Restrictions of positive operators

ZOLTÁN SEBESTYÉN

The aim of this note is to give a necessary and sufficient condition for the existence of a positive linear operator on Hilbert space whose restriction to a subset of this space is given. As an application we have a result on division of Hilbert space operators. Krein's theorem on the extension of a bounded symmetric operator from a subspace to the whole space is also established.

Theorem. Let H be a (complex) Hilbert space, H_{0} its subset, and b a function on H_{0} with values in H. There exists a positive operator B on H with restriction to H_{0} identical to b if and only if

$$
\begin{equation*}
\left\|\sum_{h} c_{h} b(h)\right\|^{2} \leqq M\left(\sum_{h} c_{h} b(h), \sum_{h} c_{h} h\right) \tag{1}
\end{equation*}
$$

holds with some constant $M \geqq 0$ for any finite sequence $\left\{c_{h}\right\}_{h \in H_{0}}$ of complex numbers indexed by elements of H_{0}. In this case, $\|B\| \leqq M$.

Proof. The necessity of condition (1) is a simple consequence of a property of positive operators:

$$
\begin{aligned}
\left\|\sum_{h} c_{h} b(h)\right\|^{2} & =\left\|B\left(\sum_{h} c_{h} h\right)\right\|^{2} \leqq\|B\|\left(B\left(\sum_{h} c_{h} h\right), \sum_{h} c_{h} h\right)= \\
& =\|B\|\left(\sum_{h} c_{h} b(h), \sum_{h} c_{h} h\right) .
\end{aligned}
$$

Hence (1) holds with $M=\|B\|$ for any finite sequence $\left\{c_{h}\right\}_{h \in H_{0}}$ of complex numbers.

Conversely, assume that (1) is valid for arbitrary finite sequences $\left\{c_{h}\right\}_{h \in H_{0}}$ of complex numbers. Since the linear span of H_{0} in H, say X, consists of elements $\sum_{h} c_{h} h$ with such coefficients, we can introduce a semi-definite inner product on X by

$$
\left\langle\sum_{h} c_{h} h, \sum_{k} d_{k} k\right\rangle:=\left(\sum_{h} c_{h} b(h), \sum_{k} d_{k} k\right)
$$

for elements $\sum_{h} c_{h} h$ and $\sum_{k} d_{k} k$ of X. It is well defined because $\sum_{h} c_{h} h=0$ implies $\sum_{h} c_{h} b(h)=0$, in view of (1). As usual, we get a Hilbert space K from X by factorizing X with respect to the null space of $\langle\cdot, \cdot\rangle$ and by completing with respect to the norm arising on the factor space. For simplicity we denote the image in K of an element of X by the same symbol. With this convention there is a continuous linear operator V from K into H given by

$$
V\left(\sum_{h} c_{h} h\right)=\sum_{h} c_{h} b(h)
$$

for any element $\sum_{h} c_{h} h$ of X. Indeed, according to (1), V is well defined and has norm $\leqq \sqrt{M}$. We are going to prove that $B=V V^{*}$ is the desired positive operator on H. To see this it is enough to prove that

$$
\begin{equation*}
V^{*} k=k \text { for any } k \text { in } H_{0} \tag{2}
\end{equation*}
$$

since then $B k=V V^{*} k=V k=b(k)\left(k \in H_{0}\right)$.
To prove (2) we see

$$
\left\langle\sum_{h}^{\prime} c_{h} h, V^{*} k\right\rangle=\left(V\left(\sum_{h} c_{h} h\right), k\right)=\left(\sum_{h} c_{h} b(h), k\right)=\left\langle\sum_{h} c_{h} h, k\right\rangle
$$

for any element $\sum_{h} c_{h} h$ in K. Since these elements are dense in K, the statement follows. The proof of the Theorem is complete.

Corollary 1. Let A and C be bounded linear operators on the Hilbert space H. There exists a positive operator B on H such that $A=B C$ if and only if there exists a constant $M \geqq 0$ such that
(3)

$$
A^{*} A \leqq M \cdot C^{*} A
$$

Proof. For $h=C k, k$ in H, let $b(h)=A k$. Then (1) takes the form

$$
\|A k\|^{2} \leqq M(A k, C k)=M\left(C^{*} A k, k\right)
$$

for any k in H, which is the same as (3).
Remark. If b is a linear map of a subspace $H_{0} \subset H$ into H such that for some constant $M \geqq 0$

$$
\begin{equation*}
\|b(h)\|^{2} \leqq M(b(h), h) \quad\left(h \in H_{0}\right) \tag{4}
\end{equation*}
$$

then b has a positive extension B defined on H. This is a consequence of the Theorem. On the other hand, the usual condition for positivity

$$
\begin{equation*}
0 \leqq(b(h), h) \quad\left(h \in H_{0}\right) \tag{5}
\end{equation*}
$$

is not enough for the existence of such a positive extension: a simple example is the case when $(b(h), h)=0 \neq b(h)$ for some element h in $H_{0} . \therefore$

Corollary 2. Let b a function on a subset H_{0} of the Hilbert space H with values in H. There exists a self-adjoint operator B on H such that $m \cdot I \leqq B \leqq M \cdot I$, where $m \leqq M$ are real constants, if and only if

$$
\begin{equation*}
\left\|\sum_{h} c_{h}(b(h)-m \cdot h)\right\|^{2} \leqq(M-m)\left(\sum_{h} c_{h}(b(h)-m \cdot h), \sum_{h} c_{h} h\right) \tag{6}
\end{equation*}
$$

holds for any finite sequence $\left\{c_{h}\right\}$ of complex numbers indexed by elements of H_{0}.
Corollary 3 (M. G. Kreĭn, cf. [1]). Let b a symmetric and bounded linear operator from a subspace H_{0} of a Hilbert space H into H. Then there exists a selfadjoint extension of b to the whole space H with the same bound.

Proof. Let M be the norm of the operator b, that is,

$$
M=\sup \left\{\|b(h)\|: h \in H_{0},\|h\| \leqq 1\right\}
$$

We have then for any h in H_{0}

$$
\begin{gathered}
\|b(h)+M \cdot h\|^{2}=\|b(h)\|^{2}+2 M \cdot(b(h), h)+M^{2} \cdot\|h\|^{2} \leqq \\
\leqq 2 M \cdot(b(h), h)+2 M^{2} \cdot\|h\|^{2}=2 M(b(h)+M h, h) .
\end{gathered}
$$

But this is nothing else than (6) in case $-m=M$ and b is a linear function, an operator. As a consequence, $-M \cdot I \leqq B \leqq M \cdot I$ holds for a self-adjoint extension B of b to the space H. This was to be proved.

Reference

[1] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar (New York, 1960).

