Conditions for hermiticity and for existence of an equivalent C*-norm

ZOLTÁN MAGYAR

The author has found a sufficient condition for a self-adjoint element in a Banach *-algebra to have purely real spectrum. This is contained in Theorem 1 below. Using this result it becomes possible to prove that a fairly weak condition provides for the existence of an equivalent C^* -norm (see Theorem 2).

The problem discussed here is a version of the Araki—Elliott problem. Araki and Elliott [3] proved in 1973 that if the B^* -condition

$$||a^*a|| = ||a^*|| \cdot ||a||$$

holds for a linear norm and the * is continuous, then it is a C^* -norm. They conjectured that the continuity of the involution is also a consequence of the B^* -condition. Z. Sebestyén and the author [4] verified this conjecture, and gave a condition for a norm to be a C^* -norm which can hardly be weakened.

We shall use [1] without further reference.

Theorem 1. Let \mathscr{A} be a Banach *-algebra, and let r be the spectral radius in it. Consider a self-adjoint element $h(\in \mathscr{A})$. Let $\langle h \rangle$ be the algebra generated by h. Assume there are a seminorm p on $\langle h \rangle$ and constants $0 < M_1 \le M_2$ such that

(i) $M_1^2 \cdot r(a^*a) \leq p(a^*) \cdot p(a) \leq M_2^2 \cdot r(a^*a)$ for all $a \in \langle h \rangle$. Then $\operatorname{Sp}(h) \subset \mathbb{R}$ or $\operatorname{Sp}(h) \subset \{0, w, \bar{w}\}$ with a suitable $w \in \mathbb{C}$. Further, if p is a norm then $\operatorname{Sp}(h) \subset \mathbb{R}$. ("Sp" denotes the spectrum in \mathscr{A} .)

The proof will consist of two parts. Part I contains independent propositions with independent notations. Then we shall prove Theorem 1 in Part II utilizing the results of the previous part.

Part I. We start with an easy lemma.

Received November 27, 1981.

Lemma 1.1. Let $\mathscr A$ be a *-algebra, p, r be seminorms on it such that $r(a^2) = r(a)^2$, $r(a^*) = r(a)$ and

(1)
$$M_1^2 \cdot r(a^*a) \le p(a^*) \cdot p(a) \le M_2^2 \cdot r(a^*a) \quad \text{for all} \quad a \in \mathcal{A}.$$

Then the following also hold:

(2)
$$M_1 \cdot r(h) \le p(h) \le M_2 \cdot r(h) \quad \text{if} \quad h = h^* \in \mathcal{A},$$

(3)
$$p(a) \le 2M_2 \cdot r(a)$$
 for all $a \in \mathcal{A}$.

Proof. Writing a=h, $a^*=h$, (2) is immediate from the properties of r. For an arbitrary element a consider the real and imaginary part of a, that is, $h=2^{-1}(a+a^*)$, $k=(2i)^{-1}(a-a^*)$. Then $r(a^*)=r(a)$ implies $r(k) \le r(a)$, $r(h) \le r(a)$, and so (3) follows from (2).

We call a set $K \subset \mathbb{C}$ symmetric if it is stable under conjugation, i.e. $\overline{z} \in K$ if $z \in K$. In the remainder of this part let K be a fixed symmetric non-void compact subset of the complex plain. Denote by C(K) the algebra of continuous functions on K, and by r the customary sup-norm in C(K). Define an involution in C(K) setting $f^*(z) = \overline{f(\overline{z})}$. This definition is correct and this involution is norm-preserving, since K is symmetric.

Let $A \subset C(K)$ be the polynomials without constant terms. This is a *-sub-algebra. Consider the following condition: there are a seminorm p on A and constants $0 < M_1 \le M_2$ such that

(P1)
$$M_1^2 \cdot r(f^*f) \le p(f^*) \cdot p(f) \le M_2^2 \cdot r(f^*f) \text{ for all } f \in A.$$

Our goal is to prove that this condition implies that the shape of K is very special (see Propositions 1.2 and 1.5 below).

First we list some immediate consequences of (P1). We see from Lemma 1.1 that

(P2)
$$M_1 \cdot r(h) \le p(h) \le M_2 \cdot r(h) \quad \text{if} \quad h = h^* \in A,$$

(P3)
$$p(f) \le 2M_2 \cdot r(f)$$
 for all $f \in A$.

Let B be the norm-closure of A in C(K). Because of (P3) p has a unique continuous extension to B, which will also be denoted by p. Then this extended p will also be a seminorm and (P1), (P2), (P3) remain valid on B.

Notation. We say that a set $T \subset \mathbb{C}$ is a *cross* if there is a real number s such that $T \subset \mathbb{R} \cup \{s+it; t \in \mathbb{R}\}$.

Proposition 1.2. (P1) implies that K is a cross.

Proof. Suppose the contrary. Then we shall find f, g in B with p(f)+p(g) < p(f+g), which is a contradiction. We need two lemmas for this.

Denote by C (resp. β) the maximum of |z| (resp. Im z) on K. Note that $C, \beta > 0$ because K is symmetric and not a cross. Let $\alpha \in \mathbb{R}$ be such that $\alpha + i\beta \in K$. Write $w_1 = \alpha + i\beta$, $w_2 = \overline{w}_1$, $m = |w_1|$.

Lemma 1.3. For any $n \in \mathbb{R}$ there are a, b in B such that

- (4) $r(a^*a)$, $r(b^*b) \le C^2$, (5) r(a) = r(b) > n, (6) $|b(w_1)| = |b(w_2)| = m$,
- (7) $|a(w_1)| \ge mC^{-1} \cdot r(a)$, (8) $|a(w_2)| < 2^{-1}m$.

Proof. Let $a_t(z) = z \cdot \exp\left(-it(z-\alpha)\right)$, $b_t(z) = z \cdot \exp\left(-it(z-\alpha)^2\right)$ where t is real and $z \in K$. Then $a_t, b_t \in B$ for all t. Since K is not a cross, there is a $u = \gamma i\delta \in K$ such that $\gamma \neq \alpha$ and $\delta \neq 0$ $(\gamma, \delta \in \mathbb{R})$. Thus $|b_t(u)| = |u| \cdot \exp\left(2t(\gamma - \alpha)\delta\right)$ and hence there is a t for which $|b_t(u)| > n$. Let $b = b_t$ with such a t.

Since $|a_t(w_1)| = m \cdot \exp(t\beta)$, $|a_t(w_2)| = m \cdot \exp(-t\beta)$, there is a t > 0 with $|a_t(w_2)| < 2^{-1}m$, $r(a_t) > r(b)$. With such a t let $a = r(b)r(a_t)^{-1}a_t$. It is easy to check that (4)—(8) hold for this a, b (for (7) use that β is the maximum of Im z on K).

Lemma 1.4. Assume that for an $a \in B$ the condition

(9)
$$r(a^*a)^{1/2} \le C \le 2^{-1} \cdot r(a)$$

holds. Then there is a constant L (e.g. $L=4M_2^2C^2M_1^{-1}$ is appropriate) such that (10) $\min(p(a), p(a^*)) \le L \cdot r(a)^{-1}$.

Proof. Choosing z in K with r(a) = a(z) we have by (9)

$$|a^*(z)| \le C^2 \cdot r(a)^{-1} \le 2^{-1}C \le 4^{-1} \cdot r(a),$$

and thus

$$r(a+a^*) \ge |(a+a^*)(z)| \ge |a(z)|-|a^*(z)| \ge r(a)-4^{-1} \cdot r(a) \ge 2^{-1} \cdot r(a).$$

Then we get from (P1), (P2), (9) and the subadditivity of p that

$$p(a) + p(a^*) \ge 2^{-1}M_1 \cdot r(a)$$
 and $p(a) \cdot p(a^*) \le M_2^2 C^2$.

Writing $c = \min(p(a), p(a^*))$, $d = \max(p(a), p(a^*))$, we then have $2d \ge c + d \ge 2^{-1}M_1 \cdot r(a)$, $c \cdot d \le M_2^2C^2$, and hence $c \le 4M_2^2C^2M_1^{-1}r(a)^{-1}$.

We turn to the proof of Proposition 1.2. Let $a, b \in B$ be such that (4)—(8) hold with "large enough" n. Let further f (resp. g) be the one from a and a^* (resp. b and b^*) for which p is less. Since r(g)=r(f)=r(a)>n and n is large (>2C), we can apply Lemma 1.4 and have

(11)
$$p(f) + p(h) < 2Ln^{-1}.$$

On the other hand, (P1) and (5)—(8) give us

$$M_1^{-2} \cdot p(f^* + g^*) \cdot p(f + g) \ge r((f^* + g^*)(f + g)) \ge |[(f^* + g^*)(f + g)](w_1)| \ge$$

$$\ge (mC^{-1} \cdot r(a) - m) \cdot (m - 2^{-1}m) \ge (4C)^{-1}m^2 \cdot r(a)$$

if n is large (since n>2C implies $m \le (2C)^{-1} m \cdot r(a)$). Further, by (P3)

$$p(f^*+g^*) \le 2M_2 \cdot r(f^*+g^*) \le 4M_2 \cdot r(a)$$

and thus

$$p(f+g) \ge M_1^2 m^2 (16M_2C)^{-1} \ge 2Ln^{-1}$$

if n is large. This and (11) show the desired contradiction. Proposition 1.2 is proved.

Proposition 1.5. If $card(K-\mathbf{R})=2$ and (P1) holds then $K \cap \mathbf{R} \subset \{0\}$.

Proof. Suppose $K-\mathbf{R} = \{w, \bar{w}\}$. Since $\mathbf{C} - K$ is connected now, by Runge's theorem there are polynomials P_k converging to $w^{-1} \cdot 1_{\{w\}}$ in C(K), where $1_{\{w\}}$ denotes the characteristic function of the one point set $\{w\}$. Hence $z \cdot P_k(z)$ converges to $1_{\{w\}}$ in C(K), consequently $1_{\{w\}} \in B$.

Since $1_{\{w\}}^* \cdot 1_{\{w\}} = 0$, thus by (P1) we infer that one of the functions $1_{\{w\}}$ and $1_{\{w\}}^*$, say f, is such that p(f) = 0. This implies

(12)
$$p(f+g) = p(g) \text{ for all } g \in B.$$

Applying this to $g=f^*$ we get from (P2) that

$$(13) p(f^*) \ge M_1.$$

Let h(z)=z on K and let $h_0=h-w\cdot 1_{\{w\}}-\bar{w}\cdot 1_{\{w\}}^*$; thus $h_0\in B$. We will show that $h_0=0$, i.e. $K\cap \mathbf{R}\subset \{0\}$. Write $g=\alpha\cdot h_0$, where α is a real number, and let k=f+g. Since g is self-adjoint, further $g\cdot f=0=g\cdot f^*$, therefore $k^*k=g^2$ and so (P1) implies

(14)
$$p(k^*) \cdot p(k) \leq M_2^2 \cdot r(g)^2$$
.

On the other hand, we can see from (12), (13) and (P2) that $p(k) \ge M_1 \cdot r(g)$, $p(k^*) \ge M_1 - M_2 \cdot r(g)$. This contradicts (14), if r(g) is a small positive number. But if $h_0 \ne 0$, then r(g) runs over all of \mathbf{R}_+ when α does. Thus $h_0 = 0$ and the proof of Proposition 1.5 is complete.

Part II. If $P = \sum_{k=1}^{n} a_k X^k$ is a complex polynomial without constant term then we write $P^* = \sum_{k=1}^{n} \bar{a}_k X^k$. It is clear that $P^*(h) = P(h)^*$, where h is the self-adjoint element considered in Theorem 1.

Let $K = \operatorname{Sp}(h)$. Then K is symmetric, because in each *-algebra $\operatorname{Sp}(a^*) = \overline{\operatorname{Sp}(a)}$ for any a. We will show that this K satisfies (P1). Consider the following relation between A and $\langle h \rangle$: $f \sim a$ if there is a polynomial P such that P(h) = a and P(z) = f(z) for all $z \in K$. Denote by r' the sup-norm in C(K). Then r'(f) = r(a) if $f \sim a$, because $P(\operatorname{Sp}(h)) = \operatorname{Sp}(P(h))$. Further, $f \sim a$, $g \sim b$ ensure $f + \lambda g \sim a + \lambda b$, $f^* \sim a^*$, since $P^*(z) = \overline{P(\overline{z})}$. Finally we see from (i) and Lemma 1.1 that $p \leq 2M_2 \cdot r$.

Hence the following definition is correct: let p'(f) = p(a) if $f \sim a$. Moreover, this p' shows that K satisfies (P1). Thus we know that

- (15) Sp (h) is a cross,
- (16) if card $(\operatorname{Sp}(h) \mathbf{R}) = 2$ then $\operatorname{Sp}(h) \cap \mathbf{R} \subset \{0\}$.

Suppose that $K = \operatorname{Sp}(h) \subset \mathbb{R}$ and $K \subset \{0, w, \overline{w}\}$ for any $w \in \mathbb{C}$. Then by (15) and (16) we can find w_1, w_2 in $K-\mathbf{R}$ such that $\operatorname{Re} w_1 = \operatorname{Re} w_2$, $\operatorname{Im} w_1 \neq \pm \operatorname{Im} w_2$. Thus $\operatorname{Re}(w_1 + sw_1^2) \neq \operatorname{Re}(w_2 + sw_2^2)$ for any $s \in \mathbb{R} - \{0\}$, and if |s| is small then $w_1 + sw_1^2$, $w_2 + sw_2^2$ are not real. Therefore Sp $(h + sh^2)$ is not a cross. But this is impossible, since $g=h+sh^2$ is self-adjoint and $\langle g \rangle \subset \langle h \rangle$.

It remains to prove the last statement of the theorem. Assume the contrary, that is, $K \subset \mathbb{R}$ and p is a norm. We know already that $K \cup \{0\} = \{0, w, \overline{w}\}$ where $w \in \mathbb{C} - \mathbb{R}$. Let $y = h^2 - wh$. Then $y^*y = h^4 - wh^3 - \bar{w}h^3 + w\bar{w}h^2$ and hence Sp $(y) \neq \{0\}$, $\operatorname{Sp}(y^*y) = \{0\}$. Thus, on the one hand, $r(y^*y) = 0$; on the other hand, $p(y^*)$. $p(y) \neq 0$, since $y \in \langle h \rangle - \{0\}$ and p is a norm on $\langle h \rangle$. This contradicts (i). Theorem 1 is proved.

Theorem 2. Let \mathcal{A} be a *-algebra. Let p be a norm on it, and assume that the following hold with suitable positive constants C, D:

- (i) $p(a^*a) \leq C \cdot p(a^*) \cdot p(a)$ for all $a \in \mathcal{A}$, (ii) $p(b^*b) \geq D \cdot p(b^*) \cdot p(b)$ if $b \in \langle h \rangle$, $h = h^* \in \mathcal{A}$.

Then (A, p) is an equivalent pre- C^* -algebra (that is, there is a norm on the completion of (\mathcal{A}, p) , equivalent to p and such that the completion with this norm is a C^* algebra).

Proof. This identity holds in each *-algebra:

(1)
$$4xy = (x^* + y)^*(x^* + y) - (-x^* + y)^*(-x^* + y) + i(ix^* + y)^*(ix^* + y) - i(-ix^* + y)^*(-ix^* + y).$$

From this and (i) we get

$$(2) 4p(xy) \leq 4C \cdot (p(x)+p(y^*)) \cdot (p(x^*)+p(y)).$$

Writing $x = (p(v^*)^{1/2} + \varepsilon)(p(v)^{1/2} + \varepsilon)u$, $y = (p(u^*)^{1/2} + \varepsilon)(p(u)^{1/2} + \varepsilon)v$ in (2) (where $\varepsilon > 0$) and letting ε tend to 0, we infer

(3)
$$p(uv) \leq C \cdot (p(u^*)^{1/2} p(v^*)^{1/2} + p(u)^{1/2} p(v)^{1/2})^2.$$

Define a new norm on \mathcal{A} by setting

(4)
$$||a|| = 4C \cdot \max(p(a^*), p(a)) \text{ for all } a \in \mathcal{A}.$$

Then we have

(5)
$$||ab|| \le ||a|| \cdot ||b||$$
, $||a^*|| = ||a||$, $p(a) \le (4C)^{-1} ||a||$ for all $a, b \in \mathcal{A}$.

Let \mathscr{B} be the completion of $(\mathscr{A}, \|\cdot\|)$. Because of (5) the operations and p have unique continuous extensions to \mathscr{B} and (i), (ii), (4), (5) remain valid in \mathscr{B} .

Let r be the spectral radius in \mathcal{B} . Since \mathcal{B} is a Banach-algebra, thus

(6)
$$r(a) = \lim ||a^n||^{1/n} \text{ for all } a \in \mathcal{B}.$$

If h is a self-adjoint element in \mathscr{B} , then $D \cdot p(h)^2 \leq p(h^2)$, and hence $p(h) \leq D^{-1/2} p(h^2)^{1/2} \leq D^{-1/2} D^{-1/4} p(h^4)^{1/4} \leq \dots$. Therefore $p(h) \leq D^{-1} \cdot \lim \sup p(h^n)^{1/n}$. Thus we see from (5) and (6) that $p(h) \leq D^{-1} \cdot r(h)$. On the other hand, $r(h) \leq \|h\| = 4C \cdot p(h)$ and we have

(7)
$$(4C)^{-1} \cdot r(h) \leq p(h) \leq D^{-1} \cdot r(h) \quad \text{if} \quad h^* = h \in \mathcal{B}.$$

From this and (i), (ii) we can see that

(8)
$$(4C^2)^{-1} \cdot r(a^*a) \le p(a^*) \cdot p(a) \le D^{-2} \cdot r(a^*a)$$
 if $a \in \langle h \rangle, h^* = h \in \mathcal{A}$;

furthermore, p is a norm on $\langle h \rangle$. Thus Theorem 1 shows that $\operatorname{Sp}(h) \subset \mathbb{R}$ if $h^* = h \in \mathscr{A}$. Then $r(\sin h) \leq 1$, $r(\cos h - 1) \leq 2$ via functional calculus. Since * is continuous in \mathscr{B} , hence $\sin h$, $\cos h - 1$ are self-adjoint. Therefore (7) and (4) imply $\|\sin h\| \leq 4CD^{-1}$, $\|\cos h - 1\| \leq 8CD^{-1}$, and so

(9)
$$\|\exp(ih)-1\| \le 12CD^{-1} \text{ if } h^*=h \in \mathcal{A}.$$

The self-adjoint part of \mathscr{A} is dense in that of \mathscr{B} , and hence (9) remains valid for $h=h^*\in\mathscr{B}$, too. But this ensures that $\|a\|_c=r(a^*a)^{1/2}$ is a C^* -norm on \mathscr{B} , which is equivalent to $\|\cdot\|$ (see [2]). Thus p is continuous with respect to $\|\cdot\|_c$; let E>0 be such that

$$p(a) \leq E \cdot ||a||_c$$
 for all $a \in \mathcal{B}$.

Comparing this with (i) and (7) we see that for any $a \in \mathcal{B}$

$$E \cdot \|a\|_{c} \cdot p(a) = E \cdot \|a^{*}\|_{c} \cdot p(a) \ge p(a^{*}) \cdot p(a) \ge (4C^{2})^{-1} r(a^{*}a) = (4C^{2})^{-1} \|a\|_{c}^{2},$$

that is, $p(a) \ge (4EC^2)^{-1} ||a||_c$. Therefore p is equivalent to $||\cdot||_c$. Theorem 2 is proved.

References

- [1] F. F. Bonsall.—J. Duncan, *Complete Normed Algebras*, Ergebnisse der Mathematik, Band 80, Springer (Berlin, 1973).
- [2] V. PTÁK, Banach algebras with involution, Manuscripta Math., 6 (1972), 245-290.
- [3] H. Araki—G. A. Elliott, On the definition of C*-algebras, Publ. Res. Inst. Math. Sci., 9 (1973), 93—112.
- [4] Z. MAGYAR—Z. SEBESTYÉN, On the definition of C*-algebras. II, to appear.

DEPARTMENT OF MATH. ANALYSIS II EÖTVÖS LORÁND UNIVERSITY MÜZEUM KÖRÜT 6—8 1088 BUDAPEST, HUNGARY