On the equiconvergence of different kinds of partial sums of orthogonal series

v. TOTIK

Let $N^{d}(d \geqq 1)$ be the set of d-tuples $\mathbf{i}=\left(i_{1}, \ldots, i_{d}\right)$ with non-negative integral coordinates. Let $\varphi=\left\{\varphi_{\mathrm{i}} \mid \mathrm{i} \in N^{d}\right\}$ be an orthonormal system (ONS) on $[0,1]$. Consider the d-multiple orthogonal series

$$
\begin{equation*}
\sum_{i \in N^{d}} a_{i} \varphi_{i}(x), \quad \sum_{i \in N^{a}} a_{i}^{2}<\infty . \tag{1}
\end{equation*}
$$

Fixing a sequence $Q=\left\{Q_{k} \mid k=0,1, \ldots\right\}$ of finite sets in N^{d} with properties

$$
\begin{equation*}
\emptyset=Q_{0} \subset Q_{1} \subset Q_{2} \subset \ldots, \quad \bigcup_{k=0}^{\infty} Q_{k}=N^{\text {d def }} \xlongequal{=} Q_{\infty} \tag{2}
\end{equation*}
$$

we can define the Q-partial sums of (1) (see e.g. [1]):

$$
s_{k}^{Q}(x)=\sum_{i \in Q_{k}} a_{i} \varphi_{i}(x) \quad(k=1,2, \ldots)
$$

If $P=\left\{P_{k}\right\}$ is another sequence satisfying similar conditions to (2) we write $Q \Rightarrow P$ when the a.e. convergence of $\left\{s_{k}^{Q}(x)\right\}_{k=1}^{\infty}$ always implies that of $\left\{s_{k}^{P}(x)\right\}_{k=1}^{\infty}$. If not $Q \Rightarrow P$ then we write shortly $Q \nRightarrow P$.
F. Móricz [1] proved among others that if

$$
Q_{k}^{\prime}=\left\{\mathbf{i} \in N^{d} \mid \max _{1 \geqq j \geqq d} i_{j} \leqq k\right\}
$$

and

$$
P_{k}^{\prime}=\left\{\mathrm{i} \in N^{d} \mid\left(\sum_{j=1}^{d} i_{j}^{2}\right)^{1 / 2} \leqq k\right\}
$$

then $Q^{\prime} \nRightarrow P^{\prime}$ and $P^{\prime} \nRightarrow Q^{\prime}$.
The aim of this note is to give necessary and sufficient conditions for $Q \Rightarrow P$. Our result has several corollaries which are interesting in themselves.

With the notation $\bar{P}_{k}=N^{d} \backslash P_{k}$ we prove
Theorem 1. We have $Q \Rightarrow P$ if and only if there is a number K such that
(i) each $Q_{k+1} \backslash Q_{k}$ is the union of at most K sets $\left(Q_{k+1} \backslash Q_{k}\right) \cap\left(P_{m+1} \backslash P_{m}\right)$,
(ii) for every k, P_{k} and \bar{P}_{k} are the (not necessarily disjoint) union of at most K sets of the form $Q_{r+s} \backslash Q_{r}(s=1,2, \ldots, \infty), P_{m+1} \backslash P_{m},\left(Q_{r^{\prime}+1} \backslash Q_{r^{\prime}}\right) \cap\left(P_{m^{\prime}+1} \backslash P_{m^{\prime}}\right)$.

Corollary 1. The systems Q and P are equivalent (i.e. $P \Rightarrow Q$ and $Q \Rightarrow P$) if and only if there is a K such that
(i) each $\left(Q_{k+1} \backslash Q_{k}\right) \cup\left(P_{m+1} \backslash P_{m}\right)$ is the union of at most K sets $\left(Q_{s+1} \backslash Q_{s}\right) \cap$ $\cap\left(P_{r+1} \backslash P_{r}\right)$,
(ii) each Q_{k} and P_{k} is the union of at most K sets $\left(Q_{s+1} \backslash Q_{s}\right) \cap\left(P_{r+1} \backslash P_{r}\right)$ and K sets of the form $P_{e^{+\tau}} \backslash P_{e}$ and $Q_{Q^{\prime}+\tau^{\prime}} \backslash Q_{Q^{\prime}}$, respectively.

With the notation

$$
\begin{align*}
& (k, l)=\{k, k+1, \ldots, l\} \quad\left(k \leqq l, k ; l \in N^{1}\right) \tag{3}\\
& (k, \infty)=\{k, k+1, \ldots\}
\end{align*}
$$

we have
Corollary 2. Let $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$ be two subsequences of the natural numbers. Then the a.e. convergence of $\left\{s_{p_{k}}(x)\right\}_{k=1}^{\infty}$ implies that of $\left\{s_{q_{k}}(x)\right\}_{k=1}^{\infty}$ for every orthogonal series

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} \varphi_{k}(x), \quad \sum_{k=0}^{\infty} a_{k}^{2}<\infty \tag{4}
\end{equation*}
$$

if and only if the number of the q_{k} 's in the intervals $\left(p_{m}, p_{m+1}\right)$ is bounded (here s_{k} is the ordinary k-th partial sum of (4)).

Corollary 3. With the above notations the a.e. equiconvergence of $\left\{s_{p_{k}}(x)\right\}_{k=1}^{\infty}$ and $\left\{s_{q_{k}}(x)\right\}_{k=1}^{\infty}$ for every orthogonal series (4) is equivalent to the existence of $a . K$. for which $p_{k}<q_{l}$ implies $p_{k+1}<q_{l+K}$ and $q_{k}<p_{l}$ implies $q_{k+1}<p_{l+K}$:

Corollary 1 follows easily from the proof of Theorem 1. Corollaries 2 and 3 were also proved by H. Schwinn [3].

To formulate another consequence of Theorem 1 let $d=1, N=N^{1}$ and $\pi: N \rightarrow N$ be a mapping of N onto N for which the inverse image $\pi^{-1}(k)$ of every number k is finite (one can see easily that the following problem becomes trivial if some of the $\pi^{-1}(k)$ are infinite). Our problem is the following: determine which π has the property: if the orthogonal series (4) converges a.e. then the same is true for the rearranged and bracketed series

The answer is given by

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\sum_{i \in \pi=1(k)} a_{i} \varphi_{i}(x)\right) \tag{5}
\end{equation*}
$$

Theorem 2. The a.e. convergence of (4) implies that of (5) for every orthogonal series (4) if and only if there is a K such that for every $k, \pi^{-1}(0, k)$ and $\pi^{-1}(k, \infty)$
are the (not necessarily disjoint) union of at most K sets of the form ($1, m$) ($m=1,2, \ldots, \infty$) or $\pi^{-1}(s)$.

For the definition of (l, m) see (3).
Corollary 4. If $\pi: N \rightarrow N$ is a permutation of N then the a.e. convergence of (4) implies the a.e. convergence of

$$
\sum_{k=0}^{\infty} a_{\pi(k)} \varphi_{\pi(k)}(x)
$$

for every orthogonal series (4) if and only if there is a K such that for every $k, \pi(0, k)$ consists of at most K chains of consecutive integers.

Remarks. 1. Although we formulated Theorem 1 in d dimensions, the problem and the solution is essentially one-dimensional, namely Theorems 1 and 2 are equivalent (see the proof of Theorem 1 below).
2. If $Q \Rightarrow P$ then our proof yields an orthogonal series (1) for which $\left\{s_{k}^{Q}(x)\right\}_{k=1}^{\infty}$ converges a.e. but $\left\{s_{k}^{p}(x)\right\}_{k=1}^{\infty}$ diverges on a set of positive measure. By a standard modification of the proof one could achieve also the a.e. divergence of $\left\{s_{k}^{p}(x)\right\}_{k=1}^{\infty}$.
3. The ONS $\left\{\varphi_{i}\right\}$ above could be defined on any non-atomic measure space instead of $[0,1]$ (compare to [2]).
4. Our proof shows that if $Q \Rightarrow P$ and $\left\{s_{k}^{0}(x)\right\}_{k=1}^{\infty}$ converges on a set E then $\lim _{k \rightarrow \infty} s_{k}^{p}(x)=\lim _{k \rightarrow \infty} s_{k}^{Q}(x)$ a.e. on E, i.e. the P-sums and Q-sums are equal a.e. automatically.
5. Finally, let us remark that to the proof of Corollaries 2 and 3 needs only the consideration used in the proof of the necessity of Theorem 1 (i), by which we obtain a very short proof of Schwinn's results (see [3]). The same is true for a part of Móricz's theorem mentioned earlier (see [1, Theorem 3]).

After these we turn to the proofs our theorems. First we prove Theorem 2.
Proof of Theorem 2. I. Necessity. Let us suppose on the contrary that e.g. for each n there is a k such that $\pi^{-1}\{0, \ldots, k\}=\pi^{-1}(0, k)$ (see (3)) cannot be represented as the union of at most n sets (l, m) and at most n sets $\pi^{-1}(l)$.

We define sequences $\left\{N_{n}\right\},\left\{M_{n}\right\},\left\{m_{n}\right\},\left\{m_{n}^{*}\right\}, k_{1}^{(n)}<k_{2}^{(n)}<\ldots<k_{n}^{(n)}$ and $\left\{i_{1}^{(n)}, \ldots, i_{n}^{(n)}\right\},\left\{j_{1}^{(n)}, \ldots, j_{n}^{(n)}\right\}$ in the following way: put $N_{0}=M_{0}=m_{0}=m_{0}^{*}=0$ and if all of the above numbers are already defined up to $n-1$, let N_{n} and m_{n}^{*} be so large that

$$
N_{n}>M_{n-1}, \pi^{-1}\left(0, N_{n}\right) \supseteqq\left(0, m_{n-1}\right), \quad m_{n}^{*}>m_{n-1},\left(0, m_{n}^{*}\right) \supseteqq \pi^{-1}\left(0, N_{n}\right)
$$

be satisfied. By our assumption there is an $M_{n}>N_{n}$ such that $\pi^{-1}\left(N_{n}+1, M_{n}\right) \backslash$ ($0, m_{n}^{*}$) cannot be represented as the union of at most n sets (l, m) and at most
n sets $\pi^{-1}(l)$. Let $\pi^{-1}\left(N_{n}+1, M_{n}\right) \backslash\left(0, m_{n}^{*}\right)=\left(r_{1}, s_{1}\right) \cup\left(r_{2}, s_{2}\right) \cup \ldots \cup\left(r_{r}, s_{t}\right)$ where $s_{i} \geqq r_{i}$ and $r_{i+1}>s_{i}+1$. We claim that there are n numbers $k_{1}^{(n)}<\ldots<k_{n}^{(n)}$ belonging to $\left(N_{n}+1, M_{n}\right)$ and numbers $i_{e} \in \pi^{-1}\left(k_{\varrho}^{(n)}\right) \backslash\left(0, m_{n}^{*}\right)(\varrho=1, \ldots, n)$ such that neither two of the i_{e} belong to the same $\left(r_{\tau}, s_{\tau}\right)$. In fact, let $i_{1}^{*} \in\left(r_{1}, s_{1}\right), \pi\left(i_{1}^{*}\right)=k_{1}^{*}$ and if $i_{\varrho}^{*}, k_{\varrho}^{*}(\varrho<n)$ are already defined and $i_{u}^{*} \in\left(r_{\tau_{u}}, s_{\tau_{u}}\right)$ ($\left.1 \leqq u \leqq \varrho\right)$, then, since the ϱ intervals $\left(r_{\tau_{u}}, s_{\tau_{u}}\right)$ and the ϱ sets $\pi^{-1}\left(k_{u}^{*}\right)(1 \leqq u \leqq \varrho)$ do not cover $\pi^{-1}\left(N_{n}+1, M_{n}\right) \backslash\left(0, m_{n}^{*}\right)$, there is an

$$
i_{e+1}^{*} \in\left(\pi^{-1}\left(N_{n}+1, M_{n}\right) \backslash\left(\dot{0}, m_{n}^{*}\right)\right) \backslash\left(\left(\bigcup_{u=1}^{e}\left(r_{\tau_{u}}, s_{\tau_{u}}\right)\right) \cup\left(\bigcup_{u=1}^{e} \pi^{-1}\left(k_{u}^{*}\right)\right)\right) .
$$

Let $k_{e+1}^{*}=\pi\left(i_{e+1}^{*}\right)$. We can continue this up to $\varrho=n$, and all what we have to do is to rearrange the set $\left\{k_{1}^{*}, \ldots, k_{n}^{*}\right\}$ into an increasing order $k_{1}^{(n)}<k_{2}^{(n)}<\ldots<k_{n}^{(n)}$ and to carry over this rearrangement to $\left\{i_{1}^{*}, \ldots, i_{n}^{*}\right\}$, by which we obtain $\left\{i_{1}^{(n)}, \ldots, i_{n}^{(n)}\right\}$. Let $i_{e}^{(n)}$ belong to ($r_{\tau_{e^{\prime}}}, s_{\tau_{e}^{\prime}}$) and let us put $j_{e}^{(n)}=s_{\tau_{e}^{\prime}}+1(\varrho=1, \ldots, n)$. Finally, let $m_{n}>m_{n}^{*}$ be so large that $\left(0, m_{n}\right)$ contains $\pi^{-1}\left(0, M_{n}\right)$ as well as the numbers $j_{1}^{(n)}, \ldots, j_{n}^{(n)}$.

Our definition is complete and let us observe the following:

$$
\begin{gather*}
\pi^{-1}\left(0, M_{n-1}\right) \subseteq\left(0, m_{n-1}\right) \subseteq \pi^{-1}\left(0, N_{n}\right) \subseteq\left(0, m_{n}^{*}\right), \tag{6}\\
m_{n}^{*}<i_{e}^{(n)}<j_{e}^{(n)} \leqq m_{n} \quad(\varrho=1, \ldots, n), \tag{7}\\
M_{n-1}<N_{n}<k_{1}^{(n)}<\ldots<k_{n}^{(n)} \leqq M_{n}, \tag{8}\\
i_{e}^{(n)} \subseteq \pi^{-1}\left(k_{e}^{(n)}\right), \quad j_{e}^{(n)} \notin \pi^{-1}\left(0, M_{n}\right) \quad(\varrho=1, \ldots, n), \tag{9}\\
\max _{1 \leqq e \leqq n-1} j_{e}^{(n-1)}<\min _{1 \leqq \varrho \leqq n} i_{e}^{(n)}, \tag{10}
\end{gather*}
$$

(11) every two $i_{e_{1}}^{(n)}<i_{e_{3}}^{(n)}$ is separated by $j_{e_{1}}^{(n)}: i_{e_{1}}^{(n)}<j_{e_{1}}^{(n)}<i_{e_{2}}^{(n)}$.

Now we shall use that there is an orthogonal series (4) with partial sums $S_{k}(x)$ which diverges unboundedly a.e. on $[0,1]$. This gives that there is a sequence $p_{1}<p_{2}<\ldots$ such that with $q_{k}=\sum_{l=1}^{k-1} p_{l}$ we have

$$
\begin{equation*}
\sup _{n} \max _{0<l \equiv p_{n}}\left|S_{q_{n}+l}(x)-S_{q_{n}}(x)\right|=\infty \quad \text { (a.e.). } \tag{12}
\end{equation*}
$$

Let now

$$
\begin{gather*}
\psi_{i}\left(p_{n}\right)(x)=\psi_{j_{e}\left(p_{n}\right)}(x)=\frac{1}{2} \varphi_{q_{n}+e}(x) \quad(x \in[0,1]), \tag{13}\\
b_{i}\left(p_{n}\right)=-b_{j\left(p_{n}\right)}=a_{q_{n}+e} \tag{14}
\end{gather*}
$$

for $n=1,2, \ldots$ and $\varrho=1, \ldots, p_{n}$ and let $\psi_{k}(x)=0(x \in[0,1]), b_{k}=0$ otherwise. Since each ψ_{k} is orthogonal to all but at most one $\psi_{l}, l \neq k$ and since $\int_{0}^{1}\left|\psi_{k} \psi_{l}\right| \leqq 1 / 4$ $(k, l=0,1, \ldots)$, a standard argument yields that the system $\left\{\psi_{k}\right\}_{k=0}^{\infty}$ can be extended
onto $[-1,1]$ in such a way that it constitutes an ONS on $[-1,1]$, and for every $x \in[-1,0)$ all but at most two of the numbers $\left\{\psi_{k}(x)\right\}_{k=0}^{\infty}$ are zero.

By (10), (11), (13) and (14) the k-th partial sum $s_{k}(x)$ of

$$
\sum_{l=0}^{\infty} b_{l} \psi_{l}(x)
$$

is equal either to 0 or to some $a_{l} \varphi_{l}(x) / 2$ if $x \in[0,1]$. Here l tends to infinity together with k (take into account that if $k>m_{p_{n}}$ then necessarily $l>q_{n}$), and by

$$
\sum_{l=0}^{\infty} \int_{0}^{1}\left(a_{l} \varphi_{l}(x)\right)^{2} d x=\sum_{l=0}^{\infty} a_{l}^{2}<\infty
$$

$a_{l} \varphi_{l}(x)$ tends to 0 a.e. as $l \rightarrow \infty$. Hence, $s_{k}(x)$ tends to zero a.e. on $[0,1]$ as $k \rightarrow \infty$ and so $\left\{s_{k}(x)\right\}_{k=1}^{\infty}$ is convergent a.e. on $[-1,1]$ (for $x \in[-1,0),\left\{s_{k}(x)\right\}_{k=1}^{\infty}$ is constant from a certain point on).

However, by (6), (7), (13) and (14)

$$
\sum_{k=0}^{N_{n}} \sum_{l \in \pi-1(k)} b_{l} \psi_{l}(x)=0 \quad(x \in[0,1])
$$

hence by (8) and (9)

$$
\begin{aligned}
& \sum_{k=0}^{k_{e}^{\left(p_{n}\right)}} \sum_{l \in \pi^{-1}(k)} b_{l} \psi_{l}(x)=\sum_{k=N_{n}+1}^{k_{\varrho}^{\left(p_{n}\right)}} \sum_{l \in \pi=1(k)} b_{l} \psi_{l}(x)=\sum_{s=1}^{e} b_{i}\left(p_{e}\right) \psi_{i}\left(p_{n}\right) \\
& \quad=\sum_{s=1}^{e} \frac{1}{2} a_{q_{n}+s} \varphi_{q_{n}+s}(x)=\frac{1}{2}\left(S_{q_{n}+e}(x)-S_{q_{n}}(x)\right) \quad\left(1 \leqq \varrho \leqq p_{n}\right)
\end{aligned}
$$

and thus, using (12), we obtain that

$$
\sum_{k=0}^{\infty} \sum_{l \in \pi^{-1}(k)} b_{l} \psi_{l}(x)
$$

diverges a.e. on $[0,1]$.
The necessity of the assumption concerning $\pi^{-1}(k, \infty)$ can be proved similarly, we omit the details.

The proof of the necessity is thus complete (clearly, it is indifferent that the constructed system $\left\{\psi_{k}\right\}_{k=0}^{\infty}$ is orthonormal on $[-1,1]$ and not on [0, 1]).
II. Sufficiency. 1. First we prove that there are no integers

$$
x_{1}<y_{1}<x_{2}<y_{2}<\ldots<y_{4 K+2}<x_{4 K+3}
$$

with $\pi\left(x_{j}\right)=\pi\left(x_{l}\right)(0 \leqq j, l \leqq 4 K+3) \quad$ but $\pi\left(y_{j}\right) \neq \pi\left(y_{l}\right) \quad(1 \leqq j, l \leqq 4 K+2, j \neq l)$. Let us suppose the contrary and let $\pi\left(x_{j}\right)=k(1 \leqq j \leqq 4 K+3)$. We distinguish two cases.
(a) At least $2 K+1$ of the distinct numbers $\pi\left(y_{j}\right)(1 \leqq j \leqq 4 \dot{K}+2)$ are less than k. We may suppose without loss of generality that

$$
x_{1}<y_{1}<x_{2}<\ldots<y_{2 K+1}<x_{2 K+2}, \quad \pi\left(y_{j}\right)<k(1 \leqq j \leqq 2 K+1) .
$$

For any $n, \pi^{-1}(0, n)$ is the disjoint union of sets of consecutive integers, i.e., for some τ_{n},

$$
\begin{equation*}
\pi^{-1}(0, n)=\left(a_{1}^{(n)}, b_{1}^{(n)}\right) \cup \ldots \cup\left(a_{\tau_{n}}^{(n)}, b_{i_{n}}^{(n)}\right) \tag{15}
\end{equation*}
$$

where $a_{j+1}^{(n)}>b_{j}^{(n)}\left(1 \leqq j<\tau_{n}\right)$. Let us put $n=k-1$ into (15) and let us determine the numbers $i_{j}(1 \leqq j \leqq 2 K+1)$ by $y_{j} \in\left(a_{i_{j}}^{(k-1)}, b_{i_{j}}^{(k-1)}\right)$. Since $x_{j}(1 \leqq j \leqq 2 K+2)$ does not belong to $\pi^{-1}(0, k-1)$, we have

$$
x_{j}<a_{i_{j}}^{(k-1)} \leqq y_{j} \leqq b_{i_{j}}^{(k-1)}<x_{j+1}<a_{i_{j+1}}^{(k-1)} \quad(1 \leqq j<2 K+1)
$$

hence the numbers $i_{1}, i_{2}, \ldots, i_{2 K+1}$ are all different from each other.
By the assumption of our theorem there are numbers $1 \leqq l_{1}<\ldots<l_{K} \leqq \tau_{k-1}$ and $0 \leqq n_{1}<\ldots<n_{k} \leqq k-1$ so that

$$
\begin{equation*}
\pi^{-1}(0, k-1)=\left(a_{l_{1}}^{(k-1)}, b_{l_{1}}^{(k-1)}\right) \cup \ldots \cup\left(a_{l_{K}}^{(k-1)}, b_{l_{K}}^{(k-1)}\right) \cup \pi^{-1}\left(n_{1}\right) \cup \ldots \cup \pi^{-1}\left(n_{K}\right) \tag{16}
\end{equation*}
$$

Now at least $K+1$, say $i_{1}, i_{2}, \ldots, i_{K+1}$, of the numbers $i_{1}, i_{2}, \ldots, i_{2 K+1}$ are different from every $l_{j}(1 \leqq j \leqq K)$ (i.e., we may suppose without loss of generality that $i_{j} \neq l_{j^{\prime}}$, for $1 \leqq j \leqq K+1,1 \leqq j^{\prime} \leqq K$) and at least one, say $\pi\left(y_{1}\right)$, of the $K+1$ distinct numbers $\pi\left(y_{1}\right), \pi\left(y_{2}\right), \ldots, \pi\left(y_{K+1}\right)$ is different from every $n_{j}(1 \leqq j \leqq K)$. Thus, y_{1} does not belong to

$$
\left(a_{l_{1}}^{(k-1)}, b_{l_{1}}^{(k-1)}\right) \cup \ldots \cup\left(a_{l_{k}}^{(k-1)}, b_{l_{k}}^{(k-1)}\right)
$$

since $y_{1} \in\left(a_{i_{1}}^{(k-1)}, b_{i_{1}}^{(k-1)}\right)$ and $i_{1} \neq l_{j}$ for $1 \leqq j \leqq K$ and also y_{1} does not belong to

$$
\pi^{-1}\left(n_{1}\right) \cup \ldots \cup \pi^{-1}\left(n_{k}\right)
$$

since $\pi\left(y_{1}\right)$ is different from every $n_{j}(1 \leqq j \leqq K)$. By (16) this means that $y_{1} \notin \pi^{-1}(0, k-1)$ which contradicts the assumed inequality $\pi\left(y_{1}\right)<k$. This contradiction proves our assertion in the case (a).
(b) If at most $2 K$ of the numbers $y_{1}, \ldots, y_{4 K+2}$ are less than k then at least $2 K+1$ of them are greater than k. Now using $\pi^{-1}(k+1, \infty)$ instead of $\pi^{-1}(0, k-1)$ we arrive at a contradiction exactly as above.
2. Let for $k=0,1,2, \ldots$

$$
\Pi_{k}=\left\{\pi^{-1}(k) \cap\left(a_{j}^{(n)}, b_{j}^{(n)}\right) \mid n=0,1,2, \ldots, 1 \leqq j \leqq \tau_{n}\right\}
$$

(for the definition of $a_{j}^{(n)}$ and $b_{j}^{(n)}$ see (15)). Our next claim is that for each k and $x \in \pi^{-1}(k)$ there are at most $8 K+3$ distinct sets $A \in \Pi_{k}$ with $x \in A$. In fact, if there were numbers $n_{1}<n_{2}<\ldots<n_{8 K+4}$ and for each $1 \leqq j \leqq 8 K+4$ an $1 \leqq i_{j} \leqq \tau_{n_{j}}$
such that the sets $(x \in)\left(a_{i_{j}}^{\left(n_{j}\right)}, b_{i_{j}}^{\left(n_{j}\right)}\right) \cap \pi^{-1}(k)$ are all different then either for at least $4 K+2$ of the j 's we would have

$$
\begin{equation*}
\left(a_{i_{j+1}}^{\left(n_{j+1}\right)}, a_{i_{j}}^{\left(n_{j}\right)}-1\right) \cap \pi^{-1}(k) \neq \emptyset . \tag{17}
\end{equation*}
$$

or for at least $4 K+2$ of the j 's

$$
\left(b_{i_{j}}^{\left(n_{j}\right)}+1, b_{i_{j+1}}^{\left(n_{j+1}\right)}\right) \cap \pi^{-1}(k) \neq \emptyset
$$

We might suppose the first case and also that (17) holds for $j=1,2, \ldots, 4 K+2$, i.e., for $j=1, \ldots, 4 K+2$ there would be numbers

$$
x_{j+1} \in\left(a_{i_{j+1}}^{\left(n_{j+1}\right)}, a_{i_{j}}^{\left(n_{j}\right)}-1\right) \cap \pi^{-1}(k)
$$

Putting $\quad x_{1}=x \in\left(a_{i_{1}}^{\left(n_{1}\right)}, b_{i_{1}}^{\left(n_{1}\right)}\right) \cap \pi^{-1}(k)$ and $y_{j}=a_{i_{j}}^{\left(n_{j}\right)}-1 \quad(1 \leqq j \leqq 4 K+2) \quad$ we would have $y_{j} \in \pi^{-1}\left(0, n_{j+1}\right)$ but $y_{j} \notin \pi^{-1}\left(0, n_{j}\right)$, i.e., $\pi\left(y_{j}\right) \leqq n_{j+1}<\pi\left(y_{j+1}\right)(1 \leqq j \leqq 4 K+1)$, and also $y_{j} \not \pi^{-1}(k)$. Thus, we would get a system of numbers

$$
x_{4 K+3}<y_{4 K+1}<x_{4 K+2}<\ldots<y_{1}<x_{1}
$$

with $\pi\left(x_{j}\right) \in k(1 \leqq j \leqq 4 K+3)$ but $\pi\left(y_{j}\right) \neq \pi\left(y_{j^{\prime}}\right)\left(1 \leqq j, j^{\prime} \leqq 4 K+2, j \neq j^{\prime}\right)$ and this would contradict the fact proved in point 1 above.
3. After these preliminary considerations we turn to the proof of the sufficiency part of our theorem. First of all, by point 2 above

$$
\sum_{k=0}^{\infty} \sum_{A \in \pi_{k}} \int_{0}^{1}\left(\sum_{i \in A} a_{i} \varphi_{i}(x)\right)^{2} d x \leqq(8 K+3) \sum_{i=0}^{\infty} a_{i}^{2}<\infty
$$

and hence

$$
\lim _{k \rightarrow \infty} \sum_{i \in A_{k}} a_{i} \varphi_{i}(x)=0 \quad \text { (a.e.) }
$$

independently of the choice of the sets $A_{k} \in \Pi_{k}$.
Let us suppose that the series (4) converges a.e. and let x be any point in [0,1] for which

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \sum_{i \in A_{k}} a_{i} \varphi_{i}(x)=0 \quad\left(A_{k} \in \Pi_{k}\right) \tag{18}\\
\lim _{k \rightarrow \infty} s_{k}(x)=s(x) \quad\left(s_{k}(x)=\sum_{i=0}^{k} a_{i} \varphi_{i}(x)\right) \tag{19}
\end{gather*}
$$

exist. It is enough to show that (5) converges at this point x.
From (19) we have also

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(s_{k+l_{k}}(x)-s_{k}(x)\right)=0 \tag{20}
\end{equation*}
$$

whatever $l_{k} \geqq 1$ be.
For a given p let $p<p_{1}<p_{2}<p_{3}$ be chosen so that $\pi(0, p) \subseteq\left(0, p_{1}\right), \pi^{-1}\left(0, p_{1}\right) \subseteq$ $\sqsubseteq\left(0, \dot{p}_{2}\right), \pi\left(0, p_{2}\right) \subseteq\left(0, p_{3}\right)$ be satisfied. For $n \supseteqq p_{3}$ we have $\pi^{-1}(0, n) \supseteqq\left(0, p_{3}\right) \supseteqq$
$\supseteq\left(0, p_{2}\right)$ and by the assumption of the theorem

$$
\begin{equation*}
\pi^{-1}(0, n)=\left(a_{i_{1}}^{(n)}, b_{i_{1}}^{(n)}\right) \cup \ldots \cup\left(a_{i_{e}}^{(n)}, b_{i_{e}}^{(n)}\right) \cup \pi^{-1}\left(k_{1}\right) \cup \ldots \cup \pi^{-1}\left(k_{\tau}\right) \tag{21}
\end{equation*}
$$

for some $i_{1}<\ldots<i_{e}$ and $k_{1}<\ldots<k_{\tau}$, where $\tau+\varrho \leqq K$ (if $\tau=0$ or $\varrho=0$ then the corresponding terms are missing). Since ($0, p_{2}$) $\subseteq \pi^{-1}(0, n)$ we may assume (by increasing K by 1 if necessary) $i_{1}=1,\left(0, p_{2}\right) \subseteq\left(a_{1}^{(n)}, b_{1}^{(n)}\right)$ and then, since $\pi^{-1}\left(0, p_{1}\right) \subseteq$ $\subseteq\left(0, p_{2}\right)$, we can drop those of the k_{j} 's for which $k_{j} \leqq p_{1}$. Thus, we may assume that in (21) each $k_{j}>p_{1}$ and so, since $\pi^{-1}\left(0, p_{1}\right) \supseteqq(0, p)$,

$$
\pi^{-1}\left(k_{j}\right) \cap\left(p+1, b_{1}^{(n)}\right)=\pi^{-1}\left(k_{j}\right) \cap\left(a_{1}^{(n)}, b_{1}^{(n)}\right) \xlongequal{\text { def }} A_{j}^{(1)} \quad(1 \leqq j \leqq \tau) .
$$

For $1 \leqq j \leqq \tau$ and $2 \leqq l \leqq \varrho$ let $A_{j}^{(l)}=\pi^{-1}\left(k_{j}\right) \cap\left(a_{i_{i}}^{(n)}, b_{i_{l}}^{(n)}\right)$. Then $A_{j}^{(l)} \in \Pi_{k_{j}}(1 \leqq j \leqq \tau$, $1 \leqq l \leqq \varrho$) and for $n \geqq p_{3}$ we have the representation

$$
\begin{gathered}
\pi^{-1}(0, n)=(0, p) \cup\left(p+1, b_{1}^{(n)}\right) \cup\left(a_{i_{2}}^{(n)}, b_{i_{2}}^{(n)}\right) \cup \ldots \cup\left(a_{i_{e}}^{(n)}, b_{i_{e}}^{(n)}\right) \cup \\
\cup \bigcup_{j=1}^{\tau}\left(\pi^{-1}\left(k_{j}\right) \backslash \bigcup_{l=1}^{e} A_{j}^{(l)}\right)
\end{gathered}
$$

and here the terms on the right are already disjoint. According to this

$$
\begin{gathered}
\left|\sum_{k=0}^{n} \sum_{i \in \pi^{-1}(k)} a_{i} \varphi_{i}(x)-\sum_{i=0}^{p} a_{i} \varphi_{i}(x)\right|= \\
=\left|\left(\sum_{i=0}^{p}+\sum_{i=p+1}^{b_{1}^{(n)}}+\sum_{j=2}^{\infty} \sum_{i=a_{i_{j}}^{(n)}}^{b_{i j}^{(n)}}+\sum_{j=1}^{\tau} \sum_{i \in \pi^{-1}\left(k_{j}\right)}-\sum_{j=1}^{\tau} \sum_{l=1}^{\ell} \sum_{i \in A_{j}^{(l)}}\right) a_{i} \varphi_{i}(x)-\sum_{i=0}^{p} a_{i} \varphi_{i}(x)\right| \leqq \\
\leqq\left|s_{b_{1}^{(n)}}(x)-s_{p}(x)\right|+\sum_{j=2}^{\rho}\left|s_{b_{i}(n)}(x)-s_{a_{i j}^{(n)}-1}(x)\right|+\sum_{j=1}^{\tau}\left|\sum_{i \in \pi^{-1}\left(k_{j}\right)} a_{i} \varphi_{i}(x)\right|+ \\
+\sum_{j=1}^{\tau} \sum_{l=1}^{\rho}\left|\sum_{i \in A_{j}^{(l)}} a_{i} \varphi_{i}(x)\right|
\end{gathered}
$$

and (18) and (20) give that here the right hand side tends to zero as $p \rightarrow \infty$ by $b_{i_{j}}^{(n)} \geqq a_{j}^{(n)}>b_{1}^{(n)}>p(2 \leqq j \leqq \varrho)$ and $k_{j}>p$ (notice that $\pi^{-1}\left(k_{j}\right) \in \Pi_{k_{j}}$ for $1 \leqq j \leqq \tau$ and take into account that $\varrho+\tau \leqq K$). Since $s_{p}(x) \rightarrow s(x)$ as $p \rightarrow \infty$ and $n>p_{3}=$ $=p_{3}(p)$ was arbitrary; we get the convergence of the series (5) at x and the proof is complete.

Proof of Theorem 1. Let us arrange the non-void sets $\left(Q_{k+1} \backslash Q_{k}\right) \cap$ $\cap\left(P_{m+1} \backslash P_{m}\right)$ into a sequence $A_{0}, A_{1}, \ldots, A_{n}, \ldots$ in such a way that $Q_{k}=\bigcup_{l=0}^{n_{k}} A_{l}$ ($k \geqq 1$) be satisfied for some sequence $n_{1}<n_{2}<\ldots$.
I. Sufficiency. Let us suppose (i), (ii) and the a.e. convergence of $\left\{s_{k}^{Q}(x)\right\}$
where s_{k}^{Q} are the Q-partial sums of the series (1). Let for $k=0,1,2, \ldots$

$$
\begin{equation*}
\Phi_{k}(x)=\frac{1}{\sqrt{\sum_{i \in A_{k}} a_{\mathrm{i}}^{2}}} \sum_{\mathrm{i} \in A_{k}} a_{\mathrm{i}} \varphi_{\mathrm{i}}(x), \quad b_{k}=\sqrt{\sum_{\mathrm{i} \in A_{k}} a_{\mathrm{i}}^{2}} \tag{22}
\end{equation*}
$$

if $b_{k} \neq 0$ and

$$
\begin{equation*}
\Phi_{k}(x)=\frac{1}{\sqrt{\sum_{i} 1} A_{k}} \sum_{i \in A_{k}} \varphi_{i}(x), \quad b_{k}=0 \tag{23}
\end{equation*}
$$

in the opposite case. Then $\left\{\Phi_{k}\right\}_{k=0}^{\infty}$ is an ONS on $[0,1]$ and if S_{k} denotes the k-th partial sum of the ordinary orthogonal series $\sum_{i=0}^{\infty} b_{l} \Phi_{l}(x)$ then

$$
\begin{equation*}
s_{k}^{Q}(x)=S_{n_{k}}(x) \quad(k=1,2, \ldots) \tag{24}
\end{equation*}
$$

(i) gives $n_{k+1}-n_{k} \leqq K$ by which

$$
\sum_{k=1}^{\infty} \sum_{n_{k} \leqq l<n_{k+1}} \int_{0}^{1}\left(S_{l}(x)-S_{n_{k}}(x)\right)^{2} d x \leqq K \sum_{k=0}^{\infty} b_{k}^{2}=K \sum_{i \in N^{d}} a_{i}^{2}<\infty,
$$

and so

$$
\lim _{k \rightarrow \infty} S_{l}(x)-S_{n_{k}}(x)=0 \quad\left(n_{k} \leqq l<n_{k+1}\right)
$$

almost everywhere. This, (24) and the assumed a.e. convergence of $\left\{s_{k}^{Q}(x)\right\}_{k=1}^{\infty}$ imply the a.e. convergence of $\sum_{l=0}^{\infty} b_{l} \Phi_{l}(x)$.

Let now $\pi: N \rightarrow N$ be defined by $\pi(l)=k$ iff $A_{l} \subseteq P_{k+1} \backslash P_{k}(l, k=0,1, \ldots)$. Clearly, π is "onto", $\pi^{-1}(k)$ is a finite set for each k and $P_{k+1}=\bigcup_{l \in \pi^{-1}(0, k)} A_{l}$, i.e.

$$
s_{k+1}^{p}(x)=\sum_{l=0}^{k} \sum_{i \in \pi^{-1}(l)} b_{i} \Phi_{i}(x)
$$

By (ii) $\pi^{-1}(0, k)$ and $\pi^{-1}(k, \infty)$ are the union of at most K sets of the form $(l, m), \pi^{-1}(l)$ or $\{l\}=(l, l)$, hence this π satisfies the assumptions of Theorem 2.

Applying Theorem 2 to π and $\sum_{l=0}^{\infty} b_{l} \Phi_{l}(x)$ and taking into account the above proved fact that the a.e. convergence of $\left\{s_{k}^{Q}(x)\right\}_{k=1}^{\infty}$ implies that of $\sum_{l=0}^{\infty} b_{l} \Phi_{l}(x)$, we obtain the sufficiency of conditions (i) and (ii).
II. Necessity. First let us prove the necessity of (i). Let us write shortly $Q_{k}^{*}=$ $=Q_{k+1} \backslash Q_{k}, P_{k}^{*}=P_{k+1} \backslash P_{k}$. If (i) does not hold then for each n there are a k_{n} and numbers $k_{1}^{(n)}<\ldots<k_{n}^{(n)}<l_{1}^{(n)}<\ldots<l_{n}^{(n)}$ such that

$$
\emptyset \neq Q_{k_{n}}^{*} \cap P_{k_{1}^{(n)}} \subset Q_{k_{n}}^{*} \cap P_{k_{2}^{(k)}} \subset \ldots \subset Q_{k_{n}}^{*} \cap P_{l_{n}^{(n)}} .
$$

We may suppose $l_{n-1}^{(n-1)}<k_{1}^{(n)}(n=1,2, \ldots)$. Let $\mathbf{i}_{e}^{(n)} \in Q_{k_{n}}^{*} \cap P_{k_{e}^{(n)}}^{*}, \mathbf{j}_{e}^{(n)} \in Q_{k_{n}}^{*} \cap P_{l_{e-1}}^{*}$ $(1 \leqq \varrho \leqq n)$. Using the orthogonal series $\sum_{k=0}^{\infty} a_{k} \varphi_{k}(x)$ and the sequences. p_{n}, q_{n} from
(12), putting

$$
b_{i}\left(p_{e}\right)=-b_{i}\left(p_{e}\right)=a_{q_{n}+e^{\prime}}, \quad \psi_{i_{e}\left(p_{n}\right)}(x)=\psi_{j_{e}\left(p_{n}\right)}(x)=\frac{1}{2} \varphi_{q_{n}+e}(x) \quad(x \in[0,1])
$$

for $n=1,2, \ldots, \varrho=1, \ldots, n$ and $b_{i}=0, \psi_{i}(x)=0(x \in[0,1])$ otherwise, and extending these ψ_{i} to an ONS on $[-1,1]$ exactly as above in the necessity proof of Theorem 2 we get a series $\sum_{i \in N^{d}} b_{i} \psi_{i}(x)$ for which $\sum_{i \in Q_{k}} b_{i} \psi_{i}(x)=0$ and

$$
\begin{gathered}
\sum_{i \in P_{k_{e}\left(p_{n}\right)}} b_{i} \psi_{i}(x)=\left(\sum_{\substack{i \in P_{i}\left(p_{n}-1\right) \\
p_{n}-1}}^{\sum}+\sum_{\left.i \in P_{k_{e}\left(p_{n}\right)} \sum_{\substack{l \\
p_{n}-1}}\right)}\right)= \\
=0+\sum_{s=1}^{\ell} b_{i} p_{s}\left(p_{n}\right) \psi_{i_{s}\left(p_{n}\right)}(x)=\frac{1}{2}\left(S_{q_{n}+e}(x)-S_{q_{n}}(x)\right) \quad\left(x \in[0,1], 1 \leqq \varrho \leqq p_{n}, n=1,2, \ldots\right) .
\end{gathered}
$$

Hence $\left\{s_{k}^{Q}(x)\right\}_{k=1}^{\infty}$ converges everywhere on $[-1,1]$ but $\left\{s_{k}^{p}(x)\right\}_{k=1}^{\infty}$ diverges a.e. on $[0,1]$ (see (12)).

Thus, the necessity of (i) is proved and from now on we assume its validity.
Let us now consider the sequence of the sets A_{n} introduced at the beginning of the proof and the mapping π used in the sufficiency proof. Using (i), (ii) can be expressed as: there is a K_{1} such that for every $k, \pi^{-1}(0, k)$ and $\pi^{-1}(k, \infty)$ are the union of at most K_{1} sets (l, m) and $\pi^{-1}(l)$. By (i) the a.e. convergence of $\left\{s_{k}^{Q}(x)\right\}_{k=1}^{\infty}$ is equivalent to that of

$$
\sum_{l=0}^{\infty} \sum_{i \in A_{l}} a_{i} \varphi_{i}(x)=\sum_{l=0}^{\infty} b_{l} \Phi_{l}(x)
$$

(see point I above) where we used the notations of (19) and (20). Since the a.e. convergence of $\left\{s_{k}^{p}(x)\right\}_{k=1}^{\infty}$ is the same as the a.e. convergence of

$$
\sum_{k=0}^{\infty} \sum_{i \in P_{k+1} \backslash P_{k}} a_{i} \varphi_{i}(x)=\sum_{k=0}^{\infty} \sum_{l \in \pi^{-1}(k)} b_{l} \Phi_{l}(x)
$$

the necessity of (ii) easily follows from Theorem 2.
We have completed our proof.

References

[1] F. Moricz, On the square and the spherical partial sums of multiple orthogonal series, Acta Math. Acad. Sci. Hungar., 37 (1981), 255-261.
[2] F. Móricz, On the a.e. convergence of multiple orthogonal series I (Square and spherical partial sums), Acta Sci: Math., 44 (1982), 77-86.
[3] H. Schwinn, Über die Starke Summierbarkeit von Orthogonal Reihen durch Euler-Verfahren, Analysis Math., 7 (1981), 209-216.

