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ABSTRACT 

 

Congenital heart defects (CHDs) are the most prevalent of all birth defects, arising 

from the complex interplay of environmental exposures and genes. The molecular 

causes of most CHDs as well as the modifiable environmental risk factors, 

(especially for paternal exposure) remain largely unknown. Thus, there is an 

increasing interest in the study of gene-environment interaction in the pathogenesis 

of CHDs. The major aim of this project was to expand the knowledge of CHD 

etiology with specific attention at the identification of genetic and environmental risk 

factors. The effects of environmental factors might be modified by the genes 

responsible for the activation and detoxification of toxicant agents, contributing to an 

increased resistance (or sensitivity) to cardiac teratogenesis. Thus, the knowledge of 

genetic variants that can modify a person's risk of environmental exposure-induced 

disease may identify new potential therapeutic targets and appropriate preventive 

strategies. 

In the first part of the study, we analyzed the association between different parental 

environmental exposures and CHD risk. Moreover, it has been investigated if the 

presence of specific polymorphisms in genes involved in toxicant metabolism, 

glutathione-S transferase: GSTM1 and GSTT1, in the children might modulate the 

risk of CHD associated to toxicant exposure. In a case-control study , 360 parents of 

a child with CHD and 360 parents of a child without any congenital malformations, 

were compared in terms of lifestyle habits and toxicant exposures. 

The results showed that parental smoking (≥15 cigarettes/day) was significantly 

associated with CHD risk (OR 2.1, 95% CI 1.3-3.5, p=0.002). Moreover, both 

maternal (OR 2.6, 95% CI 1.6-4.2, p<0.0001) and paternal (OR 2.5, 95% CI 1.6-3.8, 
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p<0.0001) occupational/environmental exposure to toxicants increased the risk of 

CHD. In addition, a significant additive risk (OR 4.5, 95% CI 2.5-8.3, p<0.0001) was 

found when both parents were exposed to toxicants. Regarding to genotype, GSTM1 

and GSTT1 polymorphisms were investigated in 180 children with CHD. Both 

maternal (OR 3.6, 95% CI 1.1-11.2, p=0.03) and paternal (OR 3.3, 95% CI 1.0-10.8, 

p=0.03) exposure to toxicants increased the CHD risk in children who carried the 

combined null GST genotypes. The effect for the combined null genotypes was also 

stronger (OR 6.5, 95% CI 1.5-28.0, p=0.01) when both parents were exposed.  

In the second part of the project, we analyzed the joint effect of the glutathione-S 

transferase P1 (GSTP1) genetic polymorphism (Ile105Val) and maternal 

environmental exposure, on CHD risk. The GSTP1 gene is highly expressed early in 

fetal life and is the most abundant phase II xenobiotic metabolism enzyme in a 

human placenta. Fetal inherited GSTP1 Ile105Val polymorphism may modify the 

metabolism and excretion of xenobiotics from fetal tissue and increase the risk of 

CHD. In a case-control study, 190 children with CHD and 190 healthy children were 

genotyped for the GSTP1 Ile105Val polymorphism. All the mothers completed a 

structured questionnaire on the demographic as well as the preconceptional and 

lifestyle exposures.  

No significant differences in Ile105Val genotype frequencies were observed between 

CHD and healthy children (p=0.9) as well as no evidence of significant interaction 

between the maternal exposure and GSTP1 polymorphism was found. 

In the last part of the project, we investigated whether the ISL1 (rs1017) single-

nucleotide polymorphism, in 3’-UTR region, conferred susceptibility to CHD. 

Indeed, the LIM homeodomain transcriptor factor ISL1 is a known marker for 

undifferentiated cardiac progenitor cells that give rise to both the right ventricle and 
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the inflow and outflow tracts. To date, contradictory findings about the role of the 

ISL1 rs1017 single-nucleotide polymorphism on increased risk of CHD have been 

reported. 

In a case-control study, 309 patients with CHD and 500 healthy controls were 

genotyped for the ISL1 rs1017 polymorphism. No significant difference in the 

genotype and variant allele distribution was found between patients and controls. In 

addition, the ISL1 rs1017 polymorphism was not associated to the risk of CHD 

neither overall (p=0.7) nor stratifying the population by sex and CHD classification.  

All these findings suggest that common genetic variants, not necessarily disease-

causing, may contribute to increase the risk of CHD, especially interacting with 

environmental factors. Further studies are required to better define the role of genetic 

factors and their potential interaction with environmental factors on the risk of CHD.  
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INTRODUCTION    

 

Congenital heart defects (CHDs) are due to an abnormal development of the heart 

during embryogenesis and fetal life, between the second and ninth week of gestation. 

CHDs are the most common occurring congenital malformations in newborn, and is 

the most frequent non-infectious cause of infant death (Hoffman and Kaplan, 2002; 

Garg, 2006). The incidence of moderate and severe forms of CHD is about 8/1,000 

live births (19/1,000 when bicuspid aortic valve is included), and of all forms 

increases to 75/1,000 live births if tiny muscular ventricular septal defects, present at 

birth, and other trivial lesions are included (Pierpont et al., 2007; van der Linde, 

2011).  

About 20% of heart defects can be associated with extracardiac abnormalities, as part 

of a more complex syndrome, involving chromosomal anomalies, such as the 

trisomies (e.g. chromosomes 21, 18, and 13), or microdeletion 22q11, which is well-

established chromosome cause of DiGeorge syndrome (Oyen et al., 2009; Richards 

and Garg, 2010). 

Nevertheless, many types of CHDs are more frequently diagnosed as isolated and 

non-syndromic, and single gene mutations have been shown to contribute to the 

occurrence of malformations (Ware and Jefferies, 2012). To date, more of 30 genes 

have been linked to non-syndromic forms of CHD and the contribution of which is 

presumed to be relatively small (Blue et al, 2012). 

A family history has been described in both syndromic and isolated defects in 1-6% 

of the cases (Calcagni et al., 2007). Similarly, an increased risk of pediatric heart 

disease recurrence in family members of affected individuals has been shown (Garg, 

2006; Ransom and Srivastava, 2007). Moreover, if more than one sibling is affected, 
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the recurrence risk can increase to 10% (Nora and Nora, 1988). Furthermore, the 

most non-syndromic CHDs occur sporadically, without a familial history of disease 

and a clear Mendelian inheritance. It is estimated that about 80% of CHDs with 

unknown aetiology has a multifactorial origin with an key interplay of genetic and 

environmental factors. 

Controversy, it has suggested that multiple somatic mutations –mutations present in 

affected tissue but not in the germline one - may cause sporadic CHDs (Reamon-

Buettner and Borlak, 2006). Indeed, the presence of several somatic mutations has 

been shown in cardiac transcription factors genes, such as NKX2.5, GATA4 and 

HAND1, from the Leipzig (Germany) collection of malformed hearts 20-year stored 

in formalin (Reamon-Buettner et al., 2004; Reamon-Buettner and Borlak, 2004; 

Reamon-Buettner and Borlak, 2006; Reamon-Buettner et al., 2007). However, 

subsequent studies have not replicated this finding (Wang et al., 2001; Draus et al., 

2009; Esposito et al., 2011; Salazar et al., 2011). 

Recently, novel findings supported that epigenetic alterations, such as methylation 

status, dysregulation of small-non coding RNAs (microRNAs) and histone 

modification may contribute to understand the molecular basis of CHDs and that 

congenital heart diseases might be, in part, a consequence of a change in the control 

of the epigenome induced by the environment (Zhao et al., 2005; Montgomery et al., 

2007; Zhao et al., 2007; Movassagh et al., 2010) (Figure 1).  
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Fig. 1: Schematic representation of the pathogenesis of congenital heart defects. 

 

 

 

 

Cardiac transcription factor genes: Genetic Hypothesis 

 

The knowledge about the genetic component of the congenital heart disease is very 

difficult, due to the complex interplay from different genes in different space and 

different times (Pierpont et al., 2007). 

During the embryonic development, the heart is one of the first organs to form. 

A high degree of conservation is observed during early-stage heart development in 

zebrafish, chick, frog, mouse, and human (Brand, 2003). 

Because dysregulation of heart development is at root of CHD, a clear picture of how 

the heart forms is crucial for understanding the genesis of this disease. 

In the last decade, it has been suggested that most of the inherited forms of CHD are 

a result of mutations in genes know to be essential for cardiac development, such as 

specific transcription factors genes (TFs). These genes, regulate specific events in 



7 
 

heart morphogenesis, through an intricate process, where TFs regulate each other's 

expression in order to stabilize and reinforce the cardiac gene program (Olson 2006; 

Nemer, 2008; Mc Bride et al., 2010; Ware and Jefferies, 2012) (Fig.2). 

 

Fig. 2.: Transcription factors and congenital heart diseases. 

 

 

Because of their important role in the orchestration of cardiac development, 

mutations in these genes may induce a significant disruption/dysregulation of 

downstream gene expression and, thus, lead to cardiovascular malformations, as 

evidenced by the findings in transgenic mice (Biben et al., 2000; Bruneau et al., 

2001; Zhang et al., 2013).  

Moreover, the progenitor cells originating from the first heart field, second heart 

field and cardiac neural crest contribute to the cardiac morphogenesis (Buckingham 

et al., 2005; Shan et al., 2012). 



8 
 

ISL1 is a LIM homeodomain TF considered to be the most important marker of 

cardiac progenitor cell lineages in the secondary heart-field differentiation (Moretti 

et al., 2006; Kang et al., 2009; Stevens et al., 2010; Klaus et al., 2012) (Fig. 3).  

 

Fig.3: ISL1 functions (adapted from Bu et al., 2009) 

 

 

 

ISL1 cardiovascular progenitors give rise to right ventricle and inflow and outflow 

tracts, which are affected by several cardiovascular malformations, e.g., transposition 

of the great vessels, tricuspid atresia and tetralogy of Fallot (Laugwitz et al., 2008). 

Animal experimental models have shown that homozygous mutants for ISL1 

developed a severe cardiac phenotype (Laugwitz et al., 2008), whereas mice totally 

knocked out for this gene were lacking in the outflow tract, in the right ventricle and 

in several part of the atria (Cai et al., 2003; Lin et al., 2006). Recently, common 

genetic variants and specific haplotypes in the ISL1 gene have been found to 

contribute to the risk of CHDs in the white and black/African-American populations 

(Stevens et al., 2010). On the contrary, a more recent paper (Xue et al., 2012) showed 

that ISL1 common variant rs1017 did not play a crucial role in conferring 
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susceptibility to sporadic CHD in Chinese population. Moreover, another recent 

paper, identified the presence of six known and five novel ISL1 variants, 

investigating the potential contribution of ISL1 in cardiomyopathies. The authors also 

describes a novel p.Asn252Ser ISL1 gain-of-function variant, which could lead to 

greater activation of downstream targets, such as Mef2c, which are known to be 

involved in cardiac development, dilation, and hypertrophy (Friedrich et al., 2013). 

 

 

Etiology of Congental Heart Disease: gene-environment interaction   

 

In approximately 80% of CHD cases, the cause is multifactorial. Direct evidence 

regarding environmental exposures and the risk of CHD is very limited (Jenkins et 

al., 2007; Blue et al., 2012). Unfortunately, less is known about modifiable “non 

genetic” factors.  

Several studies have suggested that some parental occupational and/or environmental 

exposures may be significantly associated with an increased prevalence of birth 

defects in offspring, especially for selected congenital heart defects (Dolk and 

Vrijheid, 2003; Chapin et al., 2009; Rankin et al., 2009; Strickland et al., 2009; 

Desrosiers et al., 2012). In particular, the maternal environmental risk factor known 

to influence the incidence of CHD are rubella, pre-gestational diabetes and exposure 

to teratogens, such as thalidomide, retinoic acid and indomethacin, and exposure to 

chemicals at work (Øyen et al., 2000).  

Every human cell, including the spermatozoa and the oocytes, can suffer DNA 

mutations due to the exposure to environmental toxicants. Gametic DNA mutations 

preceding the conception can induce miscarriage, death or congenital defects. 
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Several studies have shown that maternal exposure is associated with a variety of 

adverse pregnancy outcomes including preterm birth, low birth weight, and birth 

defects (Brent, 2004; Kuehl and Loffredo, 2005; Jenkins et al., 2007; Patel et al., 

2010). Conversely, the information available regarding environmental exposures of 

father as risk factor for birth defects, in particular for CHD, is very limited (Jenkins 

et al., 2007). 

The toxicity of xenobiotics for embryonic tissues depends on the biotransformation 

process during which reactive products are formed (phase I) and detoxified (phase 

II). Several enzymes (and their gene families) are involved in this process. In 

particular, the impact of parental exposure on birth defects in the offspring might be 

affected by the presence of polymorphisms in genes responsible for the activation 

and detoxification of toxicant agents, contributing to an increased resistance or 

sensibility to cardiac teratogenesis (Loffredo, 2000; Kuehl and Loffredo, 2005; Patel 

et al., 2010). 

 

 

Glutathione S-tranferase enzymes (GSTM1, GSTT1, GSTP1) 

 

Genetic polymorphisms in the Glutathione S-Transferase (GST) enzymes, which 

provide critical defense against numerous toxins, might modulate the effect of toxic 

agents such as xenobiotics compounds. (Kuehl and Loffredo, 2005; Shi et al., 2008). 

Eight cytosolic GSTs are known to be expressed in humans: alpha (A), mu (M), pi 

(P), theta (T), kappa (K), omega (O), sigma (S) and zeta (Z). Each class consists of 

several distinct subclasses, with some overlap in tissue expression (Hayes and 

Strange, 2000). The GSTM1 and GSTT1 genes are located in chromosome 1 and 22 
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respectively. Their activity is the detoxification of electrophilic compounds, 

including carcinogens, therapeutic drugs, environmental toxins and products of 

oxidative stress, by conjugation with glutathione, which are water-soluble and can be 

excreted from the body. The gene coding for GSTM1 and GSTT1 exhibits a deletion 

polymorphism, which in case of homozygozity leads to absence of phenotypic 

enzyme activity.  

The presence of these polymorphisms in association to maternal cigarette smoking 

has been associated to an increased risk for orofacial defects (Olshan et al., 2005). 

Moreover, the role of GST polymorphisms and their interaction with environmental 

pollutants on the risk of birth defects has also been examined (Garlantézec et al., 

2012).  

The GSTP1 gene, highly expressed in early fetal life, is the most abundant phase II 

xenobiotic metabolism enzyme in the human placenta (Ahmad et al., 1990; Becket et 

al., 2000; Raijmakers et al. 2001). 

An A to G transition at nucleotide 313 in exon 5 of the GSTP1 gene, which replaces 

isoleucine (Ile) at codon 105 with valine (Val) within the active site of the enzyme, 

has been shown to result in altered enzyme activity (Zimniak et al. 1994). Therefore, 

fetal inherited GSTP1 Ile105Val polymorphism might modify the metabolism and 

excretion of xenobiotics capable of crossing the placental barrier from fetal tissue.  
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AIM 

 

Most of the known CHDs occur through a heterogeneous and complex process in 

which predisposing genetic factors interact with environmental factors. The 

environmental effects may be modified by genes involved in the activation or 

detoxification of toxicant agents, contributing to an increased resistance (or 

sensitivity) to cardiac teratogenic substances. Accordingly, recent studies have 

shown the fundamental role of single-nucleotide polymorphisms (SNPs) and/or 

mutations in genes critical for detoxification pathway, in the pathogenesis of CHDs. 

In this framework, the first hypothesis of this project, was that environmental factors 

interact with genetic predisposing factors in the pathogenesis of CHDs. In order to 

reach this aim, the specific objectives were: 

 to examine the association between the environmental exposure of both 

parents and CHD risk. 

 to explore the modification effects of metabolizing gene polymorphisms 

(GSTM1, GSTT1, GSTP1) in association with parental exposure to toxicants. 

 

In the last part of the project, since the importance of TFs genes in the control of 

heart development, it has been hypothesized that “common” sequence variations in 

these genes might be one of causative mechanism of CHD. In order to reach this aim, 

the specific objective was: 

 

 to evaluate if the presence of a common variant of TF gene , ISL1 conferred 

an increased susceptibility to CHD. 
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MATERIALS AND METHODS  

 

Study population 

 

The study population consisted of 309 patients, who were diagnosed with isolated, 

non-syndromic CHD (197 males [21.3 ±25.2 years], including 200 pediatric [4 ± 5.6 

years] and 109 adult patients [52.5 ± 17.2 years] with bicuspid aortic valve, BAV); a 

control group of 500 healthy subjects [272 males; 15.7 ± 21.3 years] comprising 300 

newborn and 200 adult subjects (39.8 ± 13.7 years). Moreover, we enrolled 360 

parents of a child with CHD and 360 parents of a child without any congenital 

malformations. Both case and control parents completed a structured questionnaire 

on the demographic, preconceptional, and lifestyle exposures. We collected 

environmental and occupational exposure data from specific questions on potential 

teratogens/mutagens that have been linked to human reproductive impairment, 

including ionizing radiation, solvents, pesticides, asbestos and heavy metals. For the 

parents, the exclusion criteria were mothers who reported inconsistent use of B 

vitamin and folate supplements in the periconception period; the inability to obtain 

complete information about the occupational, demographic and lifestyle data from 

both parents. A sample of blood was obtained from 309 patients with CHD and 500 

healthy subjects. The questionnaire model used is shown below. 
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DNA extraction 

 

Genomic DNA was extracted from whole-blood samples through Biorobot EZ1 

(Qiagen) that allows to extract DNA, automatically, from both blood and tissue, from 

6 together samples in a single step: 

 sample lysis, 

 DNA binding to magnetic particles, 

 washing and elution of the DNA. 

 

 

DNA quantitative assessment  

 

We have prepared DNA elutions 1:250 on sterilized water for spectrophotometric 

quantification at 260 nm and 280 nm. The spectrophotometric analysis determines 

the quantitative concentration of the DNA and qualitative information. In fact, the 

ratio of the absorbance at 260 nm and 280 nm represent a good index of the sample 

purity. For the DNA, the well index is 1.7-1.9. The formula for the final 

concentration of the sample was: 

FINAL CONCENTRATION=λ260 x dilution factor. 
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Genotyping analysis 

 

Glutathione S-Transferase M1 and T1 (GSTM1 and GSTT1) 

 

The GSTM1 and GSTT1 genotypes were determined using a co-amplification 

polymerase chain reaction approach, with the GSTM4 gene, which is never deleted, 

as the internal control to distinguish the null genotypes from aborted polymerase 

chain reaction. The primers sequences and PCR conditions were: 

 

 for the GSTM1 amplification: 

forward 5’-CGC CAT CTT GTG CTA CAT TGC CCG-3’ 

reverse 5’-TTC TGG ATT GTA GCA GAT CA-3’ 

First cycle 

denaturing  94° 5 min 

35 cycles 

denaturing  94° 1 min 

annealing  52° 1 min 

elongation  72° 1 min 

Last cycle 

elongation  72° 10 min 
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 for the GSTT1 amplification: 

forward 5’- TTC CTT ACT GGT CCT CAC ATC TC -3’ 

reverse 5’- TCA CCG GAT CAT GGC CAG CA -3’ 

First cycle 

denaturing  94° 5 min 

35 cycles 

denaturing  94° 1 min 

annealing  56° 1 min 

elongation  72° 1 min 

Last cycle 

elongation  72° 10 min 

 

 for the GSTM4 amplification: 

forward 5’-CGC CAT CTT GTG CTA CAT TGC CCG-3’ 

reverse 5’-ATC TTC TCC TCT TCT GTC TC-3’ 
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Agarose gel electrophoresis 

PCR reaction was appears in the 1.5% agarose gel, stained with ethidium bromide 10 

mg/ml at final concentration of 0.3%. We have loaded the wells of the gel with 10 µl 

of PCR product with 3 µl of “loading” buffer (L.B.: 0.25% bromphenol blue, 0.25% 

cyanol xylene, 15% glycerol) and a DNA marker of 100 bp (PRIME). The 

electrophoresis occurred at 100 V in TBE 1X buffer (Tris-base 4 mM, 0.9 M boric 

acid, 50 mM EDTA, pH 8). The internal standard fragments amplified from the 

GSTM4 gene was 157 bp. A 230-bp fragment was amplified for the GSTM1 gene, 

and a 480-bp fragment was obtained for the GSTT1 gene. The absence of amplified 

products was consistent with the null genotypes (Fig. 4). 

 

Fig. 4: GST electrophoresis. 
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Glutathione S-Transferase P1 (GSTP1) Ile105Val polymorphism 

 

A PCR-restriction fragment length polymorphism method was used to determine the 

allele distribution of the GSTP1 Ile105Val polymorphism. The primers sequences 

were: 

forward 5’-ACC CCA GGG CTC TAT GGG AA -3’ 

reverse 5’-TGA GGG CAC AAG AAG CCC CT-3’ 

 

The PCR condition involved: 

First cycle 

denaturing  94° 5 min 

32 cycles 

denaturing  94° 30 s 

annealing  64° 50 s 

elongation  72° 50 s 

Last cycle 

elongation  72° 10 min. 

The 176-bp amplified GSTP1 gene fragment was subjected to restriction digestion in 

a 15-µl reaction volume containing 7.5 µl of PCR product, 100 mmol/l of NaCl, 50 

mmol/l of Tris-HCl, pH 7.9, 10 mmol/l of MgCl2, 1 mmol/l dithiothreitol, and 5 U of 

BsmAI enzyme at 55° overnight.  
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Polyacrylamide gel electrophoresis 

 

The digested PCR products were separated by electrophoresis, occurred at 200 V, 

using polyacrylamide gel (size: 10.1 cm x 9.7 cm, 1.0 mm thickness) at 8% 

(acrylamide stock solution 20%; 19:1 acrylamide:bisacrilamide), TBE 1X (Tris-base 

4 mM, 0.9 M boric acid, 50 mM EDTA, pH 8), TEMED 0.13% and APS 0.1%. We 

have loaded the wells of the gel with 15 µl of digestion product with 4 µl of 

“loading” buffer (L.B.: 0.25% bromphenol blue, 0.25% cyanol xylene, 15% glycerol) 

and a DNA marker of 20 bp (PRIME). The polyacrylamide gel was stained, though 

immersion, with a solution composed with 40 µl of ethidium bromide 10 mg/ml and 

100 ml TBE 1X, for 30 minutes at final concentration of 2.1%. The genotype was 

determined by analysis of the bands on the gel as follow: homozygous wild-type for 

isoleucine (II), one band (176 bp); homozygous mutated for valine (VV), two bands 

(91 and 85 bp); and heterozygous (IV), three bands (176, 91, and 85 bp) as shown in 

Fig. 5. 

 

Fig.5: Electrophoresis gel for GSTP1 gene 
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ISL1 rs1017 polymorphism (ISL1) 

 

A PCR-restriction fragment length polymorphism method was used to determine the 

allele distribution of the rs1017 polymorphism. The primer sequences, were designed 

using the Primer3 program (http://primer3.sourceforge.net/): 

forward 5’-CCT TCA GGA AGG TGG AGC TG-3’ 

reverse 5’-CGC TTG TGG CAA AAT AGA GG-3’. 

PCR conditions were as follow: 

 

First cycle 

denaturing  94° 5 min 

35 cycles 

denaturing  94° 30 s 

annealing  56° 30 s 

elongation  72° 30 s 

Last cycle 

elongation  72° 7 min. 

 

The 248-pb amplified ISL1 gene fragment was subjected to restriction digestion in a 

9-µl reaction volume containing 4 µl of PCR product, 100 mmol/l of NaCl, 50 

mmol/l of Tris-HCl (pH 7.9), 10 mmol/l of MgCl2, 1 mmol/l dithiothreitol, and 2.5 

U of DraI enzyme at 37° overnight.  
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Agarose gel electrophoresis 

 

The digested PCR products were separated by electrophoresis using 1.5% agarose 

gel, stained with ethidium bromide 10 mg/ml at final concentration of 0.3%. We 

have loaded the wells of the gel with 5 µl of PCR product with 2 µl of “loading” 

buffer (L.B.: 0.25% bromphenol blue, 0.25% cyanol xylene, 15% glycerol) and a 

DNA marker of 100 bp (PRIME). The electrophoresis occurred at 100 V in TBE 1X 

buffer (Tris-base 4 mM, 0.9 M boric acid, 50 mM EDTA, pH 8). A representative gel 

is shown in Fig. 6. The genotype was determined by analysis of the bands on the gel: 

homozygous wild-type for adenine (AA), one band (156 bp); homozygous mutated 

for thymine (TT), one band (134 bp); and heterozygous (AT), two bands (156 and 

134 bp). 

 

Fig. 6:Electrophoresis gel for ISL1 gene. 
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Statistical analysis 

 

Statistical analyses of the data were conducted using the StatView statistical 

package, version 5.0.1 (Abacus Concepts, Berkeley, California). Data are expressed 

as the mean ± SD. For statistical analysis, all determinants were dichotomized except 

for the age variable. Smokers were classified as individuals who smoked at least 

three cigarettes for day at the time of the conception, ex-smokers as those who 

stopped smoking at least 6 months before inclusion in the study, and nonsmokers as 

person who never smoked. Smokers also were divided into medium smokers (3-14 

cigarettes a day) and heavy smokers (≥ 15 cigarettes a day). For consumption 

frequency of alcoholic drinks per day (beer, wine, liquor) and nondrinkers as those 

who drank less than three drinks for day. Given the relatively small number of 

exposed mothers in any particular environmental or occupational category, the 

statistical analysis for toxicant exposure included both environmental and 

occupational exposure to X-rays, chemicals, anesthetics, industrial cleaning agents 

and solvents, exhaust and welding fumes, paint/varnish/thinner, asbestos, heavy 

metals and pesticides. The differences between the mean values of two continuous 

variables were evaluated using the unpaired Student t test. The differences in non 

continuous variables and genotype distribution were tested using chi-square analysis. 

Unconditional logistic regression analysis was used to estimate the odds ratios (ORs) 

and 95% confidence intervals (CIs) for the association between CHD and parental 

exposure. The ORs were also adjusted for potential confounding factors. A 2-tailed p 

value <0.05 was chosen as the level of significance. 
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RESULTS 

 

Parental exposures analysis 

 

We used a prospective and paired case-control study design (1:1). Data obtained 

from questionnaires showed that the mothers of patients with CHD had a 

significantly lower age than the controls (p=0.01) but no significant differences 

between the two groups were found for paternal characteristics. 

The CHD cases had a significantly lower birth weight (p=0.01) compared to the 

control children and the children with CHD were also more often conceived with 

artificial fertilization (p=0.05). In table 1 are summarized the specific occupational 

and professional risk factors for CHD. 
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Table 1: Occupational/environmental exposure among CHD and control parents 

Variable CHD parents 
Control 

parents 
p value 

Maternal occupational exposures    0.004 

Risk factor (n) 28 (15.5%) 11 (6.1%)  

Paint/ varnish/thinner/solvents  9 0  

X-rays (hospital workers) 4 2  

Cleaning agents and solvents 4 1  

Industrial chemicals and solvents  4 1  

Hair dyes 2 2  

Textile dye 2 0  

Chemical  laboratory exposure 1 1  

Asbestos 1 0  

Pesticides 1 0  

Anesthetic gas 0 4  

Paternal occupationale exposures 60 (33.3) 41 (22.8) 0.03 
Risk factor (n)    

Paint/ varnish/thinner/solvents (shoe 

factory) 

14 4  

Cement dust  15 8  

Industrial chemicals and solvents  11 6  

Hair dyes 1 1  

Cleaning agents and solvents 1 1  

X-rays (hospital workers) 1 4  

Textile dye 1 0  

Exhaust and welding fumes 2 3  

Chemical  laboratory exposure 1 -0  

Asbestos 6 1  

Heavy metals 4 5  

Pesticides 3 1  

Anesthetic gas 0 7  

Maternal environmental exposures 45 (25.0) 25(13.9) 0.001 

Risk factor (n)    

Waste sites 9 0  

Thermal power plant 8 1  

Industrial pollution 9 5  

Electromagnetic field 4 0  

Environmental pollution 3 3  

X-rays (radiotherapy; Chernobyl) 2 0  

Asbestos 1 1  

Pesticide sites 5 0  

Drugs  4 15  

Paternal environmental exposures 40 (22.2) 12 (6.7) <0.0001 

Risk factor, n    

Waste sites 9 0  

Thermal power plant 9 0  

Industrial pollution 8 5  

Electromagnetic field 3 0  

Environmental pollution 3 0  

Asbestos 0 1  

Pesticide sites 5 0  

Drugs  3 6  
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The parental exposure to environmental factors and CHD risk is listed in Table 2.  

 

Table 2: Parental exposure to environmental risk factors and CHD risk 

 

Variable 

 

CHD 

parents 

(n=360) 

Control 

parents 

(n=360) 

OR 

(C.I. 95%) 
p  

Active smoking (positive) 

Mother 

Father 

 

50 (27.8) 

81 (45.0) 

 

45 (25.0) 

65  (36.1) 

 

1.2 (0.7-1.8) 

1.7 (1.1-2.6) 

 

0.6 

0.02 

Diagnostic x-ray exposure (positive) 

Mother 

Father 

 

49 (27.2) 

45 (25.0) 

 

38 (21.1) 

37 (20.6) 

 

1.3 (0.8-2.2) 

1.3 (0.8-2.1) 

 

0.2 

0.3 

Heavy drinking (positive) 

Mother 

Father 

 

1 (0.6) 

7 (3.9) 

 

1(0.6) 

7 (3.9) 

 

1.0 (0.1-16) 

1.0 (0.3-2.9) 

 

0.99 

0.99 

Occupational/environmental exposure (positive) 

Mother  

Father 

 

70 (38.9) 

88 (48.9) 

 

34 (18.9) 

49 (27.2) 

 

2.6 (1.6-4.2) 

2.5 (1.6-3.8) 

 

<0.0001 

<0.0001 

 

Maternal smoking was not significantly associated with an increased risk of CHD 

(OR 1.2, 95% CI 0.7 to 1.8) but the fathers who were smoking showed an increased 

risk of CHD in their offspring (OR 1.7, 95% CI 1.1 to 2.6, p=0.02), especially fathers 

who were heavy smokers (≥ 15 cigarettes/day) had an high risk of having children 

with CHD (Figure 7). Conversely, parental alcohol use, the existence of a chronic 

disease or a disease in the first trimester of pregnancy and the exposure to diagnostic 

radiographs did not show to influence CHD risk.  
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Figure 7: Parental smoking and CHD risk. 
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Both maternal (OR 2.6, 95% CI 1.6 to 4.2, p<0.0001) and paternal (OR 2.5, 95% CI 

1.6 to 3.8, p<0.0001) occupational/environmental exposure to toxicants increased the 

risk of CHD. Therefore, the exposure of both parents to toxicants is associated to 

significant additive risk (OR 4.5, 95% CI 2.5 to 8.3, p<0.0001) of CHD in the 

offspring (Fig.8). 

 

Fig.8: Interactive effect between maternal and paternal exposures on CHD risk. 
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Moreover, on multivariate analysis, a father’s heavy smoking (OR 1.9, 95% CI 1.1 to 

3.3) and maternal exposure (OR 2.1, 95% CI 1.2 to 3.6) and paternal exposure (OR 

1.8, 95% CI 1.1 to 3.0) to toxicants were the main determinants of CHD risk. 

 

 

Gene-environment interactions analysis 

 

In a case-only approach, we genotyped 180 children with CHD for GST 

polymorphisms, considering their association to parental exposure. A case-only 

design was chosen because it is considered the most powerful method to study gene-

gene and gene-environment interaction in disease etiology (Gauderman, 2002) 

The frequency of GSTM1 null genotype, in our population, was 57.5%, and the 

frequency of the GSTT1 null genotype was 16.7%. We did not detect an interactive 

effect of GSTM1 or GSTT1 null genotypes and maternal and paternal exposures 

(Table 3). 
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Table 3: Gene-environment interactions for combination of glutathione S-transferase 

(GST) genes and parental exposure. 

Positive parental exposure 
GSTM1 

Present         Absent 
OR (CI 95%) 

p 

Value 

Mother 

Active Smoking 

Negative 

Positive 

Diagnostic x-ray exposure  

Negative 

Positive 

Other toxicant exposures  

Negative 

Positive 

 

Father 

Active Smoking 

Negative 

Positive 

Diagnostic x-ray exposure  

Negative 

Positive 

Other toxicant exposures  

Negative 

Positive 

 

 

54                     61 

19                     31 

 

61                     70 

17                     32 

 

52                     58 

26                     44 

 

 

 

34                     45 

36                     45 

 

60                     75 

18                     27 

 

45                     47 

33                     55 

 

 

1.0 

1.4 (0.7-2.9) 

 

1.0 

1.6 (0.8-3.2) 

 

1.0 

1.5 (0.8-2.9) 

 

 

 

1.0 

1.0 (0.5-1.8) 

 

1.0 

1.2 (0.6-2.4) 

 

1.0 

1.6 (0.9-2.9) 

0.3 

 

 

0.1 

 

 

0.2 

 

 

 

 

0.8 

 

 

0.6 

 

 

0.1 

 

Positive parental exposure 
GSTT1 

Present         Absent  OR (CI 95%) 
p 

Value 

Mother 

Active Smoking 

Negative 

Positive 

Diagnostic x-ray exposure 

Negative 

Positive 

Other toxicant exposures 

Negative 

Positive 

 

Father 

Active Smoking 

Negative 

Positive 

Diagnostic x-ray exposure 

Negative 

Positive 

Other toxicant exposures 

Negative 

Positive 

 

 

93                     22 

45                      5 

 

109                   22 

41                     8 

 

96                     14 

54                     16 

 

 

 

63                     16 

69                     12 

 

109                   26 

26                     4 

 

81                     11 

69                     19 

 

 

1.0 

0.5 (0.2-1.3) 

 

1.0 

1.0 (0.4-2.3) 

 

1.0 

2.0 (0.9-4.5) 

 

 

 

1.0 

0.7 (0.3-1.4) 

 

1.0 

0.4 (0.1-1.2) 

 

1.0 

2.0 (0.9-4.5) 

 

0.1 

 

 

0.9 

 

 

0.08 

 

 

 

 

0.4 

 

 

0.1 

 

 

0.09 
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However, the risk of CHD tended to be greater in children carrying the GSTM1 and 

GSTT1 null genotypes who had parents exposed to toxicants. 

A significant interaction was found for the combined null GSTs and both maternal 

(OR 3.6, 95% CI 1.1 to 11.2, p=0.03) and paternal (OR 3.3, 95% CI 1.0 to 10.8, 

p=0.03) exposure to toxicants.  

Finally, children with the combined null GST genotype had a greater risk than 

children carrying wild-type GST genes when both parents were exposed (Figure 9).  
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Fig.9: ORs stratified by children’s GST genes and (A) maternal, (B) paternal, and (C) 

parental occupational/environmental exposure to toxicants. 
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Glutathione S-Transferase P1 (GSTP1) 

 

Gene-environment interaction analysis 

 

In order to investigate the role of GSTP1 Ile105Val and CHD risk, we used a paired 

case-control study design (1:1). The frequency of GSTP1 Ile105Val in both CHD 

cases and control subjects satisfied the Hardy-Weinberg equilibrium and was 

comparable with that described in the Caucasian population.  

The genotype distribution was not significantly different between the patients and the 

control subjects (p=0.9), as shown in table 4.  

 

 

Tab. 4: Genotype distribution of GSTP1 polymorphism. 

GSTP1 

polymorphism 

Case  

Population 

n(%) 

Control 

Population 

n (%) 

p value 

Ile/Ile 

Ile/Val 

Val/Val 

109(57) 

66(35) 

15(8) 

110(58) 

65(34) 

15(8) 

0.9 
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Moreover, we found no association between GSTP1 Ile105Val polymorphism in 

children and maternal exposure. Indeed, no significant gene-environment interactions 

were observed (Table 5). Logistic regression did not show an increased risk for CHD 

in the presence of positive maternal exposure and GSTP1 polymorphism. 

 

 

Table 5: Gene-environment interactions for GSTP1 genes and maternal exposure. 

 
 

Maternal exposures 
GSTP1 controls (n) 

Ile/Ile      Ile/Val      Val/Val 
p 

GSTP1 cases (n) 

Ile/Ile     Ile/Val      Val/Val 
p 

 

Active Smoking 

No 

Yes 

Occupational exposures 

No 

Yes 

Environmental exposures 

No 

Yes 

 

 

69            38             8 

41            27             7 

 

100            58            13 

10              7              2 

 

96            50             13 

14            15               2 

 

 

0.7 

 

 

0.8 

 

 

0.1 

 

 

68           40            11 

40           26              5 

 

89           56            13 

43           25              5 

 

83           50            12 

26           16              3 

 

 

0.6 

 

 

0.8 

 

 

0.9 
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ISL1 rs1017 polymorphism (ISL1) 

 

Genetic analysis 

 

A case-control study design was also used to investigate the association between 

ISL1 and CHD. The observed genotype frequency was in agreement with Hardy-

Weinberg equilibrium.  

No significant difference between the case and control groups was found in term of 

genotype and allele distribution, as shown in table 6.  

At logistic analysis, the rs1017 AT genotype and the mutated TT genotype were not 

associated with the risk of CHD (OR 1.0, 95% CI 0.7 to 1.3, p=0.8; OR 1.1, 95% CI 

0.7 to 1.7, p=0.6 respectively). Moreover there was no appreciable difference 

between CHD risk and the presence of T allele (OR 1.0, 95% CI 0.7 to 1.5, p=0.7). 

 

Tab.6: Main effects of ISL1 rs1017 on CHD risk in the case-control study. 

Genotypes 
No. (%) cases 

(n=309) 

No. (%) controls 

(n=500) 
OR (CI%95) p-Value 

 

rs1017 

AA 

AT 

TT 

AT + TT 

Allele 

A 

T 

 

 

142 (46) 

130 (42) 

37 (12) 

167 (54) 

 

414 (67) 

204 (33) 

 

 

229 (46) 

204 (41) 

67 (13) 

271 (54) 

 

662 (66) 

338 (34) 

 

 

1.0  

1.0 (0.7-1.3) 

1.1 (0.7-1.7) 

1.1(0.7-1.5) 

 

1.0 

1.2 (0.7-1.7) 

 

 

 

0.8 

0.6 

0.7 

 

 

0.6 

 

 



39 
 

Furthermore, when we compared the ISL1 rs1017 genotype distribution among the 

different groups of patients and controls, no significant difference was also observed 

(Table 7).  

 

Table 7: ISL1 rs1017 genotype distribution in different groups of patients and controls. 

Genotypes 

No. (%) 

CHDs 

(n=200) 

No. (%) 

BAV 

(n=109) 

No. (%) 

pediatric controls 

(n=300) 

No. (%) 

Adult controls 

(n=200) 

rs1017 

No. (%) genotypes 

AA 

AT 

TT 

T allele frequency  

 

 

93 (46) 

82 (41) 

25 (13) 

0.33  

 

 

49 (45) 

48 (44) 

12 (11) 

0.33  

 

 

144 (48) 

114 (38) 

42 (14) 

0.33 

 

 

85 (43) 

90 (45) 

25 (13) 

0.35 
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Finally, we evaluated the influence of polymorphism on CHD risk also stratifying the 

population for sex and CHD classification, but no differences in the various 

subgroups were found (table 8). 

 

Table  8: Stratified analysis and ISL1 rs1017 polymorphism. 

 

Variables OR (95% CI) p-Value 

 

Overall 

 

Sex 

   Male 

   Female 

 

CHD classification 

   Bicuspid Aortic Valve 

   Complex CHD 

   Tetralogy of Fallot 

   Septation defects 

   Patent ductus arteriosus 

   Aortic coarctation 

   Other CHDs 

 

1.1 (0.7-1.5) 

 

 

0.8 (0.5-1.3) 

0.9 (0.7-1.3) 

 

 

1.0 (0.7-1.6) 

0.9 (0.6-1.4) 

1.0 (0.6-1.8) 

1.3 (0.7-2.4) 

0.9 (0.3-2.7) 

0.7 (0.3-2.4) 

1.5 (0.4-6.0) 

 

0.7 

 

 

0.4 

0.8 

 

 

0.9 

0.6 

0.9 

0.5 

0.9 

0.7 

0.6 
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DISCUSSION 

 

Our research project shows the importance of cumulative effect of genetic and 

environmental risk factors in the etiology of CHD. For the first time, we have 

demonstrated that GSTM1 and GSTT1 polymorphisms mediate the risk of CHD in 

the presence of a positive history of parental exposure to toxicants. Conversely, 

GSTP1 Ile105Val polymorphism showed no association with the maternal toxicant 

exposure and the risk to develop a CHD. Moreover, ISL1 rs1017 polymorphism was 

not associated with an increased risk to develop CHDs. Our data underline the 

fundamental role of gene-environment interactions in the pathogenesis of congenital 

heart disease. 

 

 

Parental exposures analysis   

 

Environmental factors potentially harmful in the aetiology of CHDs are unknown. 

The best available information comes from the Baltimore-Washington Infant Study 

(BWIS), conducted in the Baltimore-Washington area between 1981 and 1989 and 

the Finnish study conducted by the National Public Health Institute (in Helsinki) in 

cases and controls born during 1982 to 1984 (Källén, 1999; Malik et al., 2008). 

Several other studies investigated the association between occupational hazards, 

including the exposure of chemicals, and specific phenotypes of congenital 

malformation (Thulstrup and Bonde 2006; Snijder et al., 2012). Some of these 

studies found indication for effects of chemical on fetal development but the 

evidence remains equivocal.  
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The maternal environmental risk factor known to influence the incidence of CHD are 

rubella, pre-gestational diabetes and exposure to teratogens, such as thalidomide, 

retinoic acid and indomethacin, and exposure to chemicals at work (Øyen et al., 

2000). 

In particular, maternal occupation exposures to solvent-containing products, mineral 

oil products, dyes, lacquers, paints and pesticides have been associated with an 

increased risk for CHD (Loffredo 2000; Gilboa et al., 2012). 

A number of studies have also investigated maternal cigarettes smoking and 

congenital heart disease, providing controversial results, probably owing to 

variations in the method, disease categorization, sample size, or confounding bias  

(Ferencz et al, 1997; Källén et al., 1999; Woods et al., 2001; Kuciene and Dulskiene, 

2008; Patel et al., 2012). An analysis of the BWIS data identified a possible dose-

response relationship between the number of cigarettes smoked and non-syndromic 

atrio-ventricular septal defects (Ferencz et al, 1997; Alverson et al. 2011).  

In a population-based case-control study of 3,067 infants with non-syndromic CHD 

and 3,947 infants without birth defects, the association was stronger for mothers who 

reported heavier tobacco consumption ( ≥25 cigarettes/day) during pregnancy (Malik 

et al., 2008). This dose-effect relation was confirmed in another recent studies of 

children with CHD and maternal smoking exposure (Krapels et al. 2006; Patel et al., 

2012). 

Few studies have evaluated the effect of paternal exposure to environmental factors 

in the preconception period. Specifically, paternal exposures to lifestyle substances 

(Marijuana), paint stripping and ionizing radiation exposure have been associated 

with certain malformations in the BWIS (Correa-Villasenor et al, 1993; Ewing et al., 

1997). An association between parental smoking, particularly when both parents 



43 
 

were smokers, and the risk of conotruncal heart defects, including D-transposition of 

the great arteries, tetralogy of Fallot, double outlet right ventricle and truncus 

arteriosus has also been reported (Wasserman et al. 1996). A very recent study found 

that several occupations were associated with an increased prevalence of various 

birth defects categories (Desrosiers et al., 2012). Moreover, another study found a 

more than fivefold increase in risk mortality and deaths due to congenital 

malformation, especially for cardiac defects, for paternal occupational exposures, 

possibly to organic solvents during preconception period (Sung et al., 2009). In 

addition, recent studies have revealed that paternal smoking and occupational 

exposure, are risk factors for congenital defects, such as orofacial, anorectal 

malformations and CHDs (Krapels et al., 2006; van Rooij et al.,2010; Snijder et al., 

2012) 
 
supporting the existing data on the great vulnerability of the male reproductive 

system to environmental exposures. At present, societal concern is growing about the 

particular sensitivity of the male germ line to genetic transmissible effects, (Cordier, 

2008; Gianicolo et al., 2010) that might play a crucial role in the origin of congenital 

defects in general, and in particular CHD (Kuehl and Loffredo, 2005). It is has been 

suggested that male exposure may exert a teratogenic effect through toxicant 

compounds adsorbed to sperm and transmitted to a woman in the ejaculate (Chapin 

et al., 2004). The contaminant is absorbed by the woman, where it might reach and 

adversely affect a current pregnancy and, perhaps, remain in the woman’s body to 

influence future pregnancies (Gianicolo et al., 2010). In contrast, toxicant 

compounds may act in human seminal fluid as endocrine disrupting agents causing 

direct germ line DNA damage or epigenetic changes (Cordier, 2008; Gianicolo et al., 

2010). Teratogenic, carcinogenic, and endocrine disrupting agents, such as pesticide 

residues, heavy metals organic solvents (benzene, toluene, and xylene), nicotine, 
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aromatic hydrocarbons and precursors of mutagenic nitrosamines, have all been 

detected in human seminal fluid (Hales and Robair, 2001; Cordier, 2008; Gianicolo 

et al., 2010). Recent studies also showed that these environmental toxicants can 

induce oxidative DNA damage, mutations and chromosomal aberrations, such as 

DNA strand breaks and aneuploidy, in human seminal fluid (Hales and Robair, 2001; 

Cordier, 2008; Gianicolo et al., 2010). Therefore, it is plausible that exposure to 

toxicant agents of both parents during the preconceptional period and 'in utero' 

during pregnancy, might have a pivotal role in the pathogenesis of CHDs affecting 

genome and the so-called 'epigenome' (Gianicolo et al., 2010).  

 

 

Gene-environmental interactions    

 

It is increasing the evidence that people have different susceptibility to develop a 

disease induced by toxic agents (Kuehl and Loffredo, 2005; Shi et al., 2008). 

Specifically, the inheritance of particular genotypes for metabolizing systems and 

DNA repair pathways, might modulate the effect, leading to varying susceptibility to 

the congenital malformations of toxicants (Kuehl and Loffredo, 2005; Shi et al., 

2008). The toxicity of xenobiotics for embryonic tissues depends on the 

biotransformation process during which reactive products are formed (phase I) and 

detoxified (phase II). Several enzymes (and their gene families) are involved in this 

process including glutathione transferases. In particular, the GSTs are the 

polymorphic super-gene family of detoxification enzymes, that are involved in 

metabolism of numerous toxins and provide critical defense against xenobiotics (Bolt 

and Their, 2006).  



45 
 

GSTM1 and GSTT1 are the most extensively studied genes in the GST gene 

superfamily. There has been some, albeit contradictory, evidence of their enzymatic 

expression during the early stages of embryonic and fetal development in most 

tissues (Raijmakers et al., 2001; Shi et al., 2007). For example, GSTM1, appears to 

be expressed in the fetus early in gestation (Raijmakers et al., 2001), while the 

GSTT1 enzyme has been shown to be expressed only in craniofacial structures during 

fetal life (Shi et al., 2007). The polymorphism in GSTM1 and GSTT1 gene loci is 

caused by a deletion which results in the absence of enzyme, especially in 

individuals with null genotypes. Deletion of the GSTM1 and GSTT1 genes, resulting 

in loss of functional activity, has been reported in approximately 50 and 20% of the 

white population, respectively, which might predispose to greater health effects from 

toxic xenobiotics (Bolt and Their, 2007). Previous studies reported that deletion in 

the GSTM1 and GSTT1 genes might contribute to the development of congenital 

malformations, such as oral cleft defects, hypospadias and cardiac congenital defects  

(Shi et al., 2008; van der Zanden et al., 2012). In particular, an elevated relative risk 

of cleft palate in infants with the GSTT1 null genotype has been detected and whose 

mothers were exposed to certain occupational chemicals (Shi et al., 2007).  

 

 

Glutathione S-Transferase P (GSTP1) 

 

In this research project, the genotype distribution of the GSTP1 Ile105Val 

polymorphism was not significantly different between the patients and control 

subjects. Moreover, no adverse effect of GSTP1 Ile105Val polymorphism in the 

presence of maternal exposure was observed.  
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Studies show that GSTP1 is responsible for the detoxification of benzo(a)pyrene diol 

epoxide (Robertson et al., 1986). The presence of Ile105Val variant diminishes its 

enzyme activity (Ali-Osman et al., 1997; Watson et al., 1998) impairing the 

excretion of toxicants. Hayes and Strange have reported a significant association of 

valine allele with susceptibility to the development of certain tumors, including 

bladder, breast, lung, and multiple myeloma (Hayes and Strange, 2000). Cancer 

research has also found suggestive interaction between the presence of this 

polymorphism and risk of oral and bladder cancer, especially among smokers (Soya 

et al., 2007) but the results are contradictory (López-Cima et al., 2012). In addition, 

the Val105 allele also is reported to increase the risk of asthma and susceptibility to 

the effects of ozone on breathing difficulties among children with asthma (Romieu et 

al., 2006). These findings suggest that variable GSTP1 expression may be an 

important determinant of susceptibility to environmental diseases.  

GSTP1 gene is highly expressed early in fetal life and appears to be the predominant 

GST present in the human placenta (Ahmad et al., 1990; Beckett et al., 1990; 

Raijmakers et al., 2001). A recent study showed a significant association between 

GSTP1 Ile105Val polymorphism and Hirschsprung disease, a common congenital 

intestinal defects (Gao et al., 2011). Conversely, studies on esophageal atresia, 

orofacial clefts and congenital heart defects have found no association between the 

Ile105Val variant and the disease (Ramirez et al., 2007; Filonzi et al., 2010). 

Recently, it has been suggested that the loss of expression of the gene GSTP1 is 

caused by promoter hypermethylation in several types of cancer, such as prostate and 

breast cancer (Millar et al., 2000Zhang et al., 2005). The loss of GSTP1 leads to 

elevated levels of electrophilic intermediates, resulting in increased DNA damage 

and mutations (Lee et al., 1994). 
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ISL1 rs1017 polymorphism (ISL1)    

 

The formation of the three major cell types of the heart-cardiomyocytes, smooth 

muscle, and endothelial cell lineages-has been largely ascribed to a set of non-

overlapping embryonic precursor derived from distinct origin. Several signaling 

molecules, included bone morphogenetic proteins and fibroblast growth factors, are 

required to initiate the cardiomyogenic program. Subsequently, a unique 

combinatorial subset of transcriptional factors such as GATA, HAND, and TBX 

interact to generate different cardiac cells types (Kelly and Buckingham, 2002). 

Several studies revealed that single gene mutations in different cardiac TFs could be 

responsible for inherited and sporadic forms of CHDs (Hatcher et al., 2003; 

Pulignani et al., 2011). The LIM homeodomain transcription factor ISL1 is critically 

involved in embryonic cardiogenesis and is a specific marker for a distinct 

population of undifferentiated cardiac progenitor cells that give rise to the cardiac 

segments in secondary heart fielding. 

ISL1 function is required for these progenitors contributing to the proliferation, 

survival, and migration of cardiac progenitors into the forming heart (Bu et al., 2009; 

Kang et al., 2009). Its absence is associated with ablation of the entire second heart 

field, and ISL1+ progenitor cells have been shown to form essential components of 

the heart, such as the atria, ventricles, coronary arteries, and the conduction system 

(Cai et al., 2003). Animal experimental studies have shown that both the deficiency 

and the mis-expression of ISL1 might cause deep developmental defects, growth 

retardation and death during embryogenesis (at approximately embryonic day [ED] 

10.5), thus supporting the importance of a correct regulation of ISL1 gene expression 

during the fetal life (Ahlgren et al., 1997; Brade et al., 2007; Kappen and Salbaum, 
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2009; Golzio et al., 2012). Histological analysis of mutant hearts from murine fetuses 

(ED 9.0-9.5) showed that homozygous ISL1 mutants had serious cardiac phenotypes 

characterized by a severe decrease in tissue mass characterized by loss of some 

segments (Cai et al., 2003). In addition, ISL1-deficient hearts fail to undergo a 

correct looping morphogenesis and show a common atrium and an uni-ventricular 

chamber (Cai et al., 2003). A very recent study describes a new gain-of-function of 

p.Asn252Ser variant in the human ISL1 gene, which could potentially lead to greater 

activation of downstream targets involved in cardiac development, dilation, and 

hypertrophy (Friedrich et al., 2013). Stevens et al recently showed that two different 

ISL1 haplotypes contributed to the risk of CHD in the white and black/African-

American populations (Stevens et al., 2010). In particular, two specific 

polymorphisms, rs1017 and rs3762977, were associated with cardiac congenital 

defects. The rs1017 SNP (located in 3’UTR) increased the risk of CHD in the United 

States white population but not in black/African American populations, whereas the 

rs3762977 SNP (located in 5’UTR) contributed to the risk of CHDs in black/African-

American population but not in the white population. Conversely, a more recent 

article showed that ISL1 common variant rs1017 did not play a crucial role in 

conferring susceptibility to sporadic CHD in the Chinese population.  

Our results are in line with Xue et al., underling the importance of additional studies 

to better define the association between the genetic variants in ISL1 gene and CHD 

risk. 
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CONCLUSIONS 

 

Our result showed that paternal smoking and exposure to toxicants for both parents, 

affects the risk of children with CHD and the polymorphisms in GSTM and GSTT1 

genes can modify a person’s risk of toxicant exposure-induced disease. On the 

contrary, we did not find any association between the presence of polymorphism in 

GSTP1 gene and the effect of positive maternal exposure to toxicants, on the risk for 

CHD. Similarly, we found no association between ISL1 rs1017 polymorphism and 

increased risk to develop CHD. 

In conclusion, our findings support the notion that cardiac development, regulated by 

a complex mechanism that involves the role of many different genes, is largely 

influenced by environmental factors.  

Furthermore, understanding the biologic impact of gene-environmental interactions 

may provide a key insight into the prevention of these congenital malformations in 

future generations. Understanding the genetic basis and the molecular mechanisms of 

CHD may allow the identification of family members at risk as well as to identify 

new possible therapeutic targets and appropriate preventive strategies because 

environmental factors can be modified in contrast to genetic factors. 

Further research based on so-called "omics" technologies, such as transcriptomic, 

proteomic, metabolomic, exposomic) are fundamental to improve the knowledge of 

the genetic defects involved in the development of CHD, and to better understand the 

complex interactions between genes and environment. 
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Abstract: Cigarette smoking is a powerful human germ cell mutagen and teratogen. Congenital heart defects (CHD) are the most preva-
lent of all birth defects and leading cause of death in the first year of life. The purpose of this article is to review the epidemiology of the 

impact of cigarette smoking on CHD risk as well as to discuss the potential biological mechanisms of smoking–mediated abnormal car-
diac development. Although epidemiological studies of association between parental smoking and CHD are limited, biological evidence 

supports the concept that cigarette smoking may substantially contribute to the aetiology of CHD through induction of either male and 
female germ-cell mutation or interference with epigenetic pathways. Further research is needed to better define the relationship between 

parental smoking and the risk of heart defects as well as to assess parental–fetal gene-smoking interactions.  

Keywords: Congenital heart defects, parental smoking, pathogenesis. 

INTRODUCTION 

 Congenital heart defects (CHDs), defined as “a gross structural 
abnormality of the hearth or intrathoracic great vessels that is actu-
ally or potentially of functional significance” [1], are the most 
prevalent of all birth defects and a leading cause of death in the first 
year of life [2]. The incidence -not the “true incidence” that would 
need to include occurrences among spontaneous abortions [3]- of 
moderate and severe forms of CHD is about 6/1,000 live births, 
19/1,000 live births if the potentially serious bicuspid aortic valve is 
included. Moreover, the incidence of all forms increases to 
75/1,000 live births if tiny muscular ventricular septal defects pre-
sent at birth and other trivial lesions are included [4]. 

 Over the past decade, experiments in several model systems 
have led to the identification of numerous genes and molecular 
events required for normal heart development [5-8]. Heart forma-
tion is a complex process that is highly conserved among verte-
brates and is controlled by a network of evolutionarily conserved 
cardiac transcription factors (TFs) that regulate each other’s expres-
sion in order to stabilize and reinforce the cardiac gene program 
[7,8]. CHDs are due to an abnormal development of the heart dur-
ing the embryogenesis and the fetal life, between the second and the 
ninth week of gestation. Generally, CHDs occur on a sporadic and 
did not have a familial history of the disease [9]. 

 The proportion
 
of cases of CHD that are potentially attributable 

to environment is currently unknown. Attributable risk calculation 
suggests

 
that the fraction of cases due to identifiable and

 
potentially 

modifiable factors may be 30% for some
 
types of defects [10].  

 Currently, it is believed that environmental risk factors for CHD 
could dominate in the aetiology of CHD, but knowledge of such 
factors is limited [9,11]. 

 Definitive environmental risk factors include maternal rubella 
infection, pregestational diabetes and exposure to teratogens, such 
as thalidomide, retinoic acid and indomethacin [11].  

 On the contrary, information available regarding paternal envi-
ronmental exposure as risk factor for CHD is very limited [11]. 
However, there is ample evidence of male-mediated developmental 
toxicity in experimental models, and some evidence of transgenera-
tional effects, showing a particular sensitivity of the male germ line 
to these transmissible effects [12]. Cigarette smoking is clearly the 
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human germ cell mutagen
 
and teratogen with the greatest overall 

adverse impact on fetal development [13-15]. Tobacco smoke is 
known to be toxic to humans, and it is generally considered as the 
most extreme example

 
of a human systemic mutagen [13]. It con-

tains over 4,000 chemicals, many of which are genotoxic and pos-
sible carcinogens, including a complex mixture of over 4000 com-
pounds such as nicotine, carbon monoxide and polycyclic aromatic 
hydrocarbons [16]. 

 The aim of this paper is to review the epidemiology of the im-
pact of cigarette smoking on CHD risk, as well as to discuss the 
potential biological mechanisms of smoking–mediated abnormal 
cardiac development. 

SMOKING AND CHD: EPIDEMIOLOGICAL STUDIES 

 As already pointed out by other authors [3], the epidemiology 
of CHD is best known from case-control studies in spite of their 
retrospective, non-randomized nature which limits the conclusions 
that can be extracted from them. 

 Several studies reported associations between parental cigarette 
smoking and CHD, but there is little consensus on the real risk. In 
Wasserman et al. [17], for all conotruncal heart defects (including 
D-transposition of the great arteries, tetralogy of Fallot, double 
outlet right ventricle, truncus arteriosus) relatively elevated risks 
were observed for both maternal and paternal smoking when evalu-
ated separately (Table 1). Both parents smoking increases the risk 
up to 1.9 (95% CI: 1.2-3.1) and 2.5 (95% CI: 1.3-4.8), respectively. 
Furthermore, risk of tetralogy of Fallot was observed by the authors 
for involuntary maternal smoke exposures among women who did 
not smoke in the period from one month before through three 
months after conception. Paternal smoking showed associations in 
the absence of maternal smoking for both limb reduction defects 
(OR=2.1; 95%CI: 1.3-3.6) and amniotic band (OR=3.0; 95% CI: 
1.3-6.9).  

 In the Baltimore-Washington Infant Study (BWIS), cigarette 
smoking in early pregnancy was associated in a dose-dependent 
manner with transposition of the great arteries, with ventricular 
septal defects (VSDs) and with pulmonic valve stenosis [18]. The 
effects were observed in possibly susceptible subgroups, such as 
older mothers and those with a history of spontaneous abortion. 

 Among infants with Down syndrome, Torfs and Christianson 
have reported associations of maternal smoking during the first 
trimester of pregnancy with a cardiac defect (OR=2.0; 95% CI: 1.2-
3.2). [19]. An analogous relative increase in risk was observed for 
atrioventricular (AV) canal. For atrial septal defect/patent foramen 



2    Current Pharmaceutical Design, 2010, Vol. 16, No. 00 Gianicolo et al. 

ovale (ASD/PFO), the OR was lower; for tetralogy of Fallot it was 
higher. 

 Källen [20] did not find any association for the total of heart 
malformations (OR= 1.07; 95% CI: 0.98-1.17), but mixed results in 
specific groups or phenotypes analysis (Table 1). 

 Woods and Raju in a retrospective large cohort (N=18,016) of 
live births showed that maternal smoking during pregnancy was 
associated with cardiovascular system abnormalities [21]. 

 Recently, Malik et al. reported, that maternal smoking during 
pregnancy man associated with septal right sided obstructive de-
fects in a population based case-control study of 3,067 infant with 
nonsyndromic CHD and 3,947 infancts without birth defects [22]. 

 Further research is, however, needed to determine whether there 
is a relationship between maternal smoking and risk of heart defects 
based on large population-based studies using more standardized 
case ascertainment and classification methods [11]. 

Table 1. Reported Exposures with a Risk for Specific Cardiovascular Malformations 

Study, Year Kind of Cardiovascular Malformations Mother/Father Smoker OR (CI 95%) 

 Conotruncal heart defects (a) Both smokers 1.9 (1.2-3.1) 

 d-transposition of the great arteries Both smokers 2.5 (1.3-4.8) 

Wasserman et al., 1996 Tetralogy of Fallot Maternal involuntary smoke exposure at work (b) 1.9 (1.3-6.6) 

 Limb reduction defects Father smoker 2.1 (1.3-6.6) 

 Amniotic band Father smoker 3.0 (1.3-6.9) 

Ewing et al., 1997 Isolated membranous ventricular septal 

defects (VSD) 

Father – marijuana use(c) 1.4 (1.1-1.8) 

 Transposition of the great arteries  Mother smoker 1.3 (1.0-1.7) 

 All truncus anomalies  Mother smoker 1.2 (1.0-1.5) 

 Atrial septal defects Mother smoker 1.6 (1.0-2.6) 

Källen, 1999 Registered in MBR only  Mother smoker 1.3 (1.0-1.6) 

 All PDA (full term)  Mother smoker 1.3 (1.1-1.6) 

 All heart conditions (PDA included)  Mother smoker 1.1 (1.0-1.2) 

 Grouped cardiac defects (d) Mother smoking 2.0 (1.2-3.2) 

 Atrioventricular canal  Mother smoking 2.3 (1.2-4.5) 

Torfs and Christianson, 1999  Tetralogy of Fallot  Mother smoking 4.6 (1.2-17.0) 

 Atrial septal defects without ventricular 

septal defect  

Mother smoking 2.2 (1.1-4.3) 

Woods S and Raju, 2001 Cardiovascular system congenital anoma-

lies 

Mother smoking 1.6 (1.1–2.2) 

 Right ventricular outflow tract obstruc-

tions 

Mother heavy smoker ( 25 cigarettes per day)  2.4 (1.2-4.5) 

 Pulmonary valve stenosis Mother heavy smoker ( 25 cigarettes per day) 2.3 (1.1-4.8) 

  Mother light smoker ( 14  cigarettes per day) 1.4 (1.2-1.8) 

 Septal defects Mother medium smoker (15-24 cigarettes per day) 1.5 (1.1-2.0) 

Malik et al., 2008  Mother heavy smoker ( 25 cigarettes per day) 2.1 (1.2-3.5) 

 Ventricular septal defects Mother light smoker ( 14  cigarettes per day) 1.3 (1.0-1.7)  

  Mother light smoker ( 14  cigarettes per day) 2.0 (1.5-2.8)  

 Atrial septal defects Mother medium smoker (15-24 cigarettes per day) 1.8 (1.1-3.0) 

 Atrioventricular septal defects Mother medium smoker (15-24 cigarettes per day) 2.2 (1.0-4.6)  

(a) Includes d-transposition of the great arteries, tetralogy of Fallot, double outlet right ventricle, truncus arteriosus 

(b) Includes only women who did not smoke cigarettes in the period from 1 month before through 3 months after conception 

(c) Authors recommend extreme caution in the interpretation of these results.  

(d) Among infants with Down Syndrome 
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 At the present time, there is growing concern that paternal fac-
tors may play a role in the origin of congenital defects in general 
and of CHD [11]. However, few studies have been conducted to 
evaluate the role of paternal exposures in the origin of CHD. 

 Paternal exposures to lifestyle substances (Marijuana) were also 
associated with certain malformations in the BWIS, particularly, 
membranous VSD [23]. 

 Savitz et al. identified paternal cigarette smoking, alcohol in-
take, and older age on the risk of congenital cardiac anomalies, 
using data from 1959 to 1966 of Kaiser Health Plan members who 
participated in the Child Health and Development Study [24].  

 Although epidemiological studies of association between paren-
tal smoking and CHD are limited, biological evidence supports the 
concept that cigarette smoking may substantially contribute to the 
aetiology of CHD. 

MOLECULAR MECHANISMS IN CHD AND SMOKING–

MEDIATED BIOLOGICAL EFFECTS 

 Over the past years, human genetic studies have identified that 
several syndromic and familial cases of CHD are caused by single-
gene mutations in cardiac TFs that regulate specific events in heart 
development, such as ventricular septation or outflow tract mor-
phogenesis [7,8]. 

 Although germline mutations have also been shown to be in-
volved in cases of sporadic CHD, the frequency is low ranging 
from 0 to about 3% [6]. 

 Therefore, the fundamental etiology of more common “spo-
radic” form of CHD remains unknown [25]. Recently, some studies 
have also provided evidence that somatic mutations and mosaicism 
in cardiac TF genes were present in the diseased heart tissues of 
patients, but absent in unaffected heart tissue of the same patients 

[26,27]. Somatic mosaicism refers to the condition in which a muta-
tion arises after fertilization such that only a subset of cells or tis-
sues harbors the defects, underlines the potential importance of 
environmental factors in determining genetic damage. Furthermore, 
accumulating evidence than also strongly suggested that alterations 
of the epigenetic programming may play an equally important role 
in generating differences in gene expression in the absence of DNA 
sequence variation, affecting cardiovascular development, espe-
cially in response to environmental toxicant exposure [28-31]. 

 The most likely scenario is that the exposure to environmental 
toxicants, such as smoking, of both parents during the pre-
conceptional period and 'in utero' during the pregnancy may cause 
CHD affecting genome and the so-called 'epigenome' (Fig. 1).  

 It is plausible that smoking may exert a teratogenic effect 
through tobacco exposure of the mother or via direct toxic exposure 
of the seminal fluid, and spermatogenesis, thereby inducing geno-
toxic effects. There are many constituents of tobacco and tobacco 
smoke that are carcinogens, teratogenic or fetotoxic agents in labo-
ratory animals. 

 Indeed, both spermatozoa and the oocytes can be vulnerable to 
DNA damage from the exposure to tobacco smoke [13,32]. The 
proportion of diploid oocytes in the ovary increases with the num-
ber of cigarettes smoked per day [33], and smoking in pregnant 
women is associated with an increased risk of trisomy 21 offspring 
[34]. 

 Possible mechanisms of compromised oocyte quality include 
the presence of toxins derived from tobacco smoke in follicular 
fluid. The follicular fluid concentrations of the heavy metal cad-
mium [13], a known ovarian toxin, are higher in smokers than in 
nonsmokers. Women exposed to passive smoke in the home had 
also detectable levels of cotinine, a major metabolite of nicotine, in 
follicular fluid [13]. Moreover, the period of rapid embryonic and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Potential smoking–mediated biological effects from pre-conceptional and teratogenic exposures. 
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fetal development during pregnancy is associated with increased 
sensitivity to environmental factors, including cigarette smoking. 

 During this period, complex and rapid change is normal, from 
the molecular level through all the biochemical and physical proc-
esses that determine the course of development. Cell division, mi-
gration, differentiation, and apoptosis all must occur in the correct 
sequence and spatial orientation, coordinated through a large num-
ber of control and signaling systems.  

 Nicotine and carbon monoxide both rapidly crosses the pla-
centa, with chronic exposure, levels of either or both in the fetal 
compartment exceed those in the maternal compartment [15].  

 A significant higher level of micronuclei (a result of chromo-
somal damage) has been reported in the cord blood from newborns 
of smoking mothers compared to non smokers [35]. 

 Maternal smoking of 10 or more cigarettes per
 
day for 10 or 

more years, including during pregnancy, is associated
 
with in-

creased chromosomal instability in amniocytes, expressed
 
as an 

increase of structural chromosomal abnormalities and chromosomal
 

lesions, which is not influenced by maternal age [36]. 

 Exposure to cigarette smoke may cause epigenetic changes 
without changing the DNA

 
sequence, leading to subtle changes in 

gene expression, resulting in an elevated predisposition to congeni-
tal anomalies [37]. 

 Paternal exposures to tobacco smoke that cause germline DNA 
or chromatin damage and may affect consequently offspring health 
are well documented in animal model [38].  

 Seminal fluid of smokers contains nicotine, its metabolites, 
aromatic hydrocarbons, and precursors of mutagenic nitrosamines 
[39-42]. 

 It has been suggested that these toxicant compounds can be 
adsorbed to sperm and be transmitted to a woman in the ejaculation 

(Fig. 2). The contaminant is absorbed by the female, where it may 
reach and adversely affect a current pregnancy and, perhaps, remain 
in the woman’s body to influence future pregnancies [43]. On the 
other hand, several evidences suggest that cigarette smoke constitu-
ents and their DNA-reactive metabolites gene react directly with 
spermatozoa [44,45]. 

 In mice, an increased incidence of mutations was documented 
in spermatogonial cells of animals exposed to tobacco smoke [38]. 
Data also suggested that mutations accumulate with extended expo-
sure [38]. 

 Increased levels of major form of oxidative DNA damage, 8-
hydroxydexyguanosine (8-OH-dG), are also present in spermatozoa 
of smokers of 20 cigarettes a day, compared with non smokers 
[45,46], and in dose-related association with the concentrations of 
cotinine in seminal plasma [47]. 

 Importantly, paternal smoking habit has also been associated 
with an increased rate of DNA adducts in embryos from smokers 
compared to nonsmokers, indicating transmission of modified DNA 
originating from parental smoking [48]. 

 However, it is now clear that people have different susceptibil-
ity to the effects of toxic agents exposure, and some individuals are 
more susceptible to the adverse effects of tobacco exposure than 
others [49]. Inheritance of particular genotypes for metabolizing 
systems and DNA repair pathways may modulate the effect leading 
to varying susceptibility to the congenital malformations of ciga-
rette smoke [50]. 

Studies of gene-smoking interaction may be a promising avenue for 
future research on risk factors for CHD, as has been the case in 
other malformations, such as oral cleft defects [50]. 

 Therefore, these evidences support the concept that cigarette 
smoking may substantially contribute to the etiology of CHD 
through induction of germ-cell mutation or interference with epige-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic pathways of sperm-mediated effects on congenital risk. 
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netic pathways. In this scenario, parental–fetal polymorphisms in 
environmental response genes can modify a person’s risk for smok-
ing exposure-disease (Fig. 3).  

CONCLUSION  

 Despite the presence of known mutagens and toxicant in ciga-
rette

 
smoke, there is currently no clear evidence to show that expo-

sure to cigarette smoke, can result in heritable genetic
 
mutation and 

increase the risk of CHD.  

 Further research is needed to better understand the epidemiol-
ogical impact of tobacco-related on cardiac development, as well as 
to obtain advance knowledge in disease-causing mechanisms re-
lated to smoking exposure. Exploring CHD-smoking effect may 
also provide an excellent model in order to better understand the 
role of environmental factors to CHD, especially aimed at studying 
the role of paternal exposures on CHD risk. 

 A better understanding of the molecular basis of CHD as well 
as the examination of the influence of gene-environment interac-
tions is expected to facilitate the prevention of CHD and as to im-
prove genetic counselling and care of affected individuals and their 
families. 
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Fig. (3). The smoking exposure–disease model: parental and fetal polymorphisms can modify the individual risk for disease. 
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Maternal and Paternal Environmental Risk Factors, Metabolizing
GSTM1 and GSTT1 Polymorphisms, and Congenital Heart Disease

Monica Cresci, MSca, Ilenia Foffa, MSc, PhDa, Lamia Ait-Ali, MD, PhDa, Silvia Pulignani, MSca,
Emilio Antonio Luca Gianicolo, MSc, PhDa, Nicoletta Botto, MSc, PhDb,

Eugenio Picano, MD, PhDa, and Maria Grazia Andreassi, MSc, PhDa,*

Congenital heart defects (CHDs) are the most prevalent of all birth malformations arising
from the complex interplay of environmental exposures and genes. Modifiable environ-
mental risk factors are still largely unknown, especially for paternal exposure. The aim of
the present study was to examine the association between the environmental exposures of
both parents and CHD risk and to explore the modification effect of metabolizing gene
polymorphisms in children who lack the genetic capacity to produce the glutathione
S-transferase (GST) GSTM1 and GSTT1 enzymes. A total of 330 parents of a child with
CHD and 330 parents of a child without any congenital malformations were compared in
terms of lifestyle habits and toxicant exposure. GST gene polymorphisms were investigated
in 180 patients with CHD (104 males, age 4.9 � 5.8 years). Paternal smoking (>15
cigarettes/day) was significantly associated with CHD risk (odds ratio [OR] 2.1, 95%
confidence interval [CI] 1.3 to 3.5, p � 0.002). Both maternal (OR 2.6, 95% CI 1.6 to 4.2,
p <0.0001) and paternal (OR 2.5, 95% CI 1.6 to 3.8, p <0.0001) occupational/environ-
mental exposures increased the risk of CHD. Also, a significant additive risk (OR 4.5, 95%
CI 2.5 to 8.3, p <0.0001) was found when both parents were exposed to toxicants. Both
maternal (OR 3.6, 95% CI 1.1 to 11.2, p � 0.03) and paternal (OR 3.3, 95% CI 1.0 to 10.8,
p � 0.03) exposure to toxicants increased the CHD risk in children who carried the
combined null GST genotypes. The effect for the combined null GST genotypes was also
stronger (OR 6.5, 95% CI 1.5 to 28.0) when both parents were exposed. In conclusion,
paternal smoking and exposure to toxicants for both parents affect the risk of children with
CHD. Polymorphisms in GST genes can modify a person’s risk of toxicant exposure-
induced disease. © 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;108:

1625–1631)
Congenital heart defects (CHDs) are due to an abnormal
development of the heart during embryogenesis and fetal
life, between the second and ninth week of gestation.1,2

Generally, CHDs occur on a sporadic basis and do not have
a familial history.3,4 Most CHDs are thought to have a

ultifactorial origin, with an interplay of genetic and envi-
onmental effect. It has recently been suggested that envi-
onmental risk factors could dominate in the etiology of
HD3; however, knowledge of such factors is very limited,

especially for paternal exposure.4

Furthermore, the effect of environmental factors might
be modified by the genes responsible for the activation and
detoxification of toxicant agents, contributing to an in-
creased resistance (or sensitivity) to cardiac teratogenesis.2,5

In particular, metabolizing genetic polymorphisms of the
glutathione S-transferase (GST) enzymes, which provide
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critical defense against numerous toxins, might modulate
the effects of the toxic agent.5,6

In the present study, we used a nested case-control de-
sign to examine the association between the environmental
risk factors of both parents and CHD risk and to explore the
modification effect of genetic susceptibility in children who
lacked the genetic capacity to produce the GSTM1 and
GSTT1 enzymes.

Methods

A prospective and paired case-control study (1:1) was
conducted from October 2008 to April 2010 by inviting 360
parents of a child with isolated CHD and 360 parents of a
child without any congenital malformations to participate.
The study subjects were the parents of pediatric patients
who had been admitted to our pediatric cardiac center and
the parents of a healthy child who had been recruited in
collaboration with the maternity and pediatric units. The
matching criteria for the controls were the absence of a
congenital malformation and age compatible with the ob-
served age range of the patients. The exclusion criteria were
mothers who reported inconsistent use of B vitamin and
folate supplements in the periconception period; and an
inability to obtain complete information about the occupa-

tional, demographic, and lifestyle data for both parents. The
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present study was conducted with informed consent of ev-
ery participant, and the local ethical research committee
approved it.

Both case and control parents completed a structured
questionnaire on the demographic, preconceptional, and

Table 1
Baseline characteristics of the study population

Variable Cases Controls p Value

Mother
Age (years) 30 � 5.4 31 � 4.8 0.01
History of chronic illness 21 (12%) 26 (14%) 0.4
Spontaneous miscarriage 34 (19%) 40 (22%) 0.4
ather
Age (years) 33 � 6.0 34 � 5.1 0.3
History of chronic illness 29 (16%) 33 (18%) 0.6
ffspring
Male gender 104 (58%) 105 (58%) 0.9
Birth weight (g) 3,178 � 630 3,340 � 550 0.01
Artificial fertilization 6 (3.3%) 1 (0.6%) 0.05

able 2
arental exposure to environmental risk factors and CHD risk

Variable CHD
Parents

(n � 360)

Control
Parents

(n � 360)

OR
(95% CI)

p Value

Active smoking
(positive)

Mother 50 (27.8%) 45 (25.0%) 1.2 (0.7–1.8) 0.6
Father 81 (45.0%) 65 (36.1%) 1.7 (1.1–2.6) 0.02

Diagnostic x-ray
exposure
(positive)

Mother 49 (27.2%) 38 (21.1%) 1.3 (0.8–2.2) 0.2
Father 45 (25.0%) 37 (20.6%) 1.3 (0.8–2.1) 0.3

Heavy drinking
(positive)

Mother 1 (0.6%) 1 (0.6%) 1.0 (0.1–16) 0.99
Father 7 (3.9%) 7 (3.9%) 1.0 (0.3–2.9) 0.99

Occupational/
environmental
exposure
(positive)

Mother 70 (38.9%) 34 (18.9%) 2.6 (1.6–4.2) �0.0001
Father 88 (48.9%) 49 (27.2%) 2.5 (1.6–3.8) �0.0001

Figure 1. Parental smoking and CHD risk.
lifestyle exposures. We derived environmental and occupa-
able 3
ccupational/environmental exposure among congenital heart defect

CHD) and control parents

Variable CHD
Parents

Control
Parents

p Value

aternal occupational
exposure

0.004

Risk factor (n) 28 (15.5%) 11 (6.1%)
Paint/varnish/thinner/solvents 9 0
X-rays (hospital workers) 4 2
Cleaning agents and solvents 4 1
Industrial chemicals and

solvents
4 1

Hair dye 2 2
Textile dye 2 0
Chemical laboratory

exposure
1 1

Asbestos 1 0
Pesticides 1 0
Anesthetic gas 0 4

Paternal occupational exposure 0.003
Risk factor (n) 60 (33.3%) 41 (22.8%)
Paint/varnish/thinner/solvents

(shoe factory)
14 4

Cement dust 15 8
Industrial chemicals and

solvents
11 6

Hair dyes 1 1
Cleaning agents and solvents 1 1
X-rays (hospital workers) 1 4
Textile dye 1 0
Exhaust and welding fumes 2 3
Chemical laboratory

exposure
1 0

Asbestos 6 1
Heavy metals 4 5
Pesticides 3 1
Anesthetic gas 0 7

Maternal environmental
exposures

0.01

Risk factor (n) 45 (25.0%) 25 (13.9%)
Waste sites 9 0
Thermal power plant 8 1
Industrial pollution 9 5
Electromagnetic field 4 0
Environmental pollution 3 3
X-rays (radiotherapy;

Chernobyl)
2 0

Asbestos 1 1
Pesticide sites 5 0
Drugs 4 15

Paternal environmental
exposure

�0.0001

Risk factor (n) 40 (22.2%) 12 (6.7%)
Waste sites 9 0
Thermal power plant 9 0
Industrial pollution 8 5
Electromagnetic field 3 0
Environmental pollution 3 0
Asbestos 0 1
Pesticide sites 5 0
Drugs 3 6
tional exposure data from specific questions on potential
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teratogens/mutagens that have been linked to human repro-
ductive impairment, including ionizing radiation, solvents,
pesticides, asbestos, and heavy metals.

The paternal questionnaire carefully evaluated the 3-
month period before conception, according to the duration
of spermatogenesis (about 70 days). The maternal question-
naire covered the period before conception to the end of the
first trimester of pregnancy. The first trimester of pregnancy
was chosen because that it is most critical period for em-
bryogenesis associated with increased sensitivity to envi-
ronmental factors. The maternal questionnaire gathered in-
formation on personal characteristics and lifestyle habits,
health, pregnancy aspects, medication during pregnancy,
occupational, and other potential harmful exposures (e.g.,
diagnostic radiation exposure). The paternal questionnaire
collected data on personal characteristics, health, occu-
pational history, and other potential harmful exposures
(e.g., diagnostic radiation exposure). Parental illness data
included diseases of the thyroid, kidney, liver, gut, stom-
ach, pancreas, gastrointestinal, respiratory, and urinary
disorders.

Using a case-only design, DNA was obtained from 180
patients with CHD (104 males, age 4.9 � 5.8 years). Geno-
typing analysis was performed by our laboratory staff, who
were unaware of the clinical data. Genomic DNA was
extracted from peripheral blood leukocytes. The GSTM1
and GSTT1 genotypes were determined using a co-ampli-
fication polymerase chain reaction approach with the
GSTM4 gene, which is never deleted, as the internal control
to distinguish the null genotypes from aborted polymerase
chain reaction. Primer sequences, annealing temperatures,
and digest conditions were performed according to previ-
ously published protocols.7 The internal standard fragment
mplified from the GSTM4 gene was 157 bp. A 230-bp
ragment was amplified for the GSTM1 gene, and a 480-bp
ragment was obtained for the GSTT1 gene. The absence of
mplified products was consistent with the null genotypes.

For statistical analysis, all determinants were dichoto-
ized, except for the age variables. We considered as smok-

rs those who smoked �3 cigarettes/day at conception;

Figure 2. Interactive effect between maternal and paternal exposures on
CHD risk.
xsmokers were those who had stopped smoking �6 t
onths before study inclusion; and nonsmokers were those
ho had never smoked. The smokers were also divided into
roups according to smoking level: medium smokers (3 to
4 cigarettes/day) and heavy smokers (�15cigarettes/day).
he consumption frequency of alcoholic beverages (beer,
ine, liquor) was classified in drinkers who drank �3 al-

oholic drinks/day (beer, wine, liquor) and nondrinkers,
ho drank �3 drinks/day.
Given the relatively small number of exposed parents in

ny particular environmental and occupational category,
tatistical analysis for toxicant exposure was performed,
ncluding both environmental and occupational exposure to
-rays, chemicals, anesthetics, industrial cleaning agents
nd solvents, exhaust and welding fumes, paint/varnish/

Table 4
Gene–environment interactions for combination of glutathione
S-transferase (GST) genes and parental exposure

Positive Parental Exposure GSTM1 OR (CI 95%) p
Value

Present Absent

Mother
Active smoking 0.3

Negative 54 61 1.0
Positive 19 31 1.4 (0.7–2.9)

Diagnostic x-ray exposure 0.1
Negative 61 70 1.0
Positive 17 32 1.6 (0.8–3.2)

Other toxicant exposures 0.2
Negative 52 58 1.0
Positive 26 44 1.5 (0.8–2.9)

Father
Active smoking 0.8

Negative 34 45 1.0
Positive 36 45 1.0 (0.5–1.8)

Diagnostic x-ray exposure 0.6
Negative 60 75 1.0
Positive 18 27 1.2 (0.6–2.4)

Other toxicant exposures 0.1
Negative 45 47 1.0
Positive 33 55 1.6 (0.9–2.9)

GSTT1
Mother

Active smoking 0.1
Negative 93 22 1.0
Positive 45 5 0.5 (0.2–1.3)

Diagnostic x-ray exposure 0.9
Negative 109 22 1.0
Positive 41 8 1.0 (0.4–2.3)

Other toxicant exposures 0.08
Negative 96 14 1.0
Positive 54 16 2.0 (0.9–4.5)

Father
Active smoking 0.4

Negative 63 16 1.0
Positive 69 12 0.7 (0.3–1.4)

Diagnostic x-ray exposure 0.1
Negative 109 26 1.0
Positive 26 4 0.4 (0.1–1.2)

Other toxicant exposures 0.09
Negative 81 11 1.0
Positive 69 19 2.0 (0.9–4.5)
hinner, asbestos, heavy metals, and pesticides.
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Statistical analyses of the data were conducted using the
StatView statistical package, version 5.0.1 (Abacus Con-
cepts, Berkeley, California). Data are expressed as the
mean � SD. Differences between the mean values of 2
continuous variables were evaluated using the unpaired Stu-
dent t test. Differences in noncontinuous variables and ge-
notype distribution were tested using chi-square analysis.
Unconditional logistic regression analysis was used to esti-
mate the odds ratios (ORs) and 95% confidence intervals
(CIs) for the association between CHD and parental expo-
sure. The ORs were also adjusted for potential confounding
factors. A 2-tailed p value �0.05 was chosen as the level of
significance. In the genetic study, we used a case-only study
design because it is considered the most powerful method to
study gene–gene and gene–environment interaction in dis-
ease etiology, achieving greater statistical power than a
case-control study of the same size.8 With independence
ssumed between the exposure and the genotype, case-only
Rs for the relevant interactions and 95% CIs were esti-
ated by using the presence or absence of the GST variant

s the dependent dichotomous variable in the logistic re-
ression models that tested for an association with parental

Figure 3. ORs stratified by children’s GST genes and (A) maternal, (B
xposure. The study was powered to allow an interaction of
agnitude of 2.3 with �80% power and an error rate of 5%
nder a sample size of 170 only-cases.8

Results

The demographic characteristics of the study population
are listed in Table 1. The mothers of the patients with CHD
had a significantly lower age than the controls (p � 0.01).
No significant differences between the 2 groups were found
for paternal characteristics. The CHD cases had a signifi-
cantly lower birth weight (p � 0.01) compared to the con-
trol children. The children with CHD were also more often
conceived with artificial fertilization (p � 0.05).

The parental exposure to environmental factors and CHD
risk is listed in Table 2. Maternal smoking was not signif-
icantly associated with an increased risk of CHD (OR 1.2,
95% CI 0.7 to 1.8). Fathers who were smokers showed an
increased risk of CHD in their offspring (OR 1.7, 95% CI
1.1 to 2.6, p � 0.02), especially fathers who were heavy
smokers (�15 cigarettes/day) had a high risk of having
children with CHD (Figure 1). Parental alcohol use did not
influence the risk of CHD, and neither did the existence of

al, and (C) parental occupational/environmental exposure to toxicants.
a chronic disease or disease in the first trimester of preg-
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nancy. Exposure to diagnostic radiographs was more fre-
quently seen among the case-parents. Both maternal (OR
2.6, 95% CI 1.6 to 4.2, p �0.0001) and paternal (OR 2.5,
95% CI 1.6 to 3.8, p �0.0001) occupational/environmental
exposure to toxicants increased the risk of CHD. The spe-
cific occupational and professional risk factors for CHD are
listed in Table 3. In addition, the exposure of both parents to
toxicants showed a significant additive risk (OR 4.5, 95%
CI 2.5 to 8.3, p �0.0001) of CHD in the offspring (Figure
2). On multivariate analysis, a father’s heavy smoking (OR
1.9, 95% CI 1.1 to 3.3) and maternal exposure (OR 2.1, 95%
CI 1.2 to 3.6) and paternal exposure (OR 1.8, 95% CI 1.1 to
3.0) to toxicants were the main determinants of CHD risk.
In the case-only study, we considered the association be-
tween GST polymorphisms in children and parental expo-
sure. The frequency of GSTM1 null genotype was 57.7%,
and the frequency of the GSTT1 null genotype was 16.7%.
The genotype distribution was within the range previously
reported for GSTM1 and GSTT1 null genotypes in other
white populations.8–10 We did not detect an interactive
ffect of GSTM1 or GSTT1 null genotypes and active
aternal and paternal smoking (Table 4). The risk of CHD

ended to be greater in children carrying the GSTM1 and
STT1 null genotypes who had parents exposed to toxi-

ants. A significant interaction was found for the combined
ull GSTs and both maternal (OR 3.6, 95% CI 1.1 to 11.2,
� 0.03) and paternal (OR 3.3, 95% CI 1.0 to 10.8, p �

.03) exposure to toxicants (Figure 3). Finally, children
ith the combined null GST genotypes had a greater risk

OR 6.5; 95% CI 1.5 to 28.0) than children carrying wild-
ype GST genes when both parents were exposed (Figure 3).

iscussion

Our study showed that paternal smoking and exposure to
oxicants for both parents affect the risk of children with
HD, supporting the hypothesis of the pivotal influence of

he environmental risk factors for congenital malforma-
ions.9 In addition, our gene-environment analyses sug-

gested that null GSTs genes can modify a person’s risk
of toxicant exposure-induced disease. Few epidemiologic
studies have investigated the association between paren-
tal exposure and CHD risk. The best available informa-
tion comes from the Baltimore-Washington Infant Study
(BWIS), conducted in the Baltimore-Washington area from
1981 to 1989, and the study conducted in Finland by the
National Public Health Institute in Helsinki of cases and
controls born from 1982 to 1984.10,11 The maternal envi-
onmental risk factors known to influence the incidence of
HD include rubella, pregestational diabetes, exposure to

eratogens, such as thalidomide, retinoic acid, and indo-
ethacin, and exposure to chemicals at work.3 In particular,
aternal occupational exposure to solvent-containing prod-

cts, mineral oil products, dyes, lacquers, paints, and pes-
icides has been associated with an increased risk of CHD.2

A number of studies have also investigated maternal ciga-
rette smoking and congenital heart disease, providing con-
troversial results, probably owing to variations in the
method, disease categorization, sample size, or confounding
bias.10,12–14 In the BWIS, cigarette smoking in early preg-

nancy was associated in a dose-dependent manner with a
transposition of the great arteries, ventricular septal defects,
and pulmonary valve stenosis.10 In a population-based case-
control study of 3,067 infants with nonsyndromic CHD and
3,947 infants without birth defects, the association was
stronger for mothers who reported heavier tobacco con-
sumption (�25 cigarettes/day) during pregnancy.15 This

ose– effect relation was confirmed in a recent case–
ontrol study of 157 neonates diagnosed with CHD at the
niversity of Patras Medical School and 208 normal
eonates.16 Few studies have evaluated the effect of

paternal exposure to environmental factors in the precon-
ception period. Specifically, paternal exposures to life-
style substances (marijuana), paint stripping, and ioniz-
ing radiation exposure have been associated with certain
malformations in the BWIS.17,18

An association between parental smoking, particularly
when both parents were smokers, and the risk of conotrun-
cal heart defects, including D-transposition of the great
arteries, tetralogy of Fallot, double outlet right ventricle,
and truncus arteriosus, has also been reported.19 A very
recent study found a more than fivefold increase in risk
mortality and deaths due to congenital malformation, espe-
cially for cardiac defects, for paternal occupational expo-
sures, possibly to organic solvents during preconception.20

In addition, recent studies have revealed that paternal
smoking and occupational exposure are risk factors for
congenital defects, such as orofacial and anorectal malfor-
mations,21,22 supporting the existing data on the great vul-
nerability of the male reproductive system to environmental
exposures.

At present, societal concern is growing about the partic-
ular sensitivity of the male germ line to genetic transmissi-
ble effects9,23 that might play a crucial role in the origin of
congenital defects in general and CHD in particular.5 It is
has been suggested that male exposure might exert a tera-
togenic effect through toxicant compounds adsorbed to the
sperm and transmitted to a woman in the ejaculate. The
contaminant is absorbed by the women, where it might
reach and adversely affect a current pregnancy and, perhaps,
remain in the woman’s body to influence future pregnan-
cies.9 In contrast, toxicant compounds might act in human
eminal fluid as endocrine disrupting agents causing direct
erm line DNA damage or epigenetic changes.9,23 Terato-
enic, carcinogenic, and endocrine disrupting agents, such
s pesticide residues, heavy metal organic solvents (ben-
ene, toluene, and xylene), nicotine, aromatic hydrocarbons,
nd precursors of mutagenic nitrosamines, have all been
etected in human seminal fluid.9,23,24

Recent studies also showed that these environmental
toxicants can induce oxidative DNA damage, mutations,
and chromosomal aberrations, such as DNA strand breaks
and aneuploidy, in human seminal fluid.9,23,24 Therefore, it
is plausible that exposure to toxicant agents of both parents
during the preconceptional period and “in utero” during
pregnancy might have a pivotal role in the pathogenesis of
CHD affecting genome and the so-called epigenome.9 With
egard to malfunctions in the epigenetic mechanisms, our
ndings also support recent evidence that have demon-
trated an increased risk of cardiovascular birth defects

ssociated with in vitro fertilization resulting from epige-
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netic modifications in the early stage of the development of
the embryos produced by in vitro fertilization.25

Actually, evidence is increasing that people have differ-
ent susceptibility to the effects of toxic agents, with some
more susceptible to the adverse effects of environmental
toxicants than others.5,6

Specifically, the inheritance of particular genotypes for
metabolizing systems and DNA repair pathways might
modulate the effect, leading to varying susceptibility to the
congenital malformations of toxicants.5,6

In particular, the GSTs are a polymorph supergene fam-
ily of detoxification enzymes that are involved in the me-
tabolism of numerous toxins and provide critical defense
against drugs and industrial chemicals.26 GSTM1 and
GSTT1 are the most extensively studied genes in the GST
gene superfamily. There has been some, albeit contradic-
tory, evidence of their enzymatic expression during the
early stages of embryonic and fetal development in most
tissues, including the heart.27,28 Deletion of the GSTM1 and
GSTT1 genes, resulting in loss of functional activity, has
been reported in approximately 50% and 20% of the white
population, respectively, which might predispose to greater
health effects from toxic xenobiotics.26 Previous studies
eported that deletion in the GSTM1 and GSTT1 genes
ight contribute to the development of congenital malfor-
ations, such as oral cleft defects.6 In particular, an ele-

ated relative risk of cleft palate in infants with the GSTT1
ull genotype has been detected and whose mothers were
xposed to certain occupational chemicals.28 This is the first

study to shown that GST polymorphism might mediate the
risks of parental exposure to toxicants for CHD, supporting
the need for future research on the gene–environment in-
teractions and CHD risk.2

Some important limitations must be considered when
interpreting the results of our study. First, all the risk factors
studied were self-reported; thus, random misclassification
of exposure and recall bias could not be excluded. Some
variables might be prone to over- and underestimation,
thereby affecting the risk estimates. Regardless, although
recall bias can never be excluded, evidence is emerging that
its role is considered rather small and merely nondifferential
in case-control studies focused on congenital malforma-
tions. Second, no exposure dose or biomarker of exposure
was available. In addition, our study discriminated only
between carriers (GST presence) and noncarriers (GST ab-
sence) and did not investigate a gene dosage effect deter-
mined by copy number variation (from 0 to 2 gene copies
per allele per gene) on the risk of CHD. Finally, an un-
doubted limitation of our study was that the modest size of
our population might have limited some associations be-
tween parental exposure and genetic polymorphisms CHD
risk. It is possible that unknown confounders might have
contributed to the risks we observed. However, some of our
results, especially for paternal exposure, confirm well-
documented effects in animal models,29 and they are sup-
orted by the strong biologic plausibility.
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Abstract The GSTP1 gene, highly expressed early in

fetal life, is the most abundant phase 2 xenobiotic metab-

olism enzyme in a human placenta. Fetal inherited GSTP1

Ile105Val polymorphism may modify the metabolism and

excretion of xenobiotics from fetal tissue and increase the

risk of congenital heart disease (CHD). This study aimed to

analyze the joint effects of GSTP1 genetic polymorphism

(Ile105Val) and maternal environmental exposure on CHD

risk. Within a case-control design, a total of 190 children

with CHD (104 boys age 4 ± 5.6 years) and 190 healthy

children (114 newborn boys) were genotyped for the

GSTP1 Ile105Val polymorphism. Mothers completed a

structured questionnaire on the demographics as well as the

preconceptional and lifestyle exposures. A higher fre-

quency of mothers of children with CHD (38 %) reported a

positive history of exposure to toxicants (occupational and

environmental) than mothers of healthy children (23 %)

(p = 0.0013). Logistic regression analysis showed that

maternal occupational and environmental exposures

increased the risk of CHD (odds ratio, 2.6; 95 % confi-

dence interval, 1.6–4.2; p \ 0.0001). No significant dif-

ferences in Ile105Val genotype frequencies were observed

between the children with CHD and the healthy children

(p = 0.9). Furthermore, case-control analysis showed no

evidence of significant interaction between the maternal

exposures and GSTP1 polymorphism. Maternal exposure to

toxicants increased the risk of children with CHD. How-

ever, fetal GSTP1 Ile105Val polymorphism did not

increase the risk of CHD.

Keywords Congenital heart disease � GSTP1

polymorphism � Maternal exposure � Xenobiotic

metabolism enzymes

Human embryonic development is determined by both

maternal environmental exposure and fetal genetic prop-

erties, which in turn depend on maternal genetic attributes

and behaviors [23]. In fact, fetuses are more sensitive than

adults to the toxicity of many environmental toxicants [26].

In particular, the placenta has many physiologic functions

in addition to the metabolism of xenobiotics [18].

Several studies have shown that maternal exposure is

associated with a variety of adverse pregnancy outcomes

including preterm birth, low birth weight, and birth defects

[4, 6, 13, 14, 23]. Among the birth defects, congenital heart

disease (CHD) is the most common type and the leading

noninfectious cause of death in the first year of life [9, 12].

The impact of maternal exposure on childhood birth

defects risk may be modulated by the presence of poly-

morphisms in genes involved in the detoxification path-

ways. Especially metabolizing genetic polymorphisms of

the glutathione S-transferase (GST) enzymes, which pro-

vide a critical defense against numerous toxins, may
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modulate the effect of the toxic agent [14, 23]. Accord-

ingly, our recent study showed an interactive effect of

GSTM1 or GSTT1 null genotypes on children with CHD

and maternal and paternal exposures [6].

Eight cytosolic GSTs are known to be expressed in

humans: alpha (A), mu (M), pi (P), theta (T), kappa (K),

omega (O), sigma (S), and zeta (Z). Each class consists of

several distinct subclasses, with some overlap in tissue

expression [11].

The GSTP1 gene, highly expressed early in fetal life, is

the most abundant phase 2 xenobiotic metabolism enzyme

in a human placenta [1, 3, 19]. An A to G transition at

nucleotide 313 in exon 5 of the GSTP1 gene, which

replaces isoleucine (Ile) at codon 105 with valine (Val)

within the active site of the enzyme, has been shown to

result in altered enzyme activity [29]. Therefore, fetal

inherited GSTP1 Ile105Val polymorphism may modify the

metabolism and excretion of xenobiotics capable of

crossing the placental barrier from fetal tissue.

This study aimed to determine the prevalence of GSTP1

Ile105Val polymorphism in young patients with CHD and

in a group of healthy children. In addition, we applied a

case-only design to analyze the joint effects of the GSTP1

Ile105Val polymorphism and maternal environmental

exposure on CHD risk.

Materials and Methods

Subjects and Epidemiologic Information

This case-control study included 190 patients (104 boys and 86

girls) with a diagnosis of isolated and nonsyndromic CHD

admitted at our pediatric cardiac center and a control group of

190 newborn healthy children (114 boys and 76 girls) recruited

in collaboration with the maternity and pediatric units.

All the mothers completed a structured questionnaire on

demographics as well as preconceptional and lifestyle

exposures. We derived environmental and occupational

exposure from specific questions on potential teratogens/

mutagens that have been linked to human reproductive

impairment such as ionizing radiation, solvents, pesticides,

asbestos, and heavy metals.

The questionnaire gathered information on personal

characteristics, lifestyle habits, health, pregnancy aspects,

medication during pregnancy, occupational history, and

other potential harmful exposures (e.g., radiation diagnos-

tic exposure). Maternal illness included diseases of the

thyroid, kidney, liver, gut, stomach, pancreas, and heart as

well as gastrointestinal, respiratory, and urinary disorders.

This study was conducted with the informed consent of

every participant and approved by the local Ethical

Research Committee.

GSTP1 Genotyping

We obtained DNA from the CHD patients and the control

children. Genotyping analysis was performed by our lab-

oratory staff, who were unaware of the clinical data.

Genomic DNA was extracted from whole-blood samples,

and a polymerase chain reaction (PCR)-restriction frag-

ment length polymorphism method was used to determine

the allele distribution for GSTP1.

The PCR mixture (50 ll) was prepared containing 50 ng

of DNA, 5 ll of buffer (500 mmol/l KCl/100 mmol/l Tris-

HCl, pH 8.3/15 mmol/l MgCl2), 1 ll of 2.5 mmol/l deox-

ynucleotide triphosphates, and 2.5 ll each of the forward

primer 50-ACC CCA GGG CTC TAT GGG AA-30 and the

reverse primer 50-TGA GGG CAC AAG AAG CCC CT-30

and 1 U of Taq polymerase.

The PCR condition involved denaturing at 94� for

5 min, followed by 32 cycles of denaturing at 94� for 30 s,

annealing at 64� for 50 s, elongation at 72� for 50 s, and

finally incubation at 72� for 10 min to allow a complete

extension of all PCR fragments. The 176-bp amplified

GSTP1 gene fragment was subjected to restriction diges-

tion in a 15-ll reaction volume containing 7.5 ll of PCR

product, 100 mmol/l of NaCl, 50 mmol/l of Tris-HCl, pH

7.9, 10 mmol/l of MgCl2, 1 mmol/l of dithiothreitol, and 5

U of BsmAI at 55� overnight.

The digested PCR products were separated by electro-

phoresis using 8 % polyacrylamide gel and stained with

ethidium bromide (10 mg/ml). The genotype was determined

by analysis of the bands on the gel as follows: homozygous

wild-type for isoleucine (II), one band (176 bp); homozygous

mutated for valine (VV), two bands (91 and 85 bp); and

heterozygous (IV), three bands (176, 91, and 85 bp).

Statistical Analyses

Statistical analyses of the data were conducted with the

Statview statistical package, version 5.0.1 (Abacus Con-

cepts, Berkeley, CA, USA). Data are expressed as

mean ± standard deviation.

For statistical analyses, all determinants were dichoto-

mized except for the age variable. Smokers were classified

as individuals who smoked at least three cigarettes per day

at the time of the conception, ex-smokers as those who

stopped smoking at least 6 months before inclusion in the

study, and nonsmokers as persons who never smoked.

Smokers also were divided into medium smokers (3–14

cigarettes a day) and heavy smokers (C15 cigarettes a day).

For consumption frequency of alcoholic beverages

(beer, wine, liquor), drinkers were classified as those who

drank three or more alcoholic drinks per day (beer, wine,

liquor) and nondrinkers as those who drank less than three

drinks per day.

282 Pediatr Cardiol (2013) 34:281–285

123



Given the relatively small number of exposed mothers in

any particular environmental or occupational category, the

statistical analysis for toxicant exposure included both

environmental and occupational exposure to x-rays,

chemicals, anesthetics, industrial cleaning agents and sol-

vents, exhaust and welding fumes, paint/varnish/thinner,

asbestos, heavy metals, and pesticides.

The differences between the mean values of two contin-

uous variables were evaluated by the unpaired Student’s

t test. The differences in noncontinuous variables and

genotype distribution were tested by chi-square analysis.

Unconditional logistic regression analysis was used to esti-

mate odds ratios (ORs) and 95 % confidence intervals (CIs)

for the association between CHD and maternal exposure.

The ORs also were adjusted for potential confounding

factors. We considered that a sample size of at least 150

subjects per group was sufficient to detect an association

between GSTP1 Ile105Val polymorphism and CHD with a

statistical power (b) of 80 % and a significance value of

0.05 (a) for an OR of 2.0 or higher given an allele fre-

quency of 0.3. In addition, the study was powered to allow

for an interaction with a magnitude of 2.3 having at least

80 % power and an error rate of 5 % under a sample size of

170 case-only [6]. A two-tailed p value lower than 0.05

was chosen as the level of significance.

Results

The demographic details of the study population are sum-

marized in Table 1. The mothers of the patients with CHD

had a significantly lower age at conception than the control

mothers (p = 0.009). The CHD cases had a significantly

lower birth weight (p = 0.01) than the control children.

The maternal exposures to environmental factors are listed

in Table 2.

The analysis of maternal habits showed that 73 mothers

of the children affected by CHD (38 %) had a positive

history for exposure to toxicants (occupational and envi-

ronmental) compared with 44 (23 %) mothers of the con-

trol children (p = 0.0013). No significant differences was

found for maternal smoking habits in the two groups

(p = 0.62). Multivariate logistic regression analysis

showed that the risk for CHD was increased in presence of

occupational/environmental maternal exposure to toxicants

(OR, 2.6; 95 % CI, 1.6–4.2; p \ 0.0001).

The frequency of GSTP1 Ile105Val in both the CHD

cases and the control subjects satisfied the Hardy-Weinberg

equilibrium and was comparable with that previously

observed in Caucasian subjects. The genotypes and variant

allele distributions were not significantly different between

the patients and the control subjects (Table 3). In the case-

control study, we found no association between GSTP1

Ile105Val polymorphism in children and maternal exposure.

No significant gene–environment interactions were

observed (Table 4). Logistic regression did not show an

increased risk for CHD in the presence of positive maternal

exposure and GSTP1 polymorphism.

Discussion

Our study clearly shows that maternal exposure to toxi-

cants affects the risk of children with CHD, supporting the

hypothesis positing a pivotal influence of environmental

Table 1 Baseline characteristics of the study population

Case

children

Control

children

p Value

(n = 190) (n = 190)

n (%) n (%)

Offspring

Male gender 104 (55) 114 (60) 0.2

Age (years ± SD) 4 ± 5.6 At birth \0.0001

Birth weight (g) 3,168 3,317 0.01

Artificial fertilization 5 (2) 2 (1) 0.2

Mother

Age (years ± SD) 30 ± 5.3 32 ± 5.4 0.009

History of chronic

illnesses

21 (11) 20 (10) 0.8

Spontaneous

miscarriages

32 (17) 48 (25) 0.04

Table 2 Maternal exposure to environmental risk factors

CHD

parents

Control

parents

p Value

Occupational/environmental

exposure (yes): n (%)

73 (38) 44 (23) 0.0013

Paint/varnish/thinner/solvents 8 4

X-rays 7 4

Asbestos 2 6

Chemical laboratory exposure 2 3

Cleaning agents and solvents 4 5

Hair dye 2 2

Industrial chemicals 5 1

Pesticides 6 1

Textile dye 2 0

Drugs 4 12

Electromagnetic field 4 0

Environmental pollution 4 3

Waste site 8 0

Industrial pollution 8 3

Thermal power plant 7 0

Active smoking (yes): n (%) 52 (27) 45 (24) 0.6

CHD congenital heart disease
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risk factors on congenital malformations. In contrast, the

genotype distribution of the GSTP1 Ile105Val polymor-

phism was not significantly different between the patients

and the control subjects. Nor were any adverse effects of

GSTP1 Ile105Val polymorphism in the presence of

maternal exposure observed. However, our findings

underscore the fundamental role of maternal exposure in

the pathogenesis of CHD, consistent with previous obser-

vations [6].

Indeed, we also recently demonstrated that the presence

of polymorphisms in GSTM1 and GSTT1 genes modified

an individual’s risk of toxicant exposure-induced CHD. To

our knowledge, no studies in the literature have examined

the effects of fetal GSTP1 Ile105Val polymorphism in

combination with maternal exposures.

Studies show that GSTP1 is responsible for the detoxi-

fication of benzo(a)pyrene diol epoxide [21], and the

presence of Ile105Val variant diminishes its enzyme

activity [2, 27], which in turn may impair the excretion of

toxicants. Several studies have reported a significant

association of valine allele with susceptibility to the

development of certain tumors including bladder, breast,

lung, and multiple myeloma [11]. Cancer researchers also

have found suggestive interaction between the presence of

this polymorphism and the risk of oral and bladder cancer,

especially among smokers [24]. In addition, the Val105

allele also is reported to increase the risk of asthma and

susceptibility to the effects of ozone on breathing diffi-

culties among children with asthma [22].

These findings suggest that variable GSTP1 expression

may be an important determinant of susceptibility to

environmental diseases.

Although the GSTP1 gene is highly expressed early in

fetal life and appears to be the predominant GST present in

the human placenta [1, 3, 19], data on maternal exposure

and the role of GSTP1 polymorphisms in the pathogenesis

of congenital malformation [5, 10, 16, 24, 25] are

insufficient.

A recent study showed a significant association between

GSTP1 Ile105Val polymorphism and Hirschsprung dis-

ease, a common congenital intestinal defect [8]. Con-

versely, studies on esophageal atresia, a life-threatening

congenital condition, and orofacial clefts have found no

association between the Ile105Val variant and the disease

[7, 20].

The current study is one of the first to examine the role

of GSTP1 polymorphism in the etiology of CHD related to

maternal exposure. We found no association between the

presence of this polymorphism and the effect of positive

maternal exposure to toxicants on the risk for congenital

heart disease.

Recently, it has been suggested that the loss of expres-

sion of the gene GSTP1 is caused by promoter hyperme-

thylation in several types of cancer such as prostate and

breast cancer [17, 28]. The loss of GSTP1 leads to elevated

levels of electrophilic intermediates, resulting in increased

DNA damage and mutations [15].

Some important limitations must be considered when

the results of this study are interpreted. First, all risk factors

studied were self-reported, so random misclassification of

exposure and recall bias cannot be excluded. Some vari-

ables may have been prone to over- and underestimation,

thereby affecting the risk estimates. However, although

recall bias can never be excluded, evidence is emerging

that its role is rather small, and almost no differential in

Table 3 Genotype distribution, GSTP1 polymorphism, and risk of

congenital heart disease (CHD)

GSTP1
polymorphism

Case

population

Control

population

p Value

n (%) n (%)

Ile/Ile 109 (57) 110 (58) 0.9

Ile/Val 66 (35) 65 (34)

Val/Val 15 (8) 15 (8)

Table 4 Gene–environment interactions for GSTP1 genes and maternal exposure

Maternal exposures GSTP1 controls (n) p Value GSTP1 cases (n) p Value

Ile/Ile Ile/Val Val/Val Ile/Ile Ile/Val Val/Val

Active smoking

No 69 38 8 0.7 68 40 11 0.6

Yes 41 27 7 40 26 5

Occupational exposures

No 100 58 13 0.8 89 56 13 0.8

Yes 10 7 2 43 25 5

Environmental exposures

No 96 50 13 0.1 83 50 12 0.9

Yes 14 15 2 26 16 3
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case-control studies have focused on congenital malfor-

mations [6]. Second, no exposure dose or biomarkers of

exposure were available. Finally, an undoubted limitation

of our study was the modest size of our population when

we analyzed genotype groups.

Further research is needed to understand better the

epidemiologic impact of toxicant agents on cardiac

development and to investigate gene–environmental inter-

action effects. A better understanding of both genetic and

environmental factors is expected to facilitate the preven-

tion of CHD and to reduce the occurrence of these con-

genital malformations in future generations.
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Abstract Congenital heart defects (CHDs) are the most

prevalent of all birth defects and the leading cause of death

in the first year of life. The molecular causes of most CHDs

remain largely unknown. The LIM homeodomain tran-

scriptor factor ISL1 is a marker for undifferentiated cardiac

progenitor cells that give rise to both the right ventricle and

the inflow and outflow tracts, which are affected by several

cardiovascular malformations. Contradictory findings about

the role of the ISL1 rs1017 single-nucleotide polymorphism

in increasing the risk of CHD have been reported. In this

study, we aimed to investigate whether the ISL1 rs1017

genetic polymorphism conferred susceptibility to CHD in

the white population. In a case–control study design, 309

patients with CHD (197 men [age 21.3 ± 25.2]) and 500

healthy controls (272 men [age 15.7 ± 21.3]) were geno-

typed for the ISL1 rs1017 polymorphism. No significant

difference in the genotype and variant allele distributions

was found between patients and controls. In addition, the

ISL1 rs1017 polymorphism was not associated with the risk

of CHD neither overall (p = 0.7) nor stratifying the popu-

lation by sex and CHD classification. In conclusion, ISL1

common variant rs1017 is not associated with increased

genetic risk of CHD in the white population.

Keywords Congenital heart disease � ISL1 polymorphism �
Common genetic variants � Cardiac transcriptor factors

Introduction

Cardiac development is a complex process controlled by an

evolutionarily conserved network of transcription factors

(TFs). Many nucleotide variants in cardiac TF genes, such

as in GATA4 and in NKX2.5, have been identified in patients

with congenital heart disease (CHD) [15, 16]. Nevertheless,

because of the very low frequency of these mutations in

both familial and sporadic cases of CHD [3], the molecular

causes of different forms of CHDs remain largely unknown.

ISL1 is a LIM homeodomain TF considered the most

important marker of cardiac progenitor cell lineage in the

secondary heart-field differentiation [9, 14, 17]. ISL1 car-

diovascular progenitors give rise to the right ventricle and

inflow and outflow tracts, which are affected by several

cardiovascular malformations, e.g., transposition of the

great vessels, tricuspid atresia, and tetralogy of Fallot [12].

The involvement of ISL1 in the pathogenesis of different

forms of CHD appears evident [4]. In fact, animal exper-

imental models have shown that homozygous mutants for

ISL1 developed a severe cardiac phenotype [12] whereas

mice totally knocked out for this gene were lacking in the

outflow tract, in the right ventricle and in several part of the

atria [5, 13]. Recently, common genetic variants and spe-

cific haplotypes in the ISL1 gene have been found to

contribute to the risk of CHD in the white and black/

African-American populations, thus supporting the com-

mon variant–common disease hypothesis [17]. The aim of

this study was to analyse whether the rs1017 polymorphism

influences the susceptibility of isolated, nonsyndromic

CHD in the white population.
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Methods

Subjects and Data Collection

This study included a total of 309 patients who were diag-

nosed with isolated, nonsyndromic CHD (197 males

[21.3 ± 25.2 years], including 200 pediatric [4 ± 5.6

years] and 109 adult patients [52.5 ± 17.2 years] with

bicuspid aortic valve, BAV) plus a control group of 500

healthy subjects [272 males; 15.7 ± 21.3 years) compris-

ing 300 newborn and 200 adult subjects (39.8 ± 13.7

years). A sample of venous blood was collected from con-

trols, whereas a cord blood sample was obtained from

healthy newborns. This study was conducted with informed

consent of every participant subject/parent and was approved

by the local Ethical Research Committee.

ISL1 Genotyping

Genomic DNA was extracted from whole-blood samples,

and a polymerase chain reaction (PCR)–restriction fragment

length polymorphism method was used to determine the

allele distribution of the rs1017 polymorphism. The PCR

mixture (50 ll) was prepared containing 50 ng DNA, 5 ll

buffer (500 mM KCl/100 mM Tris–HCl [pH 8.3]/15 mM

MgCl2), 1 ll 2.5 mM dNTPs, 2.5 ll each of the forward

primer (50-CTT TCA GGA AGG TGG AGC TG -30) and

reverse primer (50-CGC TTG TGG CAA AAT AGA GG -30),
and 1 U Taq polymerase. Primers were designed using the

Primer3 program (http://primer3.sourceforge.net/). PCR

conditions were as follows: denaturing at 94� for 5 min, then

35 cycles of denaturing at 94� for 30 s, annealing at 56� for

30 s and elongation at 72� for 30 s, and incubation for 7 min

at 72� to allow a complete extension of all PCR fragments.

The 248-bp amplified ISL1 gene fragment was subjected to

restriction digestion in a 9-ll reaction volume containing

4 ll of PCR product, 100 mM NaCl, 50 mM Tris–HCl (pH

7.9), 10 mM MgCl2,1 mM dithiothreitol, and 2.5 U DraI at

37� overnight. The digested PCR products were separated by

electrophoresis using 1.5 % agarose gel. A representative gel

is shown in Fig. 1. The genotype was determined by analysis

of the bands on the gel: homozygous wild-type for adenine

(AA), one band (156 bp); homozygous mutated for thymine

(TT), one band (134 bp); and heterozygous (AT), two bands

(156 and 134 bp).

Statistical Analyses

Statistical analyses of the data were conducted with the

Statview statistical package version 5.0.1 (Abacus Con-

cepts, Berkeley, CA). Data are expressed as mean ± SD.

Differences between the mean value of two continuous

variables were evaluated by unpaired Student t test.

Differences in noncontinuous variables and genotype dis-

tribution were tested by Chi-square analysis. Unconditional

logistic regression analysis was used to estimate odds ratios

(ORs) and 95 % confidence intervals (CIs) for the associ-

ation between CHD and the presence of polymorphism.

ORs were also adjusted for potential confounding factors.

We estimated that our sample size was able to detect a

significant association between ISL1 rs1017 polymorphism

and CHD with a power [80 %, for an OR C2.0 given an

allele frequency of 0.35. A two-tailed p value \ 0.05 was

chosen as the level of significance.

Results

Study Population

Table 1 lists no detectable statistically significant differ-

ences between cases and controls in terms of sex. Of the

309 CHD cases, 109 (35 %) had BAV, 89 (28 %) had

complex CHD, 44 (14 %) had tetralogy of Fallot, 37

(12 %) had septation defect, 14 (5 %) had patent ductus

arteriosus, 9 (3 %) had aortic coarctation, and 7 (3 %) had

other CHD abnormalities.

Effect of the ISL1 rs1017 Variant on CHD

The observed genotype frequency was in agreement with

that expected under the Hardy–Weinberg equilibrium. No

significant difference between the case and control groups

was found in term of genotype and allele distribution

(Table 2). At logistic analysis, the rs1017 AT genotype and

the mutated TT genotype were not associated with the risk

of CHD (OR 1.0, 95 % CI 0.7–1.3 and p = 0.8; OR 1.1,

95 % CI 0.7–1.7, p = 0.6 respectively). There was no

appreciable difference between CHD risk and the presence

of T allele (OR 1.0, 95 % CI 0.7–1.5, p = 0.7). When we

compared the ISL1 rs1017 genotype distribution among the

different groups of patients and controls, no significant

difference was also observed (Table 3). Finally, we

TT TT AA AA AT AT

156   
134   

Fig. 1 Representative 1.5 % agarose gel used to separate by

electrophoresis the digested PCR products. Homozygous wild-type

for AA, one band (156 bp); homozygous mutated for TT, one band

(134 bp); and heterozygous (AT), two bands (156 and 134 bp)
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evaluated the influence of polymorphism on CHD risk also

stratifying the population for sex and CHD classification

(as listed in Table 1), but no differences in the various

subgroups were found (Table 4).

Discussion

The formation of the three major cell types of the heart—

cardiomyocytes, smooth muscle, and endothelial cell lin-

eages—has been largely ascribed to a set of nonoverlap-

ping embryonic precursor derived from distinct origin.

Several signaling molecules, including bone morphoge-

netic proteins and fibroblast growth factors, are required to

initiate the cardiomyogenic program. Subsequently, a

unique combinatorial subset of transcriptional factors, such

as GATA, HAND, and TBX, interact to generate different

cardiac cells types [11]. The LIM homeodomain TF ISL1 is

a specific marker for a distinct population of undifferenti-

ated cardiac progenitor cells that give rise to the cardiac

segments in secondary heart fielding. ISL1 function is

required for these progenitors contributing to the prolifer-

ation, survival, and migration of cardiac progenitors in the

forming heart [4, 9]. Animal experimental studies have

shown that both the deficiency and the misexpression of

ISL1 might cause deep developmental defects, growth

retardation, and death during embryogenesis (at approxi-

mately embryonic day [ED] 10.5), thus supporting the

importance of correct regulation of ISL1 gene expression

during fetal life [1, 2, 7, 10]. Histological analysis of

mutant hearts from murine fetuses (ED 9.0–9.5) showed

that homozygous ISL1 mutants had serious cardiac phe-

notypes characterized by a severe decrease in tissue mass

characterized by loss of some segments [5]. In addition,

ISL1-deficient hearts fail to undergo a correct looping

morphogenesis and show a common atrium and an uni-

ventricular chamber [5].

To date, no ISL1 coding mutations have been identified

in humans, likely because of an embryonic lethal pheno-

type caused by a complete inactivation of this TF [5].

Stevens et al. [17] recently showed that two different ISL1

haplotypes contributed to the risk of CHD in the white and

black/African-American populations. In particular, two

specific polymorphisms, rs1017 and rs3762977, were

associated with cardiac congenital defects. The rs1017 SNP

(located in 30UTR) increased the risk of CHD in the United

Table 1 Baseline characteristics of the study population

Characteristics Cases (n = 309) Controls (n = 500)

No. male sex (%) 197 (63) 272 (55)

Age (years) 21.3 ± 25.5 15.7 ± 21.3

CHD classification

Bicuspid aortic valve 109 (5)

Complex CHD 89 (28)

Tetralogy of Fallot 44 (14)

Septation defects 37 (12)

Patent ductus arteriosus 14 (5)

Aortic coarctation 9 (3)

Other CHD 7 (3)

Table 2 Main effects of ISL1 rs1017 on CHD risk in the case–

control study

Genotypes No. (%) cases

(n = 309)

No. (%) controls

(n = 500)

OR (CI %95) P

rs1017

AA 142 (46) 22 (46) 1.0

AT 130 (42) 204 (41) 1.0 (0.7–1.3) 0.8

TT 37 (12) 67 (13) 1.1 (0.7–1.7) 0.6

AT ? TT 167 (54) 271 (54) 1.1 (0.7–1.5) 0.7

Allele

A 414 (67) 662 (66) 1.0

T 204 (33) 338 (34) 1.2 (0.7–1.7) 0.6

Table 3 ISL1 rs1017 genotype distribution in different groups of

patients and controls

Genotypes No. (%)

CHD

(n = 200)

No. (%)

BAV

(n = 109)

No. (%)

pediatric

controls

(n = 300)

No. (%)

adult

controls

(n = 200)

rs1017

No. (%) genotypes

AA 93 (46) 49 (45) 144 (48) 85 (42)

AT 82 (41) 48 (44) 114 (38) 90 (45)

TT 25 (13) 12 (11) 42 (14) 25 (13)

T allele

frequency

0.33 0.33 0.33 0.35

Table 4 Stratified analysis and ISL1 rs1017 polymorphism

Variables OR (95 % CI) P

Overall 1.1 (0.7–1.5) 0.7

Sex

Male 0.8 (0.5–1.3) 0.4

Female 0.9 (0.7–1.3) 0.8

CHD classification

Bicuspid aortic valve 1.0 (0.7–1.6) 0.9

Complex CHD 0.9 (0.6–1.4) 0.6

Tetralogy of Fallot 1.0 (0.6–1.8) 0.9

Septation defect 1.3 (0.7–2.4) 0.5

Patent ductus arteriosus 0.9 (0.3–2.7) 0.9

Aortic coarctation 0.7 (0.3–2.4) 0.7

Other CHD 1.5 (0.4–6.0) 0.6
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States white population but not in the black/African-

American population, whereas the rs3762977 SNP (located

in 50UTR) contributed to the risk of CHDs in the black/

African-American population but not in the white popula-

tion. Conversely, a more recent article [18] showed that

ISL1 common variant rs1017 did not play a crucial role in

conferring susceptibility to sporadic CHD in the Chinese

population. The investigators ascribed these different

results to multiple factors, including etiologic heterogene-

ity between populations, study design, type of heart

defects, and lack of information on potential effect modi-

fiers in Stevens’ article [17].

In accord with these last findings, we found that this

intronic variant, rs1017, was not associated with CHD risk

in the white population. An undoubted limitation of our

study could be the modest size of the study population,

which made difficult a correct stratification of analysis

according to genotype, sex, and CHD etiology difficult.

However, our results are in agreement with those of Xue

et al., obtained in a large sample, suggesting that the

identification of common variants associated with CHD

risk in a specific, confined population could not to be due to

a common genetic cause increasing the disease suscepti-

bility. In fact, cardiac development is regulated by a

complex mechanism that involves the expression of many

different genes in different times, spaces, and orders and

that is largely influenced by environmental factors [6].

Thus, great attention is necessary when common variants

are ascribed as the cause conferring genetic susceptibility

to CHD. For instance, a major limitation of Stevens’ article

could be that the investigators did not report or consider

precise exclusion and inclusion criteria that would be

necessary when a specific genetic association is found.

Indeed, the potential influences of contaminant factors,

such as the environmental effect, the use of some drugs

(i.e., teratogen elements) by the mother, the presence of

parental disease (i.e., diabetes), which are largely known to

affect cardiac development [8], have not been defined.

In conclusion, we did not find any association between

ISL1 rs1017 and increased risk to develop CHD in the

white population. Further studies, carefully designed to

include the evaluation of more factors involved in the

complex mechanism of cardiogenesis, are needed. Indeed,

only a multifactorial analysis may allow us to better

understand the molecular mechanism causing the cardiac

congenital malformations.
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LETTER TO THE EDITOR
Genetics of congenital heart defects: is it not all in the
DNA?
Wereadwith great interest the paper byWu et al1 on the

genetic analysis of the promoter region of the GATA4

gene in patients with ventricular septal defect (VSD).

The authors provide new important ideas about the

potential role of genetic variants within regulatory

region rather than the codifying sequences that may con-

tribute to the etiology of VSD, the most common type of

congenital heart defect (CHD). In this study, 5 heterozy-

gous sequence variants were found within the promoter

region of GATA4 gene in VSD patients but in none of

the healthy controls. Although these variants do not in-

terrupt the regulatory promoter regions, they seem to sig-

nificantly alter the transcriptional activity of GATA4

gene promoter, which may contribute to the VSD.

In another study published by the same authors,2

functional analysis showed that sequence variants

within promoter regions significantly enhance the tran-

scriptional activities of the NKX2-5 gene, which may

lead to upregulated NKX2-5 gene expression, contrib-

uting to the VSD etiology.2

We believe that these observations underlie that the

causative factors and the molecular mechanisms in-

volved in the CHD etiology still remain largely elusive.

In recent years, several lines of evidence have high-

lighted the importance of GATA4, in association with

a variety of binding partners like NKX2-5, in a specific

transcriptional complex that confer tissue-specific gene

expression during cardiogenesis and that can be altered

during the development of CHD.3 Indeed, mutations

leading to gene haploinsufficiency in key cardiac tran-

scription factors (TFs) are responsible for inherited and

sporadic CHDs.3

Nevertheless, the study of genetic basis of CHDs is

complicated by the fact that a given structural defect

can be caused by more than one gene because TFs
Submitted for publication July 6, 2012; accepted for publication July
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work in a synergic manner. In addition, the frequency

of mutations in TF genes have been shown to be less

than 3%, especially in the sporadic forms of CHD.4,5

These observations suggest that the predisposition to

the disease involves multiple factors, notably for isolated

non-family CHDs, including complex gene interactions,

several signaling pathways, and environmental influ-

ences as well as a combination of these factors.

Furthermore, the hypothesis of somatic mutations has

been also suggested as novel genetic mechanism for

CHDs.6 This theory still remains a controversial scien-

tific matter that needs further investigations.7-9

It is also important to remember that, during cardio-

genesis, there is a cooperative relationship between

tissue-specific TFs and epigenetic variations to specify

cell fate and promote terminal differentiation.

Cytosine methylation at 5’-CpG-3 dinucleotide is the

most common base modification in the eukaryotic ge-

nome that influence gene expression. Generally, CpG is-

lands in the gene promoter are protected from DNA

methylation, whereas CpG sites in gene-coding or non-

coding region are commonly methylated.10 However,

the methylation pattern could be disrupted in diseases,

and methylated CpG islands can be silenced or downre-

gulated.10 Consequently, DNA methylation may be pro-

posed as a potential mechanism involved in CHDs.

Interestingly, histone deacetylases 1 and 2, key regu-

latory enzymes involved in the regulation of gene

expression during development and throughout life,

have mostly been characterized as having a role in car-

diac morphogenesis, growth, and contractility.11 Fur-

thermore, the hearts of mutant mice displayed unusual

morphologic abnormalities of the right ventricular

chamber.11

Another potential mechanism on the basis of CHD is

the microRNA (miRNA) post-transcriptional regulation

that control key genetic programs in cardiovascular biol-

ogy.12 One of the best examples of miRNA regulation in

the heart involves the basic helix-loop-helix TF, Hand2,

and its repression by miR-1 and miR-133a, leading to

VSD.13 Indeed, miRNAs can inhibit translation and/or

promote mRNA degradation depending on its degree

of complementarity with the target.12
59
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Fig 1. Pathogenesis of congenital heart defects. Themost likely scenario is that the etiology of disease involvesmul-

tiple factors, including different genetic loci, environmental influences, epigenetic factors (eg, DNAmethylation or

histone modifications) and miRNA dysfunction and/or a combination of these factors. (Color version of figure is

available online.)
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Finally, there is a recent evidence supporting the idea

that common genetic variants, not necessarily disease-

causing, may contribute to risk of CHD, especially inter-

acting with environmental factors.

Indeed, we recently showed that exposure to toxi-

cants from both parents affect the risk of children

with CHD, supporting a pivotal influence of the envi-

ronmental risk factors in the pathogenesis of congenital

malformations.14,15 In addition, our gene-environment

analyses suggested that specific and common genetic

variants in genes involved in detoxification pathways

can modify a persons risk of toxicant exposure-

induced disease.14,15

In conclusion, many questions still remain open about

the disease. What are the genetic and epigenetic bases of

different forms of CHD? What is the recurrence risk for

parents of a child with CHD?Which is the risk of disease

transmission in grown-up CHD patients? Future studies

and more research in this area are greatly needed to pro-

vide insight into the molecular basis CHD as well as to

answer these questions (Fig 1).

In the near future, it is expected that the power of next

generation sequencing technologies may allow a more

comprehensive analysis of genetic and epigenetic contri-

butions to the pathogenesis of CHD.

Furthermore, understanding the biologic impact of

gene-environmental interactions may provide a key in-

sight into the prevention of these congenital malforma-

tions in future generations. Understanding the genetic

basis and the molecular mechanisms of CHD may allow
the identification of family members at risk as well as to

identify new possible therapeutic targets and appropriate

preventive strategies because environmental factors can

be modified in contrast to genetic factors.

Silvia Pulignani

Monica Cresci

Maria Grazia Andreassi

Institute of Clinical Physiology, CNR
Massa, Italy
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