On a Paley-type inequality

F. SCHIPP

Dedicated to Professor B. Szőkefalvi-Nagy on his 70th birthday

In this paper a new space similar to the dyadic Hardy spaces is investigated. This space is defined by a shift-invariant norm and it is proved that for $1 this norm is equivalent to the <math>L^{p}$ -norm.

1. Introduction

The spaces $L^p = L^p(0, 1)$ (1 are considered as real Banach spaces $of real-valued functions with the usual norms <math>|| ||_p$. The "dyadic Hardy spaces" are denoted by \mathbf{H}^p . The spaces \mathbf{H}^p $(1 \le p < \infty)$ coincide with the space of all L^1 functions, quadratic variations of which belong to L^p . The quadratic variation Q(f) of the function $f \in L^1$ is defined by

(1)
$$Q(f) := \left(\sum_{n=0}^{\infty} |\Delta_n(f)|^2\right)^{1/2}$$

where $\Delta_n(f) = E_n(f) - E_{n-1}(f)$ (n=0, 1, ...), $E_{-1}f=0$ and $E_n(f)$ denotes the 2ⁿ-th partial sum of the Walsh—Fourier series of f. The operator E_n is equal to the conditional expectation with respect to the σ -algebra generated by the intervals $[k2^{-n}, (k+1)2^{-n})$ $(k=0, 1, ..., 2^n-1)$. The dyadic H^p-norm of the function f is

(2)
$$|||f||_{\mathbf{H}^p} := ||Q(f)||_p \quad (1 \le p < \infty).$$

It was proved by R. E. A. C. PALEY [1] that for $1 there exist constants. <math>c_p$ and c'_p depending only on p such that

(3)
$$c'_p ||f||_p \le ||Q(f)||_p \le c_p ||f||_p \quad (1$$

i.e., for 1 the L^p-norm and the H^p-norm are equivalent. In the case <math>p=1 the inequality (3) is not true. B. DAVIS [2] has proved (in a more general form) that

Received October 12, 1982.

the H¹-norm of f is equivalent to the L^1 -norm of the dyadic maximal function $E^*(f)$ of f: $||Q(f)||_1 \sim ||E^*(f)||_1$ where $E^*(f) = \sup_n |E_n(f)|$. Furthermore, it is known that

(4)
$$||E^*(f)||_p \sim ||Q(f)||_p \sim \int_0^1 ||T(f; x)||_p dx \quad (1 \le p < \infty)$$

where

$$T(f; x) := \sum_{n=0}^{\infty} r_n(x) \Delta_n(f)$$

and $r = (r_n, n \in \mathbb{N})$ (N:= {0, 1, 2, ...}) denotes the Rademacher system. A special case of (3) is the well-known Khintchine inequality:

$$\left(\sum_{n=0}^{\infty} a_n^2\right)^{1/2} \sim \left\|\sum_{n=0}^{\infty} a_n r_n\right\|_p \quad (1$$

The L^p-norms $(1 are invariant with respect to the dyadic shift operators <math>s_n(f) := f \Psi_n$ $(n \in \mathbb{N})$, where the Ψ_n -s are the Walsh—Paley functions, i.e., $||f||_p =$ = $||f \Psi_n||_p (1 . The H¹-norm has not this property. An easy computation shows that for the functions$

$$D_{2^n}(x) = \begin{cases} 2^n, & \text{if } 0 \le x < 2^{-n}, \\ 0, & \text{if } 2^{-n} \le x < 1 \end{cases} \quad (n \in \mathbb{N})$$

we have

(5)

$$\|Q(D_{2^n})\|_1 > 3^{-1/2}n, \|Q(\Psi_{2^n}D_{2^n})\|_1 = 1.$$

We introduce the following shift-invariant norm: for $1 \le p < \infty$ let

$$\|f\|_{\mathbf{H}_{p}^{*}} \coloneqq \left\|\sup_{n} Q(f\Psi_{n})\right\|_{p},$$

and denote by \mathbf{H}_p^* the set of L^1 functions f, for which $||f||_{\mathbf{H}_p^*} < \infty$. Obviously, $\mathbf{H}_p^* \subseteq \mathbf{H}_p$. By means of (5) a function f_0 can be constructed such that $||f_0||_{\mathbf{H}^1} < \infty$ and $||f_0||_{\mathbf{H}^*} = \infty$. In [3] it was proved that the sublinear operator

$$Q^*(f) = \sup_n Q(f\Psi_n) \quad (f \in L^1)$$

has weak type (2, 2), i.e., there exists a constant C independent of f such that for every y>0,

mes {
$$x \in [0, 1)$$
: $Q^*(f)(x) > y$ } < $C || f ||_2^2 / y^2$.

In this paper we give the following generalization of the above result.

Theorem. 1. For $1 the <math>H_p^*$ -norm is equivalent to the L^p -norm:

(6)
$$\|Q^*(f)\|_p \sim \|f\|_p \quad (1$$

2. There exists a function in H_1 with infinite H_1^* -norm.

The first part of Theorem is a consequence of the following

Lemma 1. The operators

(7)
$$Q_N^*(f) = \sup_{m < 2^N} \left(\sum_{n=1}^{N-1} |\Delta_n(f\Psi_m)|^2 \right)^{1/2} \quad (N \in \mathbb{N})$$

are of restricted weak type (p, p) for every $1 , i.e., for every measurable set <math>H \in [0, 1)$,

(8)
$$\max \{x: Q_N^*(\chi_H)(x) > y\} < C_p \|\chi_H\|_p^p / y^p \quad (y > 0),$$

where χ_H is the characteristic function of the set H and C_p is a constant depending only on p.

It is easy to see that for every $f \in L^1$ there exists a linear operator $L_f: L^1 \to L^1$ such that

(9) i)
$$L_f(f) = Q_N^*(f)$$
, ii) $|L_f(g)| \le Q_N^*(g)$ $(g \in L^1)$

hold. Indeed, for $x \in [0, 1)$ let $0 \le M(x) < 2^N$ be such a number for which

$$Q_N^*(f)(x) = \left(\sum_{n=1}^{N-1} |\Delta_n(f\Psi_{M(x)})(x)|^2\right)^{1/2}.$$

Furthermore, let

$$L_f(g)(x) = \sum_{n=1}^{N-1} \varepsilon_n(x) \Delta_n(g \Psi_{M(x)})(x),$$

where

$$\varepsilon_m(x) = \operatorname{sign} \Delta_m(f \Psi_{M(x)})(x) / \left(\sum_{n=0}^{N-1} |\Delta_n(f \Psi_{M(x)})|^2 \right)^{1/2} \quad (1 \le m \le N).$$

It is obvious that for the linear operator $L_f(9)$ is satisfied, and by (9) ii) it is also of restricted weak type (p, p) for 1 . Applying the Stein--Weiss $interpolation theorem (see, e.g., [5], p. 191) we get that the operator <math>L_f: L^p \rightarrow L^p$ $(1 and consequently on the basis of (9) i) the operators <math>Q_N^*: L^p \rightarrow L^p$ (1 are also uniformly bounded.

Since

$$Q^{*}(f) \leq \sup_{m} |E_{0}(f\Psi_{m})| + \sup_{m} \left(\sum_{n=1}^{\infty} |\Delta_{n}(f\Psi_{m})|^{2}\right)^{1/2} = \sup_{m} |E_{0}(f\Psi_{m})| + \lim_{N \to \infty} Q_{N}^{*}(f),$$

we have

$$\|Q^*(f)\|_p \leq C_p^* \|f\|_p \quad (1$$

and by the Paley-inequality,

$$c'_p ||f||_p < ||Q(f)||_p \le ||Q^*(f)||_p.$$

This proves (6).

F. Schipp

Let us introduce another shift-invariant norm by means of the maximal function

$$E^{**}(f) := \sup_{m,n\in\mathbb{N}} |E_n(f\Psi_m)|$$

as follows: let

$$||f||_p^* := ||E^{**}(f)||_p \quad (1 \le p < \infty).$$

Since $E^*(f) \leq E^{**}(f) \leq E^*(|f|)$, the Doob-inequality (see [4]), implies that $||f||_p^* \sim ||f||_p (1 , i.e., for <math>1 the <math>H_p$ -norm is equivalent to the $|| ||_p^*$ -norm. We do not know whether the H_1 -norm and the $|| ||_1^*$ -norm are equivalent or not.

2. Two lemmas

Let

$$\mathscr{I}_N := \{ [k2^n, (k+1)2^n] : 0 \le n < N, (k+1)2^n < 2^N, k, n \in \mathbb{N}^n \},\$$

and for an interval $I = [k2^n, (k+1)2^n]$ we set $m(I) = k2^n, |I| = 2^n$ and

$$E_I(f) = \sum_{n \in I} \left(\int_0^1 f \Psi_n \, dx \right) \Psi_n.$$

Then, $E_n(f) = E_{[0, 2^n]}(f)$ and for all $j \in I = [k2^n, (k+1)2^n]$ we have $E_I(f) = E_n(f\Psi_j)\Psi_j$. By means of the intervals of \mathscr{I}_N the function $Q_N^*(f)$ can be written in the form

$$Q_N^*(f) = \sup_{j < 2^N} \left(\sum_{j \in I} |\Delta_I(f)|^2 \right)^{1/2},$$

where $\Delta_I(f) = E_{I_+}(f) - E_I(f)$ and I_+ denotes the interval for which $I \subset I_+$ and $|I_+| = 2|I|$ hold.

To estimate $Q_N^*(f)$ we use an elementary observation with respect to series, in which the indices of the terms are the elements of \mathscr{I}_N . We need the following

Lemma 2. Let $g_I: [0, 1) \to \mathbb{R}$ $(I \in \mathscr{I}_N)$ be a sequence of functions and $B_I \subset [0, 1)$ $(I \in \mathscr{I}_N)$ a sequence of increasing sets (i.e., $I \subseteq J$ implies $B_I \subseteq B_J$). Further let $A_I = B_I \setminus \bigcap_{J \subset I} B_J$. Then

(10)
$$\sup\left\{\left|\sum_{I\subseteq J\subset K}\chi_{B_J}g_J\right|:\ I\subset K,\ I,\ K\in\mathscr{I}_N\right\}\leq G:=2\sup_{I\in\mathscr{I}_N}\chi_{A_I}\sup_{I\subset K}\left|\sum_{I\subseteq J\subset K}g_J\right|.$$

Proof. To prove (10), let $x \in [0, 1)$ and $S_{IK} = \left| \sum_{I \subseteq J \subset K} \chi_{B_J} g_J \right|$. We show that $S_{IK}(x) \leq G(x)$.

If $S_{IK}(x) \neq 0$; then the (linearly ordered) set $\{J \in \mathscr{I}_N : I \subseteq J \subset K, x \in B_J\}$ is not empty. Denote by \overline{I} the minimum element (with respect to the ordering \subseteq) of

1) $J \subset K$ means that $J \subseteq K$ and $J \neq K$.

360

this set. If $I \subset \overline{I}$, then by the definition of \overline{I} we have that for $I \subseteq J \subset \overline{I}$, $x \notin B_J$. Let I^* be such an element of the set $\tilde{\mathscr{I}} = \{J \in \mathscr{I}_N : J \subset \overline{I}, x \in B_J\}$ ($\neq \emptyset$), for which $|I^*| = \min\{|J|: J \in \tilde{\mathscr{I}}\}$. From the definition of I^* it follows that for every $J \subset I^*$ we have $J \notin \tilde{\mathscr{I}}$. Thus, for such J's, $x \notin B_J$ and consequently $x \in A_{I^*}$. From these we get

$$|S_{IK}(x)| = |S_{IK}(x)| = |S_{I^*K}(x) - S_{I^*I}(x)| \le$$
$$\le \chi_{A_{I^*}}(x) \Big| \sum_{I^* \subseteq J \subset K} g_J(x) \Big| + \chi_{A_{I^*}}(x) \Big| \sum_{I^* \subseteq J \subset K} g_J(x) \Big| \le G(x)$$

and (10) is proved.

Let

(11)

$$F_I f = \sup \{ |E_I(f)| \colon J \subset I, \ 2|J| = |I| \} \quad (I \in \mathscr{I}_N, \ |I| \ge 2)$$
$$F_I f = |E_I(f)| \quad (I \in \mathscr{I}_N, \ |I| = 1),$$
$$F_I^* f = \sup \{ F_I f \colon J \subseteq I \}, \quad F^* f = \sup \{ F_I^* f \colon I \in \mathscr{I}_N \}.$$

The σ -algebra generated by the intervals $[k2^{-n}, (k+1)2^{-n}]$ $(k=0, 1, ..., 2^n-1)$ will be denoted by \mathscr{A}_n $(n \in \mathbb{N})$ and for $I \in \mathscr{I}_N$, $|I| = 2^n$, set $\mathscr{A}_I = \mathscr{A}_n$. The sequence $(E_I(f), I \in \mathscr{I}_N)$ is predictable. Indeed, since $E_I(f) = E_{I'}(f) + E_{I''}(f)$ $(I = I' \cup I'',$ $I' \cap I'' = \emptyset$), $F_I^* f$ is \mathscr{A}_{n-1} -measurable and $|E_I(f)| < 2F_I^* f$.

For y > 0 let

(12)
$$B_{I}^{y} = \{x \in [0, 1) \colon (F_{I}^{*}f)(x) > y\}, \quad A_{I}^{y} = B_{I}^{y} \bigcup_{J \subset I} B_{J}^{y},$$
$$C_{I}^{y} = \{x \in [0, 1) \colon (F_{I}^{*}f)(y) \le ey\}.$$

Then the following statement is true.

Lemma 3. For every y > 0,

(13)
$$\sum_{I \in \mathscr{I}_N} \max A_I^y < \frac{1}{y^2} \int_{\{F^*f > y\}} |f|^2 \, dx$$

Proof. On the basis of the definition of A_I^y and B_I^y it is obvious that $(F_I f)(x) > y$ if $x \in A_I^y$. Let

$$D_{I'}^{y} = \{x \in A_{I}^{y}: |E_{I'}(f)(x)| > y\}, \quad D_{I''}^{y} = A_{I}^{y} \setminus D_{I'}^{y},$$

where $I' \subset I$, $I'' = I \setminus I'$ and 2|I'| = |I|. We set

$$P_{I} = \chi_{D_{I'}} E_{I'} + \chi_{D_{I''}} E_{I''}.$$

Since $E_I E_J = 0$ if $I \cap J = \emptyset$, and $\chi_{A_I^{\vee}} \chi_{A_J^{\vee}} = 0$, if $I \subset J$, on the basis of the \mathscr{A}_I -homogeneity of E_I (which means $E_I(\lambda f) = \lambda E_I f$, if λ is \mathscr{A}_I -measurable) we get

that the P_I 's are orthogonal projections, i.e., $P_I P_J = \delta_{IJ} P_I (I, J \in \mathscr{I}_N)$. Thus

$$\|\chi_{\{F^*f>y\}}f\|_2^2 \ge \|\sum_{I\in\mathscr{I}_N} P_If\|_2^2 = \sum_{I\in\mathscr{I}_N} \|P_If\|_2^2 =$$
$$= \sum_{I\in\mathscr{I}_N} \int_{D_{I'}} |E_{I'}f|^2 dx + \int_{D_{I''}} |E_{I''}f|^2 dx \ge y^2 \sum_{I\in\mathscr{I}_N} \max A_I^y,$$

and Lemma 3 is proved.

3. Proof of Lemma 1

Let

(14)
$$\varepsilon_I^y = \frac{1}{y} \chi_{\{(1/e)F_{I_+}^* f \le y < F_{I_+}^* f\}} = \frac{1}{y} \chi_{B_{I_+}^y} \chi_{C_{I_+}^y} \quad (y > 0).$$

Then ε_I^y is \mathscr{A}_I -measurable and

$$\left(\int_{0}^{+\infty} \varepsilon_{I}^{y} \, dy\right) \Delta_{I} f = \Delta_{I} f.$$

Using this, the quadratic variation can be estimated as follows:

$$Q_n(f) = \left(\sum_{n \in I \in \mathscr{I}_N} |\Delta_I f|^2\right)^{1/2} = \left(\sum_{n \in I \in \mathscr{I}_N} \left| \int_0^{+\infty} \varepsilon_I^y \Delta_I f \, dy \right|^2\right)^{1/2} \leq \\ \leq \int_0^{+\infty} \left(\sum_{n \in I \in \mathscr{I}_N} |\varepsilon_I^y \Delta_I f|^2\right)^{1/2} dy,$$

and by Lemma 2 we have

$$Q_N^*(f) < \int_0^{+\infty} \sup_{I \in \mathscr{I}_N} R_I^{y} f \, dy,$$

where

$$R_I^{\boldsymbol{y}} f = 2\chi_{A_I^{\boldsymbol{y}}} \Big(\sum_{I \subseteq J \in \mathcal{I}_N} |\varepsilon_I^{\boldsymbol{y}} \Delta_I f|^2 \Big)^{1/2},$$

and consequently

(15)
$$\chi_{\{F^*f < \lambda\}} Q_N^*(f) \leq \int_0^\lambda \sup_{I \in \mathscr{I}_N} R_I^y dy.$$

Using Abel's transformation, an easy computation shows that

$$\Big|\sum_{I\subseteq J\in\mathscr{I}_N}\varepsilon_I^{\mathsf{y}}\Delta_If\Big|\leq 4e,$$

thus by the Paley-inequality we get

(16)
$$\begin{aligned} \|\chi_{A_{I}^{y}}R_{I}^{y}\|_{p} &\leq C_{p} \Big\|\sum_{I\subseteq J\in\mathscr{I}_{N}}\varepsilon_{I}^{y}\Delta_{I}(f\chi_{A_{I}^{y}})\Big\|_{p} = \\ &= C_{p} \Big\|\chi_{A_{I}^{y}}\sum_{I\subseteq J\subseteq\mathscr{I}_{N}}\varepsilon_{I}^{y}\Delta_{I}f\Big\|_{p} < 4eC_{p}\|\chi_{A_{I}^{y}}\|_{p}. \end{aligned}$$

362

Let first p>2. Then by (13) and (15),

$$\begin{aligned} \|\chi_{\{F^*f \leq \lambda\}} Q_N^*(f)\|_{2p} &\leq \int_0^\lambda \Big(\sum_{I \in \mathscr{I}_N} \|R_I^y f\|_{2p}^{2p}\Big)^{1/2p} \, dy \leq \\ &\leq 2(4eC_{2p})^{2p} \int_0^\lambda \Big(\sum_{I \in \mathscr{I}_N} \max A_I^p\Big)^{1/2p} \, dy \leq C_p' \int_0^\lambda \Big(\int_{\{F^*f > y\}} |f|^2/y^2 \, dx\Big)^{1/2p} \, dy \leq \\ &\leq C_p' \Big(\int_0^\lambda y^{-1/2} \, dy\Big) \Big(\int_0^1 (F^*f)^{p-2} |f|^2 \, dx\Big)^{1/2p} \leq 2C_p' \lambda^{1/2} \Big(\int_0^1 |F^*f|^p\Big)^{1/2p}. \end{aligned}$$

Using the maximal inequality $||F^*f||_r \leq (r/(r-1))||f||_r$ (r>1) we get

$$\lambda^p \operatorname{mes} \{Q_N^*(f) > \lambda, \, F^*f \leq \lambda\} < C_p'' \|f\|_p^p,$$

and on the basis of the maximal inequality (8) follows for every $f \in L^p$ $(p \ge 2)$.

Let now $1 and <math>f = \chi_H$. By a simple integral transformation (15) can be written in the form

$$\chi_{\{F^*f \leq \lambda^p\}} Q_N^*(f) < \lambda \int_0^{\lambda^{p-1}} \sup_{I \in \mathscr{I}_N} R_I^{\lambda t} f \, dt,$$

and since $\sup_{I} R_{I}^{\lambda t} f = \chi_{\{F^{*}f > \lambda t\}} \sup_{I} R_{I}^{\lambda t} f$, by $F^{*}f \leq 1$ we have

(17)
$$\chi_{\{F^*f \leq \lambda^p\}} Q_N^*(f) < \int_0^{\lambda_1} \sup_{I \in \mathscr{I}_N} R_I^{\lambda t} f \, dt,$$

where $\lambda_1 = \min(\lambda^{p-1}, \lambda^{-1}) \le 1$. The condition $t \le \lambda^{p-1}$ yields $\lambda^{-2} \le t^{-(2-p)/(p-1)}\lambda^{-p}$, thus by (13); (16), and (17) with q=2((2-p)/(p-1)+2) we have

$$\begin{split} \|\chi_{\{F^*f < \lambda^p\}} Q_N^*(f)\|_q &\leq \lambda \int_0^{\lambda_1} \left(\sum_{I \in \mathcal{F}_N} \|R_I^{\lambda t} f\|_q^q\right)^{1/q} dt \leq \\ &\leq \lambda C_q \int_0^{\lambda_1} \left(\sum_{I \in \mathcal{F}_N} \max A_I^{\lambda t}\right)^{1/q} dt < (\max H)^{1/q} \lambda C_q \int_0^{\lambda_1} (\lambda t)^{-2/q} dt \leq \\ &\leq C_q \lambda^{1-p/q} (\max H)^{1/q} \int_0^1 t^{-1/2} dt = 2C_q \lambda^{1-p/q} (\max H)^{1/q}. \end{split}$$

From this we obtain

$$\lambda^p \max \{Q_N^*(f) > \lambda; F^*f \le \lambda^p\} \le \overline{C}_p \max H.$$

This and the maximal inequality gives (8).

4. Proof of the second part of Theorem

Let

$$f = \sum_{n=0}^{\infty} 2^{-n/2} r_{2^n} D_{2^{2^n}}.$$

Since $||D_{2^s}||_1 = 1$ ($s \in \mathbb{N}$), this series is absolute convergent a.e. and $f \in L^1$. It is obvious that

$$E^* f \leq \sum_{n=0}^{\infty} 2^{-n/2} D_{2^{2^n}},$$

and consequently $E^* f \in L^1$, i.e., $||f||_{H_1} < \infty$. On the basis of $Q(r_{2^n} f) \ge 2^{-n/2} Q(D_{2^{2^n}})$ we have

$$\|Q^*(f)\|_1 \ge \|Q(r_{2^n}f)\|_1 \ge 2^{-n/2} \|Q(D_{2^{2^n}})\|_1 \ge 3^{-1/2} 2^{n/2} \quad (n \in \mathbb{N}),$$

thus $||f||_{\mathbf{H}_{1}^{*}} = \infty$.

References

- R. E. A. C. PALEY, A remarkable series of orthogonal functions. I, Proc. London Math. Soc., 34 (1932), 241-264.
- [2] B. DAVIS, On the integrability of the martingale square function, Israel J. Math., 8 (1970), 187-190.
- [3] F. SCHIPP, Martingales with directed index set, in: The first Pannonian Symposium on Mathematical Statistics, Lecture Notes in Statistics, vol. 8, Springer-Verlag (Berlin-Heidelberg-New York, 1981); pp. 255-261.
- [4] J. NEVEU, Discrete-parameter martingales, Math. Library, North-Holland (Amsterdam— Oxford—New York, 1975).
- [5] P. L. BUTZER, H. BERENS, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag (Berlin-Heidelberg-New York, 1967).

DEPARTMENT OF NUMERICAL METHODS AND COMPUTER SCIENCE EÖTVÖS LORÁND UNIVERSITY MÚZEUM KRT. 6–8 1088 BUDAPEST, HUNGARY