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On the overconvergence of complex interpolating polynomials. II
Domain of geometric convergence to zero

J. SZABADOS and R. S. VARGA

To Professor B. SzGkefalvi-Nagy on his seventieth birthday

1. Introduction. We continue here with developments concerning extensions
of Walsh’s Theorem on the overconvergence of sequences of differences of inter-
polating polynomials. As the title suggests, we are interested in determining precisely
those domains in the complex plane for which (cf. [1]) the sequence

(11) {pn—l(z> Z’ f)_Qn—l,l(z’ f’)};:;l

converges geometrically to zero for all fcA4,, where A4, is the set of functions
analytic in the circle |z]<g and having singularity on |z|= e (e=1). Here

Du-1(2, Z, f) is the Lagrange interpolating polynomial of f(z)= Z'akz of degree

=n—1 based on the nodes determined by the n'® row of the mﬁmte triangular
matrix Z={z, }_, ,, and

L.2) Oria )= 2 (3t (=12,

k=0 \j=0

2. Constructions. As for Z, we now assume the stronger hypothesis (than
that used in [1]) that there exists a real number ¢ with 1=¢’<g for which

R)) l=|g.0=0<¢ k=12,..,n,n=12,..).
As in [1], we set
2.2) 0 (6Z) = [[ (=2 (n=1,2 ),
k=1

and

=1 w,(z,2) }""

—y=ln ——n

23) Gz, R =G|z, R Z):= {lrrllax (1-¢ ) T .G 2) ,
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for any R>¢" and any complex number z. We also set
2.9 Gi(z, 0 := inf G,(z, R).
¢<R<g
With these definitions, we first establish

Proposition 1. For any complex number z#1 and any positive integer |,
there holds
max {|z]; 1}
Proof. From the techniques of [1], we see, via the maximum principle, that
"1 w,(z,Z)]|
r—1  w,(t2zZ)

2.5) G/(z, B = (z=1,R = 9)

max
lt|=R

(A==

— max @V L) (" D, Z)—i"w,(z, Z)| _
(=R " w,(t, Z) =
— R-"max (- ”"+t“ M4+ D= Do, 2)—1"w,(2, Z)
el =R " Zeul .
R—
| (R

I(Z”—]_)(D,,(O, Z)l = |Z"—],|
R? - R(l+])n s

as |wy(0,Z)|=1 from (2.1) and (2.2). Thus from the definition of Gz, R) in
(2.3), (2.5) immediately follows. Q. E. D.

Nowkdeﬁne
(2.6) 4(2)=4,(z,0,Z) = ﬁgg E [Pa-1(2, Z, f)—Qn—],!(Z’ e

= R—In

for any complex number z. Then we have
Proposition 2. For any z with |z|>p,
27 Gi(z, ©) = 4,(2) = G(z, ). :

Proof. Let E denote the matrlx of nodes of interpolation formed from the
roots of unity. Then for any f€4, and £>0, we have by [1, (1.9)]

Ipn 1(2 Z f)_Qn ll(z’f)l = Ipn 1(2’ Z’f)_Pn 1(23 Eaf)H’an 12, Es.f)_

f(t) CD,,(Z, Z) z _] lZl "<
Qn 1, l(z3f)| 271' f ((D,,(t, Z) - )dt‘ [Ql+1 +8) =
_ . M/R max Z"—1  w,(z, Z)|+ |z| )"<
=T =R Mk 7=1 " ., 2) T tE) =
MR

z"—1
Ep {(G,(z R)+e)"+ R 'R _1,I}+[Q|:+|1 +e] (@ <=R=<p=<]|z]),
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where I'={t: |t|=R}, Mf=rp€alz( | f(z)|, provided n=n,=nye). Hence by Propo-
sition 1,

— . z
,}Ln‘;lo |p,,-1(2, Z: f)_Qn—l.l(za f)lll" = max{G,(z, R)+F Ilel-l ’ lH—ll +8} =

= max {G,(z R), |’2+|1}+8_
But here ¢>0 and R (¢’<R<g) were arbitrary. Thus again by Proposition 1
I 1p,1(5 2, )= 0umr s NP = inf Gz, B) =2 Gz, 0)
As this inequality holds for all f€A4,, this gives from (2.6) that
4(2) =G,(z 0,
the desired first inequality of (2.7).

Next, for any u with |ju|=¢ and with f,(z):=(u—z)"'€4,, a direct computa-
tion gives that

Q9 pus & 2 [~ Cura(6f) = o {1 —u ) S - 2 §§+u—h'}.

Now by Proposition 1, Gz, Q)>g" (Iz|> ). Thus we may choose an ¢=0 with
2.9) o Me<Gi(z, 0 (2] = @)

Further let {n;};_, be an infinite sequence of positive integers with m<m=<...
(dependent on z) such that

-1 _w,,j(z, Z)
-1 o, Z)

(cf. Definition (2.3)). Now, choose u; with |u;|=¢ (which is also dependent on z)
so that

max
itl=¢

(1_[ In)

‘ > (G)(z, 00—y (j=1,2,..)

Cmtn z"j—]._”w,,,(z,Z) _
‘(1 " j)u'}f—l @y, (u;, Z)

(2.10)
-1 w,(z,2)
1 @, 2)

"j

for each j=1,2,.... With n=n; and u=u;, it follows from (2.8) and (2.10) that

(e zn,)

max > (Gi(z, 9)—¢)s,

|p"j'1(z’ Z’ f;‘j)_an—.l,l(z’ f;lJ)‘ |z‘+ 0 {(GI(L, )*—8)"1—9"1”;}’

forall f=1,2,.... Now, following the construction of [1], there is an f (dependent
on z) in 4, for Wthh g

@D 1py-1(z 2= Q"r“(z’f)'—s(tzlw)n (GG o-2ri—e ""f}
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forall j=1,2,.... Thus, by 2.9)
IIE |pn-1(za Z’ f)_Qn—l,I(z’ f)'lln = G,(Z, Q)—E,

and as f is some element in 4,, then from the definition in (2.6),

4,(2) = Gi(z, 0)—e.
But, as this holds for every £¢>0 with ¢~ '+&s<G/(z, 0), then

4,(2) = Gy(z, 0),
the desired last inequality of (2.7). Q. E. D.
As an obvious consequence of (2.7) of Proposition 2, we have

Corollary 3. Let z be any complex number with |z|=q for which Gz, 0)<1.
Then, the sequence (1.1) converges geometrically to zero for each f¢A,.

As a consequence of the proof of Proposition 2, we further have

Corollary 4. Let z be any complex number with |z|>¢ for which G(z, ¢)>1.
Then, there is a function f (depending on z) in A, for which the sequence (1.1)
(with f replaced by f) is unbounded.

Proof. If Gz, ¢)=1+2n where n=0, choose ¢>0 sufficiently small
so that Gz, 0)—e=1+n=>1. Then, (2.11) directly shows that the sequence (1.1)
(with f replaced by f) is unbounded. Q. E. D.

Obviously, Corollary 4 and Proposition 1 imply that the sequence (1.1) is
necessarily unbounded for some f in 4,; whenever |z|>g'*". The same conclusion
was deduced in [1].

Open questions. 1. Is Gz, 0)=G/(z, 0)?

2. Assuming the answer is ‘“‘yes” for the previous question, then &:=
:={z: G,(z, 0)=1} divides the complex plane into sets where either one has
geometric convergence to zero for all f in 4, or unboundedness of the sequence
(1.1) for some fin A4,. What does & look like?

3. In general, one would not suspect that & is a circle, even though this is
the case for all examples treated in the literature. Can one construct cases (i.e.
matrices Z) where indeed ® is not a circle? This suggests considering Z={z, ,}
where {z, ,}i_, are not uniformly distributed, as rn— .
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