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Conditions for hermiticity and for existence
of an equivalent C*-norm

ZOLTAN MAGYAR

The author has found a sufficient condition for a self-adjoint element in a Banach
*-algebra to have purely real spectrum. This is contained in Theorem 1 below.
Using this result it becomes possible to prove that a fairly weak condition provides
for the existence of an equivalent C*-norm (see Theorem 2).

The problem discussed here is a version of the Araki—Elliott problem. ARAKI
and ELLIOTT [3] proved in 1973 that if the B*-condition

la*all =lla*| - Jal

holds for a linear norm and the * is continuous, then it is a C*-norm. They con-
jectured that the continuity of the involution is also a consequence of the B*-condition.
Z. SEBESTYEN and the author [4] verified this conjecture, and- gave a condition for
a norm to be a C*-norm which can hardly be weakened.

We shall use [1] without further reference.

Theorem 1. Let &/ be a Banach *-algebra, and let r be the spectral radius
in it. Consider a self-adjoint element h(c¢sf). Let (h) be the algebra generated
by h. Assume there are a seminorm p on (h) and constants 0<M,=M, such that

(i) M:.r(@*a)=p(a*)-p(a)=M:-r(a*a) forall ac(h).

Then Sp (h)cR or Sp (h)c{0, w, w} with a suitable weC. Further, if p is a norm
then Sp (h)CR. (*‘Sp” denotes the spectrum in &/.)

The proof will consist of two parts. Part I contains independent propositions
with independent notations. Then we shall prove Theorem 1 in Part II utilizing
the results of the previous part. '

Part I. We start with an easy lemma.
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Lemma 1.1. Let &/ be a *-algebra, p,r be seminorms on it such that r(a®)=
=r(a)?, r(@*)=r(a) and

) Mt -r(a*a) = p(a@*)-p(a) = M-r(a*a) for all acdA.
Then the following also hold:

)] M,-r(hy=ph)y=M,-r(h) if h=h*co,

3 p(a) = 2M,-r(a) for all acd.

Proof. Writing a=h, a*=h, (2) is immediate from the properties of r. For
an arbitrary element a consider the real and imaginary part of a, that is, h=
=2"Ya+a*), k=Qi)a—a*). Then r(a*)=r(a) implies r(k)=r(a), r(h)=r(a),
and so (3) follows from (2).

We call a set KcC symmetric if it is stable under conjugation, i.e. zZéK if
z€K. In the remainder of this part let K be a fixed symmetric non-void compact
subset of the complex plain. Denote by C(K) the algebra of continuous functions
on K, and by r the customary sup-norm in C(K). Define an involution in C(K)
setting f*(z)=/(Z). This definition is correct and this involution is norm-preserving,
since K is symmetric.

Let AcC(K) be the polynomials without constant terms. This is a *-sub-
algebra. Consider the following condition: there are a seminorm p on A and
constants 0<M;=M, such that

(P1) ME-r(f)=p(f-p(f) = ME-r(f*f) for all fed.

Our goal is to prove that this condition implies that the shape of K is very special
(see Propositions 1.2 and 1.5 below).
First we list some immediate consequences of (P1). We see from Lemma 1.1 that

(P2) _ My r(h)=p(h)= M,-r(h) if h=h*c4,
(P3) p(f) =2M,-r(f) for all fcA.

Let B be the norm-closure of A in C(K). Because of (P3) p has a unique
continuous extension to B, which will also be denoted by p. Then this extended
p will also be a seminorm and (P1), (P2), (P3) remain-valid on B.

Notation. We say that a set TCC is a cross if there is a real number s such
that TcRU {s+iz; t€R}.

Proposition 1.2. (Pl) implies that K is a cross.

Proof. Suppose the contrary. Then we shall find £, g in B with p(f)+p(g)<
<p(f+g), which is a contradiction. We need two lemmas for this.
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Denote by C (resp. f) the maximum of |z] (resp. Imz) on K. Note that
C, B=0 because K is symmetric and not a cross. Let a€R be such that a+ifek.
Write w,=a+if, wo,=w,, m=|w,|.

Lemma 1.3. For any n€R there are a,b in B such that
@) r(a*a), rd*b)=C?, (5) r(@=rb)>n, (6) [b(wy)|=[b(wa)|=m,
() la(wy)|zZ=mC ~1-r(a), B) la(wz)|<2"'m.

Proof. Let a(z)=z-exp(—it(z—a)), b(z)=z-exp (—it(z—«)?) where t is
real and z€K. Then a,, b,€B for all t. Since K is not a cross, there is a u=yi6¢K
such that y=oa and 60 (y, 66R). Thus |b,(u)|=|u|-exp (2¢(y—a)5) and hence
there isa t for which |b,(u){=n. Let b=>b, with such a ¢.

Since |a,(wy)|=m-exp (tB), |a,(w)|=m-exp (—1B), there is a (=0 with
la,(wo)|<27'm, r(a,)=r(b). With such a ¢ let a=r(b)r(a,)a, It is easy to check
that (4)—(8) hold for this a, b (for (7) use that  is the maximum of Imz on K).

Lemma 1.4. Assume that for an ac B the condition
) r@a)'*=C =271.r(a
holds. Then there is a constant L (e.g. L=4MIC*M;" is appropriate) such that
(10) min (p(a), p(a*)) =L-r(a)~%

Proof. Choosing z in K with r(a)=a(z) we have by (9)

[a*@)| = C2-r(a) 1 =2"1C=4"1.r(a),
and thus

r(a+a*) = [(a+a*)(2)| = la@)|—|a*@)| = r(@—4"1-r(a) = 271 r(a).
Then we get from (P1), (P2), (9) and the subadditivity of p that
P(@+p(a*) =27'M,-r(a) and - p(a)-p(a*) = MiC®

Writing c=min (p(a), p(a*)), d=max(p(a), p(a*)), we then have 2d=c+d=
=27M, -r(@), c-d=M:C? and hence c=4MIC:M['r(a)™.

We turn to the proof of Proposition 1.2. Let a,b€B be such that (4)—(8)
hold with ‘““large enough™ n. Let further f (resp. g) be the one from a and g*
(resp. b and b*) for which p is less. Since r(g)=r(f)=r(@)>n and n is large
(=2C), we can apply Lemma 1.4 and have

(1) p(f)+p(h) <2Ln~.
On the other hand, (P1) and (5)—(8) give us

“2.p(f*+gM) p(f+g) = r((f*+g*)(f+g)) = [(f*+ 9 (f+2)l(wy)] =
= (mC—l . r(a)_m) .(m_2—1m) = (4C)_1m2-r(a)'

20*
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if n is large (since n>2C implies m=(2C)"'m-r(a)). Further, by (P3)

P(f*+8%) = 2M, - r(f*+g%) = 4M, -1 (a)
and thus
p(f+8) = M2m*(16M,C)! = 2Ln™?

if n is large. This and (11) show the desired contradiction. Propositioh 12 is
proved.

Proposition 1.5. If card (K—R)=2 and (P1) holds then KNRc {0}.

Proof. Suppose K—R={w, w}. Since C—K is connected now, by Runge’s
theorem there are polynomials P, converging to w~%-1,;, in C(K), where 1,
denotes the characteristic function of the one point set {w}. Hence z-P,(z) con-
verges to lg,; in C(K), consequently 1;,,€B.

Since 1§, 1(,,=0, thus by (P1) we infer that one of the functions 1, and
1f.), say f, is such that p(f)=0. This implies

12 p(f+g =p(g) for all" geB.
Applying this to g=f* we get from (P2) that
13) p(f) = M.

Let h(z)=z on K and let h0=h—w-1(;)—w-1{w,; thus hy€ B. We will show

that hy=0, ie. KNRc{0}. Write g=a-h,, where « is a real number, and let
k=f+g. Since g is self-adjoint, further g.f=0=g. f*, therefore k*k=g? and
so (P1) implies
(14) p(k")-p(k) = M- r(g)" 7 :
On the other hand, we can see from (12), (13) and (P2) that p(k)le -r(g), p(k")=
=M,—M,-r(g). This contradicts (14), if r(g) is a small positive number. But
if hy£0, then r(g) runs over all of R, when a does. Thus hy,=0 and the proof
of Proposition 1.5 is complete.

Part II. If P= 3 a, X*is a complex polynomial without constant term then we
k=1

write P*=k2n; a,X*. It is clear that P*(h)=P(h)*, where h is the self-adjoint
element considered in Theorem 1. '

Let K=Sp(h). Then K is symmetric, because in each *-algebra Sp (a*)=
=Sp (a) for any a. We will show that this K satisfies (P1). Consider the following
relation between A and (h):f~a if there is a polynomial P such that P(h)=a
and P(z)=f(z) forall z¢K. Denote by r’ the sup-norm in C(K). Then r'(f)=r(a)
if f~a, because P(Sp (h))=Sp (P(h)). Further;, f~a, g~b ensure f+Aig~a+ab,
f*~a*, since P*(z)=P(Z). Finally we see from (i) and Lemma 1.1 that p =2M,-r.
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Hence the following definition is correct: let p’(f)=p(a) if f~a. Moreover, this
p’ shows that K satisfies (P1). Thus we know that :

(15) Sp(h) isa crosé,
(16) if card (Sp (h)—R)=2 then Sp(h) NRc {0}.

Suppose that K=Sp (h)¢R and K {0, w, w} for any wéC. Then by (15)
and (16) we can find w;, w, in K—R such that Re w;=Re w,, Im w; £Im w,.
Thus Re (w,+sw?)=Re (wy+swi) for any s€¢R—{0}, and if |s| is small then
wy+sw?, wy+swi are not real. Therefore Sp (h+sh?) is not a cross. But this is
impossible, since g=h+sh? is self-adjoint and (g)c(h).

It remains to prove the last statement of the theorem. Assume the contrary,
that is, K¢ R and p is a norm. We know already that KU {0}={0, w, w} where
weC—R. Let y=h*—wh. Then y*y=h*—wh®—wh®+wwh? and hence Sp (y)# {0},
Sp (»*y)={0}). Thus, on the one hand, r(y*y)=0; on the other hand, p(y*)-
-p(»)#0, since ye(h)—{0} and p isanormon (k). This contradicts (i). Theorem 1
is proved. :

Theorem 2. Let &/ be a *-algebra. Let p be a norm on it, and assume that
the following hold with suitable positive constants C, D:

(i) p(a*a) = C-p(a*)-p(a) for all acsH,

(i) p(b*b) = D-p(b*)-p(b) if be(h), h = h*c . ‘
Then (&£, p) is an equivalent pre-C*-algebra (that is, there is a norm on the completion
of (#,p), equivalent to p and such that the completion with this norm is a C*-
algebra).

Proof. This identity holds in each *-algebra: -
ey) dxy = (x*+ )+ ) — (= x*+p)* (=x" + )+
+i(ix*+y)(ix* +y)—i(—ix*+y)*(—ix*+y).
From this and (i) we get
) 4p(xy) = 4C-(p(M)+p () - (P () +p(»))-

Writing x=(p(v*)"*+&)(p ()2 +&)u, y=(p@*)*+¢)(p(w)'/*+¢€)v in (2) (where
e>0) and letting ¢ tend to 0, we infer ‘

3 p(uv) = C-(p(uW*)2p(*) 2+ p(u)/2 p ()22
Define a new norm on &/ by setting
4 llall = 4C-max(p(a*), p(a)) for all acs.

Then we have

(8 labl =lal -15l, la*] =lall, p(a) = (4C)Hal| for all a, beo.
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Let # be the completion of (&, | -]|). Because of (5) the operations and p have
unique continuous extensions to # and (i), (i), (4), (5) remain valid in 2.
Let r be the spectral radius in 4. Since # is a Banach-algebra, thus

©) r(a) = lim|a"|" for all a€4.

If h is a self-adjoint element in &, then D.p(h)?=p(h?), and hence p(h)=
=D phA)2=D-2D-p(h*)/*=.... Therefore p(h)=D.lim sup p(h")"/".
Thus we see from (5) and (6) that p(h)=D-!-r(h). On the other hand, r(h)=
=||h||=4C - p(h) and we have

Q) @C)t-r(h)=pHh)=D"1.r(h) if h*=heA.

From this and (i), (ii) we can see that

@B (@CH'.r(@a*a)=p(@a*)-pl@ =D -r(a*a) if ac(h), h* = he,;

furthefmorc, p is a norm on ¢h). Thus Theorem 1 shows that Sp (h)cR if
h*=hcof. Then r(sin h)=1, r(cosh—1)=2 via functional calculus. Since * is
continuous in %, hence sin h, cos h—1 are self-adjoint. Therefore (7) and (4) imply
|sin || =4CD™!, |cos h—1| =8CD™!, and so

©) lexp (in)—1|| = 12CD™' if h*=heod.

The self-adjoint part of & is dense in that of %, and hence (9) remains valid for
h=h*c#, too. But this ensures that [a|.=r(a*a)/* is a C*-norm on %, which
is equivalent to | - || (see [2]). Thus p is continuous with respect to || -|.; let E>0
be such that

p(a) = E.)a|, for all acZ.

Comparing this with (i) and (7) we see that for any ac%#
E-|a|.-p(a) = E-|a*].- p(a) = p(a*) - p(a) = (4C)~'r(aa) = (4C*) | alZ,

that is, p(@)=(4EC?all.. Therefore p is equivalent to | -|.. Theorem 2 is
proved.
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