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An exact description of Lorentz spaces 

LARS ERIK PERSSON 

1. Introduction 

We assume that / is a measurable complex-valued function on a measure space 
(i2, n), where fi is a <r-finite positive measure. The function / can be rearranged 
to a non-increasing function, denoted /* , on [0, The function / * is continuous 
from the right and equidistributed with / (see e.g. [13, p. 131]). 

We suppose that p and q are real numbers satisfying 0 0 
The Lorentz space L(p, q) consists of all functions / satisfying 

0 

See [7], [9] or [13, p. 132]. The L(p, #)-spaces are of great interest in pure and 
applied mathematics. In particular, they appear as intermediate spaces in the theory 
of interpolation (see e.g. [6, p. 264] or [13, p. 134]). 

Obviously L(p, p)=LP. It is well known that if q2^qx, then 11/1* 
(see [6, p. 253]). In particular, L{p, q)^>LP when p<q and L(p, q)<zLp when 
p>q. Moreover, in a sense, every L(p,q)-space is "close to" the corresponding 
//-space. In particular, by generalizing the definition of the L(p, </)-norm in the 
natural way we obtain the usual weak Lp-space when q=°°. However, it is not 
possible to identify an L(p, q)-space by some Orlicz space of the type Lp(log L)°. 
One aim of this paper is to give an exact description of the L(p, g)-spaces at least 
in similar terms. 

Throughout this paper we let the letter h stand for a strictly positive and 
continuous function on [0, which is constant on [0, 1]. 

The following theorem by the present author can be found in [12, p. 270]. 

Received May 28, 1982. 
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Theorem A. Let p>q. Then 
l 

f ( f y p / ' - ' d t 
0 

if and only if 
i 

(1.1) / (f*h(iog+f*)ydi - • 
0 

for some function h such that, for some a> 0, 

h(x)ax is a decreasing or an increasing function of x 

(1.3) f (/i(x))M/(?-P> dx 
1 

We may assume, without loss of generality, that log=log2. 
In Section 2 of this paper we shall state a theorem (Theorem 2.1) which gener-

alizes Theorem A in two directions. On the one hand, by also studying conditions 

of the type J (/*)* tq,p~1dt< °° and, on the other hand, by also considering the case 

p<q. In this way we obtain an exact characterization of the L(p, g)-spaces not 
only for the special case when ¿i(i2)< °° and p>q. Some applications to the theory 
of Fourier series (and transforms) are also given in Section 2. In particular, we 
shall see that the conclusion we usually extract from Hausdorfif—Young's inequality 
(see e.g. [14, vol II, p. 101]) is, in a sense, far from being the sharpest possible. 
Some useful lemmas can be found in Section 3. The proof of the main theorem in 
Section 2 is carried out in Sections 4 (the casep>q) and 5 (the case p<q). 

We say that the function / belongs to the Lorentz—Zygmund space 
Lp,q(logL)x, 0<<7«=:°°, — °=<a< » if the quasi-norm 

is finite (see [2, p. 7]). In particular, we have Lp'«(log L)°=L(p,q) and LP'p{\ogLf 
can be identified with the Zygmund space ¿/(log Lf (see [2, p. 35]). 

In Section 6 we shall generalize our main theorem so that we obtain an exact 
characterization of the spaces Lp'q(log L f . We shall also point out the fact that 
a recent embedding result by BENNETT and R U D N I C K [ 2 , p. 3 1 ] is a consequence 
of this characterization. 

i i / I I ; . « . - ( / ( r ( 0 i l / p ( i i o g / i + i r ) ? ^ ) : 

0 
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In Section 7 we shall give some concluding remarks. In particular, we shall 
compare the functional spaces introduced in this paper with the similarly defined 
Beurling—Herz spaces (see [1, p. 2] and [5, pp. 298—300]). 

Acknowledgement. I wish to thank professor Jaak Peetre, Lund, for his comments 
and suggestions which has improved the final version of this paper. 

2. A description of the L(p, ^-spaces 

We make the following definition. 

D e f i n i t i o n . Let p > q . Then 
a) f£E0(p, q) if 

(2.1) / ( / * M l o g + / * ) ) p ^ < ~ 
o 

for some function h such that, for some a > 0, 

(2.2) h(x)cf is a decreasing or an increasing function of x 
and 

oo 

(2.3) f (h(x)yM9-'>djc<co. 
i 

b) f£E„(p,q) iff*(*>0 and 

(2.4) / ( / * f r ( l o g + y * ) ) P d i < ~ 

for some function h satisfying (2.2) and (2.3). 
Let p < q . Then 
c) f£E0(p,q) if (2.1) holds for every function h satisfying (2.2) and (2.3). 
d) f^E„(p, q) if (2.4) holds for every function h satisfying (2.2) and (2.3). 
Let pj*q. Then 
e) fdE(p, q) if f£E0(p, q) and f£Em(p, q). 

The main theorem in this section can now be formulated in the following way. 

T h e o r e m 2.1. Let and 0 T h e n 

a) / (/*)* fil'-ldt< ~ if and only if f£E0(p, q) 
o 

and 
oo 

b) / ( f y f ^ d t ^ oo if and only if f£E„(p, q). 
i 

12« 
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We see that part a) of this theorem gives an exact description of the desired 
type for the case when the ¿¿-measure of Q is finite. By combining the equivalences 
in Theorem 2.1 we obtain a characterization of the L(p,q)-spaces in the general 
case, namely that 

(2.5) /€£0», q) if and only if f£E{p, q). 

It can be somewhat difficult to see what this equivalence really means so we shall 
formulate it in another way. Therefore we let D be a subset of £2 such that | / | S 1 
on D and | / | on Q\D. Then we can make some elementary calculations to 
find that f€E(p, q) if and only if 

(2.6) / ( | / | ft (log | f i i f d n + J ^ ( | / | h ( l o g i j | ) ) V < -

for some (the case p>q) or every (the case p<q) function h satisfying (2.2) and 
(2.3). In the sequel we say that /6Lp/i(log L) when (2.6) holds. For the special 
case h(x)=xa we get the Zygmund space / /( log L f . We can now formulate the 
equivalence (2.5) in the following way. 

Theorem 2.2. Let 0</)<<» and 0 
a) Let p>q. Then f£L(p, q) if and only if f£Lvh(\og L) for some function 

h satisfying (2.2) and (2.3). 
b) Let p<q. Then f£L(p, q) if and only if /£Lp/i(log L) for every function 

h satisfying (2.2) and (2.3). 

We apply Theorem 2.2 with h{:c)=je<1+a><1/«-Vp)j <5>0, and find" a' p>q, 
then, for every £>0, 

(2.7) L(p, q) 3 ¿7(logL) l l q~1 / p + e 

and if p < q , then, for every e>0, 

(2.8) L{p,q) <= Lp(log L) 

The inclusions (2.7) and (2.8) are the sharpest possible in the sense that they are 
in general false if we permit e=0. In order to verify this fact we set (£2, p)= 
=([0, 1], dx) and study the function 

fix) = 1 

Then, as i - 0 , 

(j*yt<tip-1 ~ 

x1" (log i /x)1'" (log (log l/x+l))* • 

1 

and 

( / * ) p a o g
+ / * + i ) W 4 - 1 

i log 1/t (log (log l / f + 2 ) f ' 

1 
t log 1/t (log (log l/t+2)Yp ' 
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We obtain suitable counterexamples by choosing a satisfying l / p c a d / ^ for 
the case p > q and l l q « x ^ l / p for the case p<q . 

We shall how consider a function / on [0,1]. Let c„,n£Z, be the complex 
Fourier coefficients of / (with respect to a uniformly bounded system of ortho-
normal functions). The sequence is the sequence (|c„|)!!„ rearranged in 
non-increasing order. Hausdorff—Young's inequality (see e.g. [14, vol. II, p. 101]) 
can be used to obtain the following implication: 

(2.9) if f£L>, 1 < p < 2, p' = pl(p-1), then J \cH\* < . 
— oo 

By an estimate of Paley it is also well known that if f€L", 1 </><2, then 2 (c*)p«p_2< 
I 

< oo (see e.g. [14, vol II, p. 123]). 
Therefore we can use Theorem 2.1 b) and make some straightforward calcula-

tions to obtain the following more precise implication than that in (2.9). 

Corol lary 2.3. If f£Lp, p'=p/(p-l), then 

( ( 1 \ Y 2 ~ p ) l l p ~ t > 

i w ' H ' ^ H J J 
for some function h, h^l, satisfying (2.2) and 

( n o ) / m d x ^ -

Remark. The result in Corollary 2.3 cannot be improved. In fact, by using 
the results obtained in [12, p. 268] we find that the implication in Corollary 2.3 can be 
replaced by an equivalence in a relatively large class of functions. This class consists 
at least of all non-negative functions / satisfying the condition that 

t t 
f f*(u)du^K f f(x)dx 
0 0 

for some constant K. Of course it is impossible to replace, the implication in (2.9) 
by an equivalence in some similar relatively large class of functions. 

In Corollary 2.3 we have seen that the condition f£Lp is an unnecessarily 
oo 

restricted condition to ensure the convergence of the series 2 \cn\p'- However, it is 
— oo 

1 
well known that also the condition J (f*Y f ^ d t (that is f^L(p,p')) implies that 

o 

2 W < c o ( s e e [14> V°1 H> P- 124]). Therefore we can use Theorem 2.1 a) and 
— oo 

obtain the following more precise criterion. 
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Corol la ry 2.4. Let 1<J?<2 and p'=p/(p-l). If 

f\f\p(h(log+\f\)y-*dx^-
o 

for every function h, h^l, satisfying (2.2) and (2.10), then 

— CO 

Remark. We can use the estimates obtained in [12, p. 268] to see that the 
implication in Corollary 2.4 can be replaced by an equivalence in the same class of 
functions as that in the remark after Corollary 2.3. 

Finally we note that we can use Theorem 2.1 and similar arguments as before 
to obtain the corresponding results for a function f£R" and its Fourier transform 
fdR". For example the corollary corresponding to Corollary 2.3 can be formulated 
in the following way. 

Corol lary 2.5. If f£Lp(R"), l< Jp<2, p'=p/{p-l), then 

f l/rCKIiogl/ll))^-^-1^^-
R" 

for some function h satisfying (2.2) and (2.10). 

Remark. It may be tempting to try to find some function h0, not depending 
on / , such that 

(2.11) 11/11,^ 1=> / l / r m i o g l / l D d f s A o ^ c o . 
R" 

However, this is not possible for any positive function h0 such that h0(x)—°° 
as This fact follows when using the following homogeneity argument: 
Let / be a function on R" such that / ( ¿ ; ) s a 0 > 0 on a set E of positive measure. 
If fa(x)=a1/pf(ax1, x2, ...,*„), then 

\\fa(x)\\P = 11/11, ^ 1, fa(® = a1'""1 / ( f - , -»•«.) 

and 

= . /\fa(0rhQ(\log?a(0\)dZ = f \Kr,)\p'h0(\log(a-^'f(n))\)dtl. 
R" R" 

Since h0(x)-*-°° as x—<=° we can choose a small enough to obtain that 

h 0 ( \ \ o g ( a - ^ M ) \ ) a 2KJ(m(E)ap-) on E. 

Therefore Ia ̂ m(E)a*'2KJ(m(E)a%)=2K0. We conclude that (2.11) does not hold 
for any of the functions h0 considered. 
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3. Some lemmas 

CO FC 
Lemma 3.1. Let ^ ck be a non-negative and divergent series. If Sk = ^c„, 

i i 
CO CO 

then the series 2 ck/Sk is divergent and, for every a> 0, the series ' s 

i i 
convergent. 

A proof of this lemma by Abel can be found for example in [4, p. 121]. We shall 
now state two useful regularization lemmas. 

Lemma 3.2. Let ^ ak be a positive and convergent series and let o 1. Then 
k=a 

there exists a sequence (¿t)~=0 such that, for k = 0, 1,2, ..., we have akSbk, c - 1 ^ 
^bk+1/bk^c and 

~ c + 1 °° 

4=0 C— 1 FC=0 

Lemma 3.3. Let 5 be a positive number and let g be a positive, integrable 
function on [1, such that, for some g(x)xb is a decreasing or an increasing 
function of x. Then there exists a constant K (depending only on b and 5) and 
a function gi(x), such that gi(x) ^ 

(3.1) gj (x)x1+s is increasing, 

(3.2) g1(x)x1~s is decreasing, 

and 
OO CO 

J gl(x)dx7s¿K f g(x)dx. 
i i 

Somewhat less precise versions of Lemmas 3.2 and 3.3 have been proved in [11, pp. 
292—294]. The proofs we shall give here are elementary and based on convolutions. 

P roof of Lemma 3.2. We choose bk= 2 anc~\k-"K Then 

2 h = ¿ i x c - < * - » > + ¿ ¿ a„c<*-"> k=Q k=0 n=0 k=0n=Hl 

oo oo oo n—1 f* _1_ 1 oo 
= 2«nC" 2c-k+ 2anc- 2 

n=0 k—n n=1 fc=0 c -1 n=0 
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Moreover, 

n=0 11=0 n=fc+l 

n =0 B=«I+1 

Therefore, we find that bk+1^cbk and Trivially ak^bk. The proof 
is complete. 

P roo f of Lemma 3.3. Let g(x)xb he an increasing function of Then, 
for 2k^x^2k+\ k=0, 1,2, ..., 

(3.3) 2 - " g ( 2 k ) ^ g { x ) ^ 2 b g ( 2 ^ ) . 

Therefore 

(3.4) 2g(2k)2k^2b2f g(x)dx^2"f g(x)dx^<~. 
o o ¿i f 

Now we can use Lemma 3.2 with c=2i to obtain real numbers dk, k—0, 1, 2, ..., 

such that dk^g(2k), 2,dk 
o 

(3.5) == dk+1/dk ^ 2-1+', 

and 
©O -)d 1 OO 

(3.6) 2dk2k^=^-r2sW. 
0 ~~1 0 

We define the function gx in the following way: 

g i ( x ) = g i ( 2 ' + " ) = 2b(dky-"(dk+1)u, k = 0,l,2,...,0^u^l. 

Observe that, for O S u ^ u ^ l , 

{ ) ~ g i ( 2 * + u 0 I dk ) - Z 

and, for k2^-k1, 

(3 8) 2 - ( i + 1 ) ( * « - * i ) S g l ( 2 * 8 ) = s 2 ( S ~ 1 ) ( k i ~ k i ) 

gi(2k0 dkl 

According to the estimates (3.7)—(3.8) we find that our function gx satisfies the 
growth conditions (3.1) and (3.2). 

We may, without loss of generality, assume that <5< 1. Then, by (3.3), (3.5), 
and the fact that dk+1^g(2k+1), we get 

g»(*) = fi(2k+u) = 2»(dky-"(dk+iy § 2»2«-sM->dk+1 ^ 2"dk+1 S 2»g(2*«) S g(x). 
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Finally, by (3.4), (3.6), and (3.7), we have 

CO 2FC + L 

/ g i ( * ) dx = 2 f g i ( * ) d x ^ i gl(2k)2k = 
f 0 2" 0 

= 2"2dk2k m 2 " | g(2k)2k - 2 2 b | J ± i f g ( x ) dx. 

The case when g(x)xb is a decreasing function of x can be carried out analogously. 
The proof is complete. 

4. Proof of Theorem 2.1; the case p>q 

In this case part a) of Theorem 2.1 is identical with Theorem A so it is sufficient 
to prove part b) of the theorem. 

First we assume that 
oo 

f ( / * ) « / « / " - ! CO, 

1 

and choose e satisfying 0<e<<///>. We can now use Lemma 3.3 to find a function 
g i t ) , such that g ( t ) ^ f * ( t ) , 

(4.1) ( g ( t ) ) 9 t q / p + s is increasing, 

(4.2) {g(t))qtqlP~e is decreasing, 

and 
oo 

(4.3) / ( g ( 0 ) , i i / p - 1 d i < ° ° . 
I 

For k=0, 1 ,2 , . . . we set bk=(g{2k)2klP)q and observe that, by (4.1)—(4.3), the 

series 2 converges. We also note that we may, without loss of generality, assume 
o 

that g(/) = l-
We define the function h at the points xfc=log (l/g(2*)) by h(xk)=biq~p)lpq, 

k=0,1,2,.... According to (4.1)—(4.2) we find, for 0==«=£l and k=0,1,2,..., 

(4.4) g ,(2 i)2_" ( , / p + E ) S gq(2k+a) gi(2k)2u^-qlpK 

We can now use (4.4) and make some elementary calculations to obtain the following 
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useful estimates: 

i ; bk { g(2k)2k/p ) 

and 

(4.7) 0 

We extend the definition of the function h by setting 

h(x) = { ( h ( x k ) ) * - * " * * > . 

for xk^x^xk+1, k=0,1,2, ... . We can make some elementary (but rather labo-
rious) calculations and find, for some ¿>0, that 

(4.8) h{x)2Sx is increasing 
and 
(4.9) h(x)2~Sx is decreasing. 

(We can for example choose S=e(p—q)/(q—pe).) 

According to (4.5)—(4.9) we obtain, for xk^xSxk+i, k~0, 1,2, ..., and for 
some c50>0, 

2-'oh(xk) ^ h(x) ^ 2*oh(xky 

(If we choose d=e(p—q)/(q—ps), then we can have d0=e(p—q)/pq.) Therefore, 
by (4.7), we have 

/ (/¡Cx))"9««-"» dx 2 J*\h W ) p , / ( , - p ) dx ^ 
x0 0 xfc 

(4.10) ^ 2 W - * 2 (h{xk)Y"^-^{xk+1-xk) =§ 2sopql(q~p) 2 bk(xk+1-xk) s 
0 0 

s 2\PIKI~P)L ( l + f i ) 2 bk < 
q \ p Jo 

We use (4.4) once more and obtain, for 2k^t ^2k+1, k=0,1,2, ..., 

(4.11) g(2k)2~l9+pe)/pq ^ g(r) ^ g(2*). 

Hence we can use (4.8)—(4.9) to obtain that, for 2'== t ^2k+1, 

(4.12) 
h ( l o g ? L ) - h ( l o g f - ^ + i ^ ) ) 2'<""<«co/.c»0)+(,+*)/«) ^ 

^ h ( l o g - j l j y j 2 M ( , + p i ) / M . 
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Furthermore, according to (4.11)—(4.12), 

/ [ g m ( l o z ^ p t = J f {sm ( l o s - ^ p t -

(4.13) 

^ KoZ(g(2k)Hxk))p2k = K<>2 b£»2-kbl-r">2k = K 0 Z b k ^ ~ . 
0 0 0 

(We can for example choose K0=2U(q+pe)/q.) 
By choosing £ small enough and using the growth condition (4.8) we see that 

yh (log (1 ly)) is an increasing function of y, 1. Therefore, by (4.13) and the 
fact that /* ( / ) = g(0> we have 

/ H ^ f ) ) ' " ' 
Since the function h satisfies (4.8)—(4.10) we conclude that f£Em(p, q). 

In order to prove the converse implication we assume that feE^p, q). Let 
(at)~ be the nondecreasing sequence of the least real numbers ak such that 2 - f i - 1 S 
S/*(r)=2"~\ when k=0, 1,2, ... . Let h(x) be the function associated 
with the definition of E„(p,q). We assume that h(x)2Sx, for some ¿>0 , is an 
increasing function of x. Therefore, if =ak, then 

h{k)2~>^ h (log-y^r) ^ h(k +1)2*. 

Thus the assumption 

implies that 

(4 .14) ¿ 2 - p * ( / z ( f c ) ) " ( a * - « * - i ) 
k= 0 

Moreover, 

(4 .15) f (J*ytqlp~idt= 2 f ( j y t q l p - 1 dt — 2 2~qk(a.qlp—xl,p
1). 

<*0 1 "k-1 9 1 

We use Holder's inequality and an elementary estimate and obtain 

l i 
(4 .16) 

/ c*> \9/P ( co \ l - « / p 
^ { 2 2 - p k ( m n « k - * k - i ) } [2{h(k)Yq"q-»\ . 
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From the growth and integrability properties of h we deduce that the series 

¿(/i(A:))OT/(9"p) converges. Hence, by (4.14)—(4.16), we obtain 
i 

j (f*yP"-ldtcoo. 
i 

The case when h(x)2~ix is a decreasing function of x can be handled analogously. 
The proof is complete. 

5. Proof of Theorem 2.1; the case p < q 

We assume 
i 

f (f*)qtqlp~1 dt <<=•=. 
o 

Let h be any function on [0, such that for some <5, 0<<5</>, 

(5.1) h(x)2Sx is increasing, 

(5.2) h(x)2~Sx is decreasing 

and 

(5 .3) f (h{x))pqKq-p) dx 
i 

Let 0?*)^ be the nonincreasing sequence of the least real numbers pk, such that 
2k~1^f*(t)^2k, when k=0,1,2, ... . Then 

(5 .4) f (f*)qtq'p-1dt = 2 f (f*)qf"p-1 dt s —2~q 2 2'"i(Ptpi-Pqk"') 
o 1 fii q 

Moreover, by (5.1), 

f°(f*h(log+f*))pdt = 2 f~\f*h(\og+f*))pdt s= 
o 1 Pi 

(5.5) 

^2ip22pk(h(k))p(J}k_1-j}k.). 
i 

We use Holder's inequality and find 

/ ~ \Pl4 ( OO 
(5.6) 2 2 p k { h ( k ) ) p ( f i k . 1 - p k ) ^ [ 2 2 q k ^ k - 1 - p k ) q l p j [2 (Hk) ) p q K q - p ) 
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Since (Pk-i-Pk)q lPsPl lE1-Pq
k

lp we can use (5.4) and the integrability assumption 
on / * to obtain 

(5.7) 
1 

M 
The conditions (5.1)—(5.3) imply that the series 2( / l(^))P 4 / ( ,~P ) converges. There-

i 
fore, according to (5.6)—(5.7), ¿ 2 p t ( / i ( A : ) № - i - f t ) < ~ . in view of (5.5) we 

i 
conclude that 

/ ( /* / j ( log + /*)) p <*'<~ 
o 

for every function h satisfying (5.1)—(5.3). 
Finally we suppose that the conditions (5.1) and (5.2) on the function h, are 

replaced by the general condition that, for some 0, h{x)ax is increasing or de-
creasing. Then we can use Lemma 3.3 to obtain a function h ^ h satisfying 
(5.1)—(5.3). We have just proved that 

/ ( / * ( l o g + f * ) ) p d i < °° 
o 

and, thus, since h ^ h , 

f ( f * h ( l o g + r ) ) p d t ^ ~ 
0 

so that f€E0(p, q). 
In order to prove the converse implication we assume that f£E0(p, q). Let 

h be an arbitrary function satisfying (5.1)—(5.3). Then 

f°(f*h(iog+r)Ydt = i J ~ \ r W o g + f * ) ) p d t s 

(5.8) 

i 

Hence, by assumption and (5.8), the series 22pk{h(k))p(/}k- 1—Pk) converges. We 
i 

make an Abelian transformation on this series and find 

(5 .9 ) ¿ 2 Pk(h{kj)»pk^<~. 
i 

Since 

J ( f y e " " - 1 dt = 2 / 1 ( f y p i " - 1 dt -s—2 29kpq
k

lp
1, 

o i ¿1 Q i 
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it is sufficient if we can prove that ^ We assume the contrary, viz. 
i 

22qkPllp=°°. F o r A : = l , 2 , 3 , . . . w e s e t ck=2qkPl'p a n d dk=2k(q~p) Pllp~\ B y 
i 

assumption the series 2 ck diverges so we can use Lemma 3.1 and obtain 

(5.10) = = 
1 ¿>k l 

a n d , f o r a=pfcq—p), 

\qKi-p) 

oo 

°° ( d \qM~p> ~ c 

We choose <5, 0<<5<p, and set ak=dk/Sk. We apply Lemma 3.2 to the series 
00 

^fli/fa-p) to obtain a sequence (&t)~ such that b k ^a k , 
1 

(5.11) {bk2Spk)i is an increasing sequence, 

(5.12) (bk2~Spk)i is a decreasing sequence, 

(5.13) 
i 

and, by (5.10), 

(5.14) 22 p k P k b k =~> . 
i 

For k= 1 ,2 ,3 , . . . and 0==w=il we define h{x)=h{k+u)={b\-ubu
k+1flP. Then, 

by (5.11)—(5.14), we can see that there exists a function h satisfying (5.1)—(5.3) but 

¿ 2 pkf}k{h{k)Y = ~>. 
i 

This fact contradicts the condition (5.9). We conclude that our assumption is false 
so that 

x 
J ( j y t

q i p - 1 d t < ° ° . 
o 

The proof of part a) of the theorem is complete. 
In order to prove part b) we study the nondecreasing sequence (at)J° of the 

least real numbers <xk such that 2~k~1^f*(t)^2~k, when k= 

=0, 1,2, ... . The proof of part b) can now be carried out by arguing exactly as 
in the proof of part a). Therefore we leave out the details. 



An exact description of Lorentz spaces 1.191 

6. A description of the spaces LP''(log L)x 

Theorem 2.1 can be generalized in the following way. 

Theo rem 6.1. Let 0<<7<°° and — 
a) Let p>q. Then 

I 

(6.1) / ( /* tllp (|log t\ +1)*)« dt/t < °° 
0 

if and only if 

(6.2) / V * ( l o g + / * + l )"Mlog + /*)) '^ 
o 

for some function h, such that, for some real number a, 

(6.3) h(x)ax is a decreasing or an increasing function of x 

and 

(6.4) f (h(x))pq/(q~p) dx <o°. 
i 

b) Let p<q. Then (6.1) holds if and only if (6.2) holds for every function h 
satisfying (6.3) and (6.4). 

c) Let p>q. Then 

(6.5) / ( / ^ ( l l o g i l + i r ^ r f i / i ^ -
1 

if and only if 

(6.6) J ( /* (log+ +1)* h ( log+J*)!" d/ < °° 

for some function h satisfying (6.3) and (6.4). 
d) Let p<q. Then (6.5) holds if and only if (6.6) holds for every function h 

satisfying (6.3) and (6.4). 

The proof of Theorem 6.1 can be carried out in a similar way as the proof of 
Theorem 2.1 so we omit the details. Moreover, we can use Theorem 6.1 and argue 
in a similar way as before to obtain the following exact characterization of the 
Lorentz—Zygmund spaces. 

Theorem 6.2. Let 0</?<°°, 0<<jr<°° and — 
a) Let p>q. Then f£Lp'q (log Lf if and only if f£Lph(log L) for some func-

tion h satisfying (6.3) and 

(6.7) / (h(x)x-ayql^-^ dx <». 



192 Lars Erik Persson 

b) Let p<q. Then f£Lp-q (log Lf if and only if f£Lph(log L) for every func-
tion h satisfying (6.3) and (6.7). 

The following recent embedding result by BENNETT and RUDNICK [2, p. 31 ] 

can be deduced from Theorem 6.2. 

C o r o l l a r y 6.3. Let -=»<»<» and -«>< 
<a!<<». Then 

(6.8) L"-q (log Lf g Lp'qi (log Lf* 

whenever either 

(6.9) and a+l/q > ax + l/^ 

R e m a r k . It is easy to find elementary examples showing that the inclusion 
(6.8) does not hold in general if we permit some a satisfying a ^ a j + l / ^ — Ijq 
when or some a satisfying a < a j when q=q± (see [2, p. 33]). 

In our introduction we have noted that L(p, q)<^LP when p>q and 
L(p,q)^>LP when p<q. Therefore, by applying Corollary 6.3 with q=p, a=0 
and qi=p, «1=0 and by using the inclusions (2.7) and (2.8), we obtain the following 
chains of inclusions : If then, for every e>0 , 

All inclusions are the sharpest possible in the sense that we can nowhere permit 
that e=0 . 

P r o o f of t he co ro l l a ry . We assume that /££,p , ,(log Lf and q > q \ . 
First we consider the case p>q. Then, by Theorem 6.2 a), f£Lph (log L) for some 
function h satisfying (6.3) and 

or 

(6.10) q = qx and a ^ a •l • 

Lp (logL)1,q~llP+t c L(p, q)aLp<z Lp-'l(logL)1/p-1''>-° 

and if 0 t h e n , for every £>0, 

Lp-9 (log L)llp~llq + e c L ' c L(p, q) c Lp(logL)1'q-1'p-c. 

(6.11) 

We put a—q(p—q1)lq1(p—q) and use Holder's inequality to obtain 

ЛV¿T, \P«I / ( P - « , ) ( \ P « / ( P - 4 ) V / O °° 

M * • { / { & ) H (f *•'->«>>«-'> 
,P<IAP-1I> 

dx £ i l - l /o 
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The assumption a + + implies that (c^—a) qqj(q—< — 1. Therefore, 
according to (6.11), 

We have just proved that f£Lph(log L) for some function h satisfying (6.3) and 
(6.12). Thus, by Theorem 6.2 a), /<E LP"(log L)\ 

For the case p<q± we assume that h is an arbitrary function satisfying (6.3) 
and (6.12). We put a—q^(p—q)\q(p—q^) and use Holder's inequality and the 
assumption that ( a x — o ^ q q ^ q — — 1 to see that h also satisfies the condition 
(6.11). Therefore, according to Theorem 6.2 b), f£L"h(log L). By using Theorem 
6.2 b) once more we conclude that f£LB,qi(log L)"1. 

For the case p=q our assumption means that /£Lp/j(log L) for h(x)=x". 
We note that the function h satisfies (6.3) and (6.12). We use Theorem 6.2 a) and 
conclude that «»(log L)"1. 

When p = q i we can use Theorem 6.2 b) to see that f£L"h(\og L) for every 
function h satisfying (6.3) and (6.11). We note that the function h(x)=x*1 satisfies 
these conditions. Thus, f£Lp (log L)** which in this case is equivalent to that 
f£Lp,tl (log L)"1. 

Finally we suppose that qx<p<q. Then we can use Theorem 6.2 b) to see that 
f£Lph(log L) for every function h satisfying the conditions (6.3) and (6.11). In 
particular, the assumption (a!—v)qq-J(q — — 1 implies that the function 

satisfies these conditions. But this function h(x) satisfies also the condition (6.12) 
so we can use Theorem 6.2 a) to conclude that f£L"'qi(log L)"1. Thus the proof of 
the case q ^ q is complete. 

If qi_=q we may, without loss of generality, assume that ax = a. The proof of 
this case is analogous and even simpler so we leave out the details. 

Professor Jaak Peetre has made me aware of the fact that our description of 
the L(p, #)-spaces is similar to the definition of the spaces B% q(co), defined by 
PEETRE [10] and GILBERT [3, pp. 2 4 2 — 2 4 3 ] in the following way: Let co be a non-
negative weight function, O < 0 < 1, and y=l/p—l/q. Let 4>c 

be the set of nonnegative functions (p on [0, such that 

(6.12) dx <<=>. 

h(x) = x((ai~t,)"Vp+(a,~oti9i))/(,!~''i) 

7. Some concluding remarks 

(7 .1) 
dt 

13 
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and 

(7.2) i V ( 0 is nondecreasing. 

Then 

= 

U {Lp
a|<T = c o V (<«)}, when y s O , 

n {LpIff = a>V(<»)}> when y g O . 
,«>£®c 

In particular, when the underlying measure space is (Rn, dx) we obtain the usual 
Beurling—Herz spaces 

№ 7 > 9 ( | X | " ) , when q < p, 
"Lq = 

^•«("¿"l' w h e n q > p ' 

The Beurling spaces Ap and B" are the special cases pLl and PL°°, respectively 
(see [3, p. 247] and [5, pp. 298—300]). 

We can use our Theorem 2.2 and make some elementary calculations to see that 
the L(p, <7)-spaces can be characterized in similar terms. More exactly, we can in 
fact define the L(p,q)-spaces in the following way: Let 0 a n d 
y = \\p — \\q. Let <PP be the set of nonnegative functions <p on [0, satisfying 
(7.1) and, for some real number a, 

(7.2)' f(p{t) is nondecreasing (or nonincreasing). 

Then 

L(V, q) = 
U {Lp(cp(L)y}, when y ^ O , 

<pi<&P 

n {Lp((p(L))y}, w h e n j s o . 
<pii>p 

It is also interesting to compare how the spaces L(p, q) (or, equivalently, E{p, q)) 
and Bp

q(oj) (and, thus, the Beurling—Herz spaces pLq) occur as intermediate 
spaces in analogous situations in the theory of interpolation. For example we have 

(Lp°,Lp%q;K = L(p, q) (=E(j>, q)) 

when l/p=(l-9)lp0+9lpi (see e.g. [13, p. 134]) and 

(Lp,Lp,\q.K = Bg,q(o>) 

(see [3, p. 243] and [10, pp. 64—66]). 
Lorentz has in [7] defined that a function / belongs to the space A(cp, q) if 

f (f*)q(pdt <<=o. 
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Here cp is a nonnegative and integrable function on [0, Lorentz has also given 
an exact characterization of the spaces A((p, 1) which are also Orlicz spaces (see 
[8, pp. 130—132]. Roughly speaking, the result of Lorentz shows that this can 
happen if and only if we impose integrability conditions on q> such that the space 
A(q>, 1) is fairly close to L1. 

In this context we also note that it is feasible to generalize Theorem 6.1 for 
example by replacing the factor (log —)" in the conditions (6.1)—(6.2) and (6.5)— 
(6.6) by any "logarithmic varying" function (p. (We say that a function cp is 
logarithmic varying if there exist x0 and a such that, for x^x0, <p(x)(log x)a 

is a decreasing or an increasing function of x.) We can still use essentially the same 
techniques as in the proofs in Sections 4 and 5. 
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