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Some weak-star ergodic theorems

JOSEPH M. SZUCS

Dedicated to Professor Béla Székefalvi-Nagy on his 70th birthday

0. Introduction. Let M be a von Neumann algebra and let G be a group
of % -automorphisms of M. It is proved in {3] that if the family of G-invariant normal
states is faithful on M (ie., M is G-finite), then for every t€M, the w*-closed
convex hull of {gr: g€G} contains exactly one G-invariant element. In the present
paper we prove the converse of this theorem in the case where M is o-finite and
G is abelian. We present our results in the more general setting of arbitrary Banach
spaces.

1. Results. Throughout this paper B denotes a Banach space and B* its
dual space. We denote by L,.(B*) the space of w*-continuous linear operators
in B*, equipped with the topology of pointwise w*-convergence. Every element
g of L,(B*) isa bounded operator in B* such that there exists a unique bounded
linear operator g, in B for which (g,)*=g. Throughout this paper G will
denote a bounded commutative semigroup G L,,(B*). We shall study the implica-
tions of the following condition:

(U) For every t¢B*, the w*-closed convex hull of the orbit {gt: gcG}
contains a unique G-invariant element, which will be denoted by €.

(The fact that this closed convex hull contains at least one G-invariant element
follows from the Kakutani—Markov fixed point theorem (cf. [2], V. 10. 6), in view
of the w*-compactness of the unit ball of B*.)

Theorem 1. Suppose that condition (U) is satisfied and either B is a separable
Banach space or G is a separable topological subspace of L,.(B*). Then the mapping
t—1% (t€ B*) is a bounded linear projection P acting in B*. We have gP=FPg=P
and P is the limit, in L,.(B%), of a sequence of elements of the convex hull of G.

Theorem 2. Suppose that either B or G is separable. If condition L) is
satisfied and B is weakly complete, then the mapping t—t° (t€ B*) is a w*-continuous

Received April 14, 1982.



390 J. M. Sziics

linear projection P such that gP=Pg=P. The operator P belongs to the sequential
closure, in L,{B%¥), of the convex hull coG of G. Moreover, for every vyccoG
and every w*-neighborhood N of zero there exists v,€coG such that et —1°€ N
for every v€coG and t€B* such that ||t]|=1.

Proposition 1. The hypotheses of Theorem 2 are satisfied if:

(a) B=LYX, S, m), where (X,S,m) is a positive localizable measure space
(then B*=L>=(X, S, m));

(b) G is a bounded commutative semigroup of w*-continuous linear operators in
L=(X, S, m), satisfying condition (U);

(¢) Either LMX, S, m) or G is separable.

Proposition 2. The assertions of Theorem 2 hold if:

(@) B* isa W*-algebra M;

(b) G is a bounded commutative semigroup of w*-continuous linear mappings
of M into itself, satisfying condition (U).

(c) Either M is o-finite or G is separable.

Corollary. Let M be a von Neumann algebra and let G be a commutative
group of % -automorphisms of M, satisfying condition (U). If M is o-finite or G is
separable, then M is G-finite (for this notion, cf. [3]).

2. Proofs. For the proof of Theorem 1 we need the following two lemmas.

Lemma 1. Let G={gy, g3, --.} be countable and let B be separable. Suppose that
3 st
vy =1

oo

condition (U) is satisfied. Then for every t€ B*, the sequence {;1"—

iy, n=

w*-converges to tC.

Lemma 2. Let B, be a G,invariant closed subspace of B, i.e., let g @€B,
for g.€G,, 9€B,. Furthermore, let Bi={t: (¢, 1)=0 for all @€B,} and let the
dual space BY of B, be identified canonically with the quotient space B*|Bi. If
G acting on B* satisfies condition (U), then G acting on B} also satisfies con-
dition (U).

n

Proof of Lemma 1. Let v,,:%. P lgin..gf;- and let r€B*. We have
to prove that the sequence {v,t} w*-conv::,rg’eg to 5. To prove this, we show that
every subsequence {vnf} of {v,t} contains a subsequence {vnt} which w*-con-
verges to 1% Since the sequence {v,¢} is a bounded sequence in B* and every
closed ball in B* is metrizable compact in the w*-topology (cf. [2], V. 4.2, V. 5.1),
this will imply that ¢,2—~¢¢ in the w*-topology as n--co. Let {vnt} be a sub-
sequence of {v,t}. Since {wnt} is a bounded sequence, it contains a w*-convergent
subsequence {vn f} (by the above remark). We have to-prove that the limit of
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{vn,t} is ¢°. Since the limit of {vn,f} obviously belongs to the w*-closed convex
hull of {g7: g€G}, we only have to prove that it is G-invariant. Pick a positive
integer s. Let n=s. Then g, appearsin v»,. By the commutativity of G we have:

" gsvnt_vnt" =
—_ 1 S iy ozs ;,+1 1s+1 lnt___.l S i1 i,.t —
=% 2 & - semigsTieen g 2 gt gl =
iseenyi,=1 gy ceeyig=1
1z . .
— + is—1ot i
= |- 2 l(gi‘-n glerigi gt . gt — gt .. gligst . grD)|| =
L Y

2n" Y GY - |2 2
= 20 246y 0,
where |G| =sup {|lg|: g¢G}. If now n=m, and /—oo, then nx,—~<e, and con-

sequently, Ilgsv,,klt——v,,kltll»o by the above. Hence 8sny, t—»]1mv,,kt On the

other hand, by the w*-continuity of g, we have 8sVny 185 llim Uy, t. Consequently;
1 Raglod 1
gsllimv,,ktzllimv,,k t. Since g, was an arbitrary element of G, we have proved
- co 1 e !
that llim Vny, is G-invariant, and consequently,

limv,, t =1
{—+oo "kl

Proof of Lemma 2. Since GB;icBj, the semigroup G acts on Bf=
=B*/B;-, and Lemma 2 makes sense. Let f€B; and let f, be a G-invariant
element of the w*-closed convex hull of {gf: g€G}. There exists a net v, of ele-
ments of coG such that v,f—f, in the w*-topology of Bf. The element f¢By
is canonically identified with a coset ¢+ B (t€B*) and for every g€G, the element
. gf is identified with gz+B;-. The convergence relation vf—f, means that for
every @€B,, (p,v,t) converges, the limit being (¢, f;). For every ¢¢B,, g€G
we have (g.0, fo)=(0, gk f)=(0, gfo)=(9, f). Consequently, f, is a G -invariant
bounded linear form on B;.

Since closed balls are w*-compact in B*, there is a subnet v, of the net o,
for which »,¢ converges in the w*-topology of B*. Let us denote the limit by 7.
The element 7,6 B* belongs to the w*-closed convex hull of {g¢: g€G} and

(+) (@, o) = (@, /o) for @EB,.
Since G acting on B* satisfies condition (U); there is a net w, in coG such that
wito—1¢ in the w*-topology of B*. For ¢@¢B; we have: (o, tG)=li,£n (@, wity)=

=lim (W, t)=lim (w9, f)=1lim (¢, fo)=(®, fo)- (Here the next to the last
equality holds because f, is G, -invariant on B; and the equality before the next
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to the last equality holds because of (*) and the G,-invariance of B,.) Consequently,
(@, 9=(o, fo) for @€B,, ie., f, is the restriction of t¢ to B,. Since f, was an
arbitrary element in the w*-closed convex hull of {gf: g€G}, the lemma is proved.

Proof of Theorem 1. Throughout this proof we assume that condition (U)
is satisfied for G acting on B*.

(i) First we assume that B is separable. This implies the separability of G.
Indeed, let {¢,};>., be a dense sequence in the unit ball of B. Let T be the set
of B-valued sequences bounded by |G|j=sup {|gll: gcG}. If «, BT, we define
o(a, p) by the equality
=1 Jo,—Bl

o(a, By = P ww ey

Then ¢ is a metric on 7. We have o™ —q in this metric if and only if a® —q,
(k<) for every n=1,2,.... Since B is separable, so is T. Let g€ G and let
us define an element a? of T by the equalities af=g, ¢, (1=1, 2, ...). The mapping
g—a? is a homeomorphism of G, onto a subset of T if G, is considered with
the topology of pointwise strong convergence on B and T is considered with the
topology induced by the metric ¢. Since T has a countable dense subset, we may
infer that so does G, (because of the metrizability of T'). Since taking adjoints of
operators is a weak—weak* continuous operation, G contains a countable subset
G, which is dense in G in the topology of L, .(B*).

Now let G, be a countable dense subset of G in the topology of L,.(B¥).
Then the Gginvariant elements of B* are the same as the G-invariant elements
of B* and for every t€B*, the w*-closed convex hull of {g¢:g€G,} coincides
with the w*-closed convex hull of {g7: g€ G}. Consequently, if in addition, we choose
G, to be a subsemigroup of G (for example, we replace G, by the subsemigroup
generated by Gy), then G satisfies condition (U) if and only if G, does.

Now we can apply Lemma 1 to the separable Banach space B and countable
semigroup G,. We obtain that there exists a sequence {v,};>, in coG, such that
for every t€B*, v,t—~1%=1% in the w*-topology as n—ec.. Consequently, the
mapping 7—f% is a bounded linear projection, to be denoted by P, acting in B*.
Since (gt)°=gi=1% for g€G, t€B*, we have: gP=Pg=P. This completes the
proof of Theorem 1 in case B is separable.

(2) Suppose G is separable, i.e., there exists a countable subset G, of G
which is dense in G -in the topology of L,.{(B*). We may assume that G, is a sub-
semigroup of G. The first part of the proof shows that it is sufficient to prove the
theorem for G,. However, we cannot apply Lemma 1 because B may not be
separable. Consequently, we also have to appeal to Lemma 2. Let g,, g,, ... be all

. 1 i ; ; .
different elements of G, and let U= 2 g%...gn Weare going to prove that
. -

By iy
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for every t€B*, v,t—t in the w*-topology of B* as n—o. All the assertions
of Theorem 1 will follow from this in the same way as in part (1) of this proof.

Let ¢, be an arbitrary element of B. Let us denote by B; the Banach sub-
space spanned by the elements g,,@,, 8,,9,, --. - The subspace B, is G,,-invariant.
We may apply Lemma 2 and obtain that G,, acting on By=B*/Bj, also satisfies
condition (U). Since B, is separable and G, is countable, Lemma 1 may be applied.
We obtain that for every f€Bf, v, f~f¢ in the w*topology of B} as n—<. In
view of the identification By =B*/Bi-, this implies that for every t€B*, the sequence
{(@q> v,t)};2, is convergent. (It may be seen directly that it converges to (@, 1%);
however, we choose another way of proving this, which we think is easier to follow.)
Since ¢, was an arbitrary element of B and |v,t| =|G]| -|lt]l; we obtain that
for every t€B*, the sequence {v,f};>, w*-converges to an element Pt of B*.

It is easy to see that Pt is Gy-invariant. Therefore, Pr=1% (=/%).

Proof of Theorem 2. The hypotheses of Theorem 1 are. satisfied. Con-
sequently, there is a sequence {v,}:, in coG such that for every (€B*, v, t—~1¢
in the w*-topology of B* as n—<. Now let @€B be given. For every (€B*,
we have (v,,0 —v,,9, )=(¢, (v,—v,)t)~0 as n, m—oo. Consequently, the sequence
{v,@}r, is a weak Cauchy sequence in B. Since B is assumed to be weakly
complete, there exists an element of B, to be denoted by P, ¢, for which (v @, 1)
—~(P,p,t) (n—oo) for every t€B*. It is easy to see that P, is a bounded linear
operator in B. As n—oo, we have: (@,v.t)=(v,,0,t)~(P,0, )=(¢, PXt) for
@€B, te B*. Consequently, v,~PF in L,(B*) as n—e. Since P} is obviously
w*-continuous, we obtain the assertions of Theorem 2 (except the last assertion)
if we put P=PF.

The last assertion of Theorem 2 may be proved as follows. First we prove that
for every @€B, the closed convex hull of {g,¢:g,€G,} contains exactly one
G -invariant element (namely, P,p). Here we may take either weak or strong
closure, because the strong closure of a convex subset of a Banach space coincides
with its weak closure (cf. [2], V. 3.13). Let @€B and let ¢ be a G, -invariant
element in the closure of (coG,)p. Then there exist w €coG, such that w,p—¢
strongly as n—<. We have Pw,p—P,p. Here P .w,o=P,p (because P, g, =P,
for g€G) and P ,p=¢ (because P, is a weak limit of elements of coG, and
¢ is G,-invariant). Therefore, =P, . On the other hand, if g€G, then g P.o=
=P,p, ie., P is G, -invariant. Therefore, P,p is the unique G, -invariant
element in the closure of (coG,)e. Since this is true for every ¢€B, the following
holds according to [1]: For every @&B, every >0 and every v,.£coG, there
exists v,,€coG, such that |v,»,,9,.0—P,¢|<e This inequality is equivalent
to the following: [([¢,2,,0s— P,lo, 1)|<e for all t€B* such that .[f|=1 or
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|(@, [vv,9o— P]t)|<e for all t€B* such that ||#/]=1. The last assertion of Theorem 2
follows immediately from this.

Proofs of Propositions 1,2 and the corollary of Proposition 2. In
Proposition 1, L(X, S, m) is weakly complete (cf. [2], IV. 8.6); consequently,
the hypotheses of Theorem 2 are satisfied. In Proposition 2, the predual of M is
weakly complete (cf. [4], Proposition 1); consequently, the hypotheses of Theorem 2
are satisfied. The corollary to Proposition 2 is simply a special case of Proposition 2.

3. Remarks and problems.

Remark 1. It follows from the author’s other results (to be published) that
even if G is not commutative and G and B are not separable and condition (U)
is satisfied, then the mapping ¢~ (1€ B*) is a bounded linear projection contained
in the closure, in L,.(B*), of the convex hull of G.

Remark 2. It follows from the author’s other results (to be published) that
even if B is not weakly complete and condition (U) is satisfied, then a weaker
version of the last assertion of Theorem 2 holds.

Problem 1. Is Theorem 2 true without the hypothesis that B is weakly
complete?

Problem 2. Is Theorem 2 true without the hypothesis of separability of B
or G? (In this case we can only expect P to be in the closure of coG, instead of
the sequential closure of ¢0G.)

Problem 3. Are the results of this paper true without the hypothesis that
G is commutative?
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