D , E ) is a full 
duality between ISPS and the category of Boolean semi lattices with unit. 

Proof. Use Theorem 2.53 and Example 3.22. 
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