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On zeros of analytic multivalued functions 
B E R N A R D AUPETIT* ' and JAROSLAV ZEMANEK 

It had been observed by F . V. ATKINSON [1] and B. SZ.-NAGY [13] tha t if / ( A ) = 
=/+AF1 +... +AnV„, where V1,...,V„ are compact operators on a Banach space, 
then the set of A in C for which 06 Sp /(A) is discrete and closed in the complex 
plane. For « = 1 it is exactly the classical result of F. Riesz. For 1 B. SZ.-NAGY 
[13] believed that this result is deeper than the classical one. The problem was also 
studied by Ju. L. SMUL'JAN [12]. Here we show in Theorem 1, by a completely 
different method, that it comes from Riesz's theorem using only complex function 
theory. Moreover, we give a generalization of this result when /(A) is any analytic 
function from a domain Q of C into a Banach algebra such that Sp f(A) is 
countable for every A in Q. 

It is known that A—Sp/(A) is an analytic multivalued function [3] and that 
analytic multivalued functions have properties very similar to this special case. So 
it is better to formulate all the theorems of this paper in the more general situation 
(for more details see [3], [5], [8]). However, the reader not familiar with this theory 
can adapt immediately all the proofs to the spectral case. 

T h e o r e m 1. Let A-»K(A) be an analytic multivalued function defined on a 
domain Q in C. Suppose that K(A) has at most 0 as a limit point for every A in Q. 
Let 0 be a fixed complex number. Then the set of those A in Q for which z£K(A) 
is either closed and discrete in £2 or it is all Q. 

Proo f . Suppose that z£K(A0) for some A0£Q. We shall show that the point 
A0 is either isolated or interior in the set E = {A£Q: z£K(A)}. Because z ^ O there 
exists an open disk A centred at z and not containing 0 such that A~C\K(A0)= 
-{z}. By upper semi-continuity of the function K there exists 0 such that 
|A—A0|<r implies ^(A)flbdry ¿1=0. Moreover, by Newburgh's property we can 
also suppose that K.(A)Pifor these A, and in this situation is 
an analytic multivalued function on the disk 5(A0, r), see [5], Theorem 3.14. Because 
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A does not contain 0 the set K(X)H A is finite for [A—A0|<r. We apply the scarcity 
theorem for analytic multivalued functions [3], [5] (we can also use the subharmonicity 
of A-•Log d„(K(A)), where <5„ denotes the n-th diameter; in the case when K(A)= 
=Sp/(A) we can use the scarcity theorem ([2], p. 67), or the subharmonicity of 
A—Log <5„(Sp/(A)) [11]). So there exist an integer 1, a closed discrete subset 
F of the disk B(A0, r) and n functions a1,...,a„ which are holomorphic on 
B(A0 ,r)\F such that 

K(A)C\A = {^(A), ...,a„(A)} for A€B(A0, r)\F. 

There exists s such that 0<s^r and B(X0, s)C\F(z {A0}. The functions tx1,...,an 

are holomorphic on 5(A0 , j ) except perhaps at A„. 
Moreover, by the upper semi-continuity of the function K(A) we have 

lim a f(A)=z for every z = l, 2, . . . ,«. Therefore the af's can be extended holo-
morphically to the whole disk B(X0, s). It follows that either a,o(A)=z for some i0, 
or there exists t with 0 s u c h that <Xi(A)^z for all A£B(A0, t)\{A0j and 
i = l , 2 , . . . ,«. In the first case A0 is an interior point of E, while in the second case 
A„ is isolated in E. 

To finish the proof we consider the set E' of all limit points of E in Q. 
Because of the upper semi-continuity of the function K the set E is closed in Q, 
so E'czE. Let n^E'. Since fi is not isolated in E it is an interior point of E, 
hence an interior point of E'. So E' is both closed and open in Q. Consequently 
we have either £ " = 0 or E'—Q. This completes the proof. 

C o r o l l a r y 1. Let A—/(A) be an analytic function from a domain Q into the 
compact operators on a Banach space. Suppose that z $ Sp/(0). Then the set of 
all A for which z€ Sp /(A) is closed and discrete in Q. 

R e m a r k 1. F. V. ATKINSON [1] and B. SZ.-NAGY [13] consider the situation 
when Q—C and f(A)=AV1+...+A"VP with compact operators Vlt ..., Vp. 
Ju. L. SMUL'JAN [12] studies the case when /(A) is an analytic family of compact 
operators, defined on a domain Q. 

We intend to generalize Theorem 1 to the situation when K(A) are general 
countable sets. Of course, in this situation it is impossible to conclude that the 
set {A: z£K(A)} is discrete. To see this take, for example, K(A)=Sp (A/+C) 
where C is a compact operator with infinite spectrum. In this case the preceding 
set has z as a limit point. 

The situations studied in Theorem 1 and in the last example suggest to introduce 
the notion of good isolated point. Given an analytic multivalued function A —K{A) 
on a domain £2, for A„6i2 we say that n£K(A0) is a good isolated point of A"(A0) 
if there exist a disk A centred at p. such that A~C)K(A0)={p} and an r > 0 such 
that the set K(A)C\A is finite for |A—A0|«=r. By the scarcity theorem for analytic 
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multivalued functions (see [3], Theorem 7) there exists an integer n ^ l such that 
K(X)C\A has exactly n points for all \X—X0\-=r except perhaps on a closed discrete 
subset. By definition we put DK(X) to be the set of points of K(X) which are not 
good isolated points. By transfinite induction we can define D"K(X) for every 
ordinal a by 

D"K(X) = D(Dt-'iK(X)) if a is not a limit ordinal, 

D'K(X) = f l DfiK(X) if a is a limit ordinal. 

It is a remarkable fact that if D*K(X) is not identically void then X-~DXK(X) is an 
analytic multivalued function on Q (see [8] and [5]). 

In the situation of Theorem 1 we have DK(X) constant (either empty or equal 
to {0}) while in the previous example we have DK(X) = {2}. 

T h e o r e m 2. Let X—K(X) be an analytic multivalued function defined on a 
domain Q in C. Let z be a fixed complex number. Then every point of the set 
{X£Q: zZK(X)\DK(X)} is either isolated or interior. 

Proo f . We omit the proof because it is similar to the proof of Theorem 1. 

We shall need two lemmas the proofs of which are similar to some arguments 
given in [5]. 

L e m m a 1. Let X—K(X) be an analytic multivalued function defined on a domain 
Q in C, with K(X) countable for every X in Q. Then there exists a point p in 
Q such that K(p)^DK(p). 

Proo f . Suppose that DK(X)—K(X) for every X in Q. From this we conclude 
that there exists some A06 Q for which K(X0) has an infinite number of points. 
Because K(X0) is countable and compact we can assume that there exist two isolated 
points in K(X0) (see [9], Theorem 2.43). We denote them by a0 and ax. We choose 
two open disks A0 and At centred respectively at a0 and a l 5 having disjoint closures 
and such that AqP\K{X0)= {«„} and A~D^(20)={a1}. Then we choose r>0 such 
that B~(X0, r)c:Q and such that \A—X0\<r implies X(l)Hbdry ^ ¡=0 for i—0, 1. 

Because K(X0)=DK(A0) the isolated point a,- is not a good isolated point of 
K(X0), for / = 0 , 1 . By applying the scarcity theorem for the two functions X—K(X)C\ 
TLAF we conclude that the two sets E(={X^B{Xq, r): K(X)C\AT is finite} are of 
outer capacity zero. Consequently, £'oU£'1 is of outer capacity zero, therefore 
there exists some XX in B(X0, r/2) such that the intersection of K(X1) on both 
A0 and AX is infinite. 

As before we find four distinct isolated points in K(X1), say a00, a01 in A0 

and a 1 0 , a u in Ay. We take four open disks Atj centred respectively at atj, 
having disjoint closures, such that A00 

UA01^A0, A10UA11c:A1 and Ar-HK^X^ 
= {«y}. By induction we can construct a sequence (Xn) such that: 
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(i) \Xn+1-Xn\^r/2"+1 for n=0,1,2,..., 
(ii) K(Xn) contains at least 2 n + 1 distinct isolated points a^ j + i where 

ik takes the values 0, 1, 
(iii) each a , l . . . i n + 1 is the centre of an open disk ( , all these 2 n + 1 disks 

have disjoint closures, and moreover we have ^i1 . . . i< i J t l
c^i ...t„" 

Then (A„) is a Cauchy sequence converging to some ^B~(X0, r)<zQ. To 
obtain a contradiction we shall show that K(n) is uncountable. 

Let / = { / i , i2, •••,i„, •••} be an arbitrary sequence of O'sand l's. A subsequence 
of a f i , a ^ , ofy ,• , ••• converges to an cli which is in K ( / i ) by upper semi-continuity. 
If I ¿¿J then for some index k we have ik^jk with / ,= j \ for We have 

while ik • and these two disks are disjoint by construction, 
so ocjT^otj. But the set of sequences / is uncountable so K(p) is uncountable. 

R e m a r k 2. For any analytic multivalued function K(X) on £2 it is easy 
to see that the set of X££2 for which K(X)^DK(X) is open. If in addition the set 
K(A) are countable for X^Q, then this set is dense in £2. 

L e m m a 2. Let X—K(X) be an analytic multivalued function defined on a domain 
£2, with K(X) countable for every X in £2. Then there exists a first or second class 
ordinal ft such that DpK(X) = 0 for every X in £2. 

Proo f . Let <P denote the set of ordinals in the first and second classes (see 
[10], p. 369). For every X in £2 the family of D"K(X), for a in 6, is decreasing, 
consequently it stabilizes at some ordinal a(A), i.e. we have D'K(X)=D*WK(X) 
for every y^a(X), y in <9 (see [7], p. 146). For every a in 0 we define 

Fa = {XeQ: DyK(X) = D*K(X) for y s a, y£&}. 
Obviously this family is increasing and exhausts all £2. Also the sets Fa are closed 
in Q (even if the sets K(X) are not countable). Indeed, taking X0 in £2\Fa, 
we have DyK(X0)^Dy+1K(X0) for some ySa , y€0. Since DyK(X)^0, it follows 
by the Oka—Nishino theorem (see [5], Lemma 3.16) that A— DyK(X) is an analytic 
multivalued function. By the first part of Remark 2 we have DyK(X)^Dy+1K(X) 
in a neighbourhood of X0, so £2\Fa is open. Using again the results in [7], p. 146, 
and [10], p. 370, we obtain that for some ¡3 in 0 we have Fe—Q. 

Suppose that on Q. By Oka—Nishino theorem X—DfK(X) is 
analytic multivalued on £2. By hypothesis DPK(A) is countable for every X in £2 
hence by Lemma 1 we have L>f i+1K(fi)^Bf iK(p) for some Q, that is F ^ Q , 
which is a contradiction. 

T h e o r e m 3. Let X—K(X) be an analytic multivalued function on a domain 
£2 in C. Suppose that K(X) is countable for every X in £2. Let z be a fixed complex 
number. Then the set of those X in £2 for which z£K(X) is either countable or it is 
all Q. 
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Proo f . By Lemma 2 there exists a smallest ordinal /? in the first or second 
class such that £>"A:(A)=0 for A in Q. We have E = {A£Q: z£K(X)}= | J Ey 

0Sy<fl 

where Ey = {X£Q: z£DyK{X)\Dy+iK{X)}. By Theorem 2 applied to the analytic 
multivalued function X—DyK(X) we conclude that Ey has only isolated or interior 
points. Therefore Ey is the disjoint union of an open set and a countable set. 
Because the set of ordinals less than /? is countable the set E is also the disjoint 
union of an open set and a countable set. If the interior of E is empty then E is 
countable and we have finished. If not, we shall show that E = Q. First we note that 
E is closed in Q by upper semi-continuity and so the boundary of E in Q is 
countable. Let F be the closure of the interior of E in Q. It is enough to prove 
that F = Q. Because F is closed in £2 and 0 is a domain we have only to show 
that F is open. Let a be a point of F, and let r > 0 be such that B(a,r)£Q. 
There exists b in the interior of E such that \a—b]<r. The set of half-lines F with 
origin at b such that rC\B(a, r) contains a boundary point of E is at most count-
able. So the interior of E is dense in B(a,r) and hence F^>B(a,r). 

Now we give an application of Theorem 3 concerning the problem of spectral 
classification of projections. In [6] we obtained such result for finite-dimensional 
algebras. Here we extend it to algebras with countable spectrum. 

We say that two idempotents e and / in a Banach algebra A are equivalent 
if they belong to the same connected component of the set of all idempotents in A. 
It is possible to prove that e and / are equivalent if and only if there exist elements 
a1 ; ...,a„ in A such that / = e x p (—«„)...exp (—cti)-<?• exp (aj)...exp (an), see [4]. 

C o r o l l a r y 2. Let A be a (real or complex) Banach algebra. Suppose that 
every element in A has countable spectrum. Let e and f be given idempotents 
in A. Then e is not equivalent to f if and only if l£Sp (e'+ f ) for all idempotents 
e',f in neighbourhoods of e and f respectively. 

P r o o f . As noted in [6] it is enough to prove that l € S p ( e ' + / ' ) implies e not 
equivalent to / . Suppose on the contrary that e and / are equivalent. So there 
are elements ax, ...,a„ in A such that 

/ = exp ( -a„ ) . . . exp ( - a j - e - e x p ( a J . . . exp (a„). 

Consider the analytic function 

g (A) = exp (— Xan)... exp (— XaJ • e • exp (Aax)... exp (Aa„) 

defined for all complex X and with values in the complexification of A. The values 
of this function are idempotents and for X real they belong to A. Moreover we 
have g(0)=e, g ( l ) = / . We consider the analytic multivalued function defined 
on C by 

X K(X) — Sp (g(A) + g(l—A)) 
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which has countable values for X real. (We recall that for real Banach algebras the 
spectrum is defined with respect to the complexification.) Hence by Oka—Nishino 
theorem on scarcity of elements with countable values (see [3], [5], [8]) we conclude 
that K(X) is countable for every X in C. But we know that l€^(A) if X is in 
a small real segment containing zero. So by Theorem 3 we have 1 £K(X) for every X. 
In particular, taking 1 = 1/2 we get l£Sp (2g(l/2)) which is impossible because 
g(l/2) is an idempotent. 

We thank very much the referee of this paper for his many comments 
and simplifications in the proofs. 

Added in proof. Some related new results are given in [14], [15], [16]. 

References 

[1] F. V. ATKINSON, A spectral problem for completely continuous operators, Acta Math. Acad. 
Sci. Hungar., 3 (1952), 53—60. 

[2] B. AUPETIT, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics 735, 
Springer-Verlag (Berlin, 1979). 

[3] B. AUPETIT, Some applications of analytic multivalued functions to Banach algebras, Proc. Roy. 
Irish Acad. Sect. A, 81 (1981), 37—42. 

[4] B. AUPETIT, Projections in real Banach algebras, Bull. London Math. Soc., 13 (1981), 412—414. 
[5] B. AUPETIT, Analytic multivalued functions in Banach algebras and uniform algebras, Adv. in 

Math., 44 (1982), 18—60. 
[6] B. AUPETIT, T. J. LAFFEY and J. ZEMÂNEK, Spectral classification of projections, Linear Algebra 

and Appl., 41 (1981), 131—135. 
[7] C. KURATOWSKI, Topologie I, Paristwowe Wydawnictwo Naukowe (Warszawa, 1958). 
[8] T. NISHINO, Sur les ensembles pseudoconcaves, J. Math. Kyoto Univ., 1—2 (1962), 225—245. 
[9] W. RUDIN, Principles of mathematical analysis, 3 r d edition, McGraw-Hill Book Company 

(New York, 1976). 
[10] W. SIERPINSKI, Cardinal and ordinal numbers, Polish Scientific Publishers (Warszawa, 1965). 
[11] Z. SLODKOWSKI, On subharmonicity of the capacity of the spectrum, Proc. Amer. Math. Soc., 

81 (1981), 243—249. 
[12] Ju. L. SMUL'JAN, Completely continuous perturbations of operators, Doklady Akad. Nauk 

SSSR, 101 (1955), 35—38. (Russian) 
[13] B. SZ.-NAGY, On a spectral problem of Atkinson, Acta Math. Acad. Sci. Hungar., 3 (1952), 

6 1 — 6 6 . 
[14] B. AUPETIT and A. ZRAIBI, Distribution des valeurs des fonctions analytiques mitiformes, 

Studia Math., to appear 
[15] T. J. RANSFORD, Open mapping, inversion and implicit function theorems for analytic multi-

valued functions, J. London Math. Soc., to appear 
[16] T. J. RANSFORD, Analytic multivalued functions, Thesis, University of Cambiidge, 1983. 

CB. A.) ^ (J. z.) 
DÉPARTEMENT DE MATHÉMATIQUES INSTITUTE OF MATHEMATICS 
UNIVERSITÉ LAVAL POLISH ACADEMY OF SCIENCES 
QUÉBEC, G1K 7P4, CANADA 00-950 WARSZAWA, POLAND P. O. BOX 137 


