Self-dual polytopes and the chromatic number of distance graphs on the sphere

L. LOVÁSZ

Dedicated to Professor Béla Szőkefalvi-Nagy on his 70th birthday

0. Introduction

Let S^{n-1} denote the unit sphere in the *n*-dimensional euclidean space and let $0 < \alpha < 2$. Construct a graph $G(n, \alpha)$ on the points of S^{n-1} by connecting two of them iff their distance is exactly α . We shall study the chromatic number of the graph obtained this way and prove that this chromatic number is at least *n*. This answers a question of ERDŐS and GRAHAM [2]; who conjectured that this chromatic number tends to infinity with *n*.

Let us modify the definition of the graph and construct another graph $B(n, \alpha)$ by connecting two points of S^{n-1} if and only if their distance is at least α . The graph $B(n, \alpha)$ obtained this way is often called Borsuk's graph because a classical theorem of BORSUK [1] implies (in fact, is equivalent to) the result that $B(n, \alpha)$ has chromatic number at least n+1. Since, however, $G(n, \alpha)$ is a proper subgraph of $B(n, \alpha)$, Borsuk's theorem has no immediate bearing on the chromatic number of $G(n, \alpha)$.

If α is larger than the side of a regular simplex inscribed in the unit ball, then it is easy to describe an (n+1)-coloration of $B(n, \alpha)$ (and so, a fortiori, of $G(n, \alpha)$). Let R be the regular simplex inscribed in S^{n-1} and use the facet of R intersected by the segment 0X as the "color" of $X \in S^{n-1}$. Hence if $\alpha > \sqrt{2(n+1)/n}$ then

$$\chi(G(n,\alpha)) \leq \chi(B(n,\alpha)) = n+1.$$

It is easy to see that the colors of the vertices of R can be chosen different, and hence this is also true for $\alpha = \sqrt{2(n+1)/n}$.

In this paper we apply a lower bound on the chromatic number of a general graph, derived in [4], to an appropriate subgraph of $G(n, \alpha)$. It is interesting to

Received October 1, 1982.

remark that to prove this lower bound in [4], Borsuk's theorem was used. Thus in this sense we do establish a connection between the chromatic numbers of $B(n, \alpha)$ and $G(n, \alpha)$.

In section 1 we define, construct and study certain polyhedra called strongly self-dual. It seems that these polyhedra merit interest on their own right. In section 2 we state the general lower bound on the chromatic number mentioned above and apply it to prove our main result. In section 3 we discuss the question of sharpness of our results.

1. Strongly self-dual polytopes

Let P be a convex polytope in \mathbb{R}^n . We say that P is strongly self-dual if the following conditions hold.

(1) P is inscribed in the unit sphere S^{n-1} in \mathbb{R}^n (so that all vertices of P lie on the sphere S^{n-1});

(2) P is circumscribed around the sphere S' with center 0 and radius r for some 0 < r < 1 (so that S' touches every facet of P);

(3) There is a bijection σ between vertices and facets of P such that if v is any vertex then the facet $\sigma(v)$ is orthogonal to the vector v.

If n=2 then the strongly self-dual polytopes are precisely the odd regular polygons. If $n \ge 3$ then there are strongly self-dual polytopes with a more complicated structure.

Let us start with proving some elementary properties of strongly self-dual polytopes.

Lemma 1. If v_1, v_2 are vertices of a strongly self-dual polytope P and v_1 is a vertex of the facet $\sigma(v_2)$ then v_2 is a vertex of the facet $\sigma(v_1)$.

Proof. Let v be any vertex of P. The inequality defining $\sigma(v)$ is $v \cdot x \ge -r$. For $v=v_2$, the vector $x=v_1$ lies on the facet $\sigma(v_2)$, and so $v_2 \cdot v_1 = -r$. But by interchanging the role of v_1 and v_2 , we obtain that v_2 lies on $\sigma(v_1)$.

Call a diagonal of a strongly self-dual polytope *principal* if it connects a vertex v to a vertex of the facet $\sigma(v)$. The proof of Lemma 1 implies:

Lemma 2. Every principal diagonal of a strongly self-dual polytope is of the same length.

This length α will be called the *parameter* of *P*. Clearly $\alpha = \sqrt{2+2r}$. As r > 0, we have $\alpha > \sqrt{2}$. This trivial inequality can be improved. We show that the least possible value of the parameter of a strongly self-dual polytope in a given space is the side length of the regular simplex inscribed in the unit ball:

Lemma 3. Let P be a strongly self-dual polytope in \mathbb{R}^n with parameter α . Then $\alpha \ge \sqrt{2(n+1)/n}$.

Proof. We prove more generally that if a polytope P is inscribed in S^{n-1} and contains the origin, then it has a pair of vertices at a distance at least $\sqrt{2(n+1)/n}$ apart. Since the principal diagonals of a strongly self-dual polytope are obviously its longest diagonals, this will imply the Lemma.

Observe further that we may assume that P is a simplex, since if a polytope contains the origin then some of its vertices span a simplex which also contains it.

So let P be a simplex inscribed in S^{n-1} and containing the origin. Let P' be its facet nearest 0, and let z be the orthogonal projection of 0 on P'. It is easy to see that P' contains z. Let t=|z|. We claim that $t \leq 1/n$. In fact, let v_0, \ldots, v_n be the vertices of P. Then since 0 is in P, we can write

$$\sum_{i=0}^{n} \lambda_{i} v_{i} = 0 \quad \text{with} \quad \lambda_{i} \ge 0, \quad \sum_{i=0}^{n} \lambda_{i} = 1.$$

We may assume without loss of generality that $\lambda_0 \leq 1/(n+1)$. Consider the point

$$w_0 = \sum_{i=1}^n \frac{\lambda_i}{1-\lambda_0} v_i = \frac{-\lambda_0}{1-\lambda_0} v_0.$$

This point is on the boundary of *P*. Furthermore, $|w_0| = \lambda_0/(1-\lambda_0) \le 1/n$. Hence the facet of *P* nearest to the origin is at a distance at most 1/n, which proves that $t \le 1/n$.

By induction on n, we may assume that the facet P' contains two vertices whose distance is at least

$$\sqrt{\frac{2n}{n-1}}\sqrt{1-t^2} \ge \sqrt{\frac{2n}{n-1}}\sqrt{1-\frac{1}{n^2}} = \sqrt{\frac{2(n+1)}{n}}.$$

This proves the Lemma.

i

We do not know which values of α can be parameters of strongly self-dual polytopes, except in the trivial case n=2. But the following result will be sufficient for our purposes.

Theorem 1. For each $n \ge 2$ and $\alpha_1 < 2$ there exists a strongly self-dual polytope in \mathbb{R}^n with parameter at least α_1 .

Proof. We give a construction by induction on n. For n=2 the assertion is obvious.

Let $n \ge 3$ and let P_0 be a strongly self-dual polytope in dimension n-1 such that the parameter α_0 of P_0 satisfies $\alpha_0 > \alpha_1$. Thus the radius r_0 of the inscribed ball of P_0 satisfies $r_0 > r_1 = \alpha_1^2/2 - 1$.

L. Lovász

We begin with an auxiliary construction in the plane. Let C be the unit circle in \mathbb{R}^2 and let E be an ellipse with axes 2 and $2r_0$, concentrical with C. Thus E touches C in two points x and y. Choose any t with $r_0 > t > r_1$ and let C_t denote the circle concentrical with C and with radius t. It is clear by a continuity argument that t can be chosen so that we can inscribe an odd polygon Q = $=(x_0=x, ..., x_{2k+1}=x)$ in E so that the sides of Q are tangent to C_t . Let α be an orthogonal affine transformation mapping E on C and let $y_0=x_0, y_1, ..., y_{2k+1}=$ $=x_0$ be the images of $x_0, x_1, ..., x_{2k+1}$ under α .

Consider C as the "meridian" of S^{n-1} with x as the "north pole". Let S^{n-2} be the "equator" and suppose the P_0 is inscribed in the "equator". Let, for each vertex v of P_0 , M_v be the "meridian" through v (so M_v is a onedimensional semicircle). Let L_i denote the "parallel" through y_i (i=1,...,k). We denote by u(v, i) the intersection point of M_v and L_i . Further, let u(v, 0) = x for all v. We define the polytope

$$P = \operatorname{conv} \{ u(v, i) \colon v \in V(P_0); i = 0, ..., k \}.$$

(Here $V(P_0)$ denotes the set of vertices of P_0 .) We prove that P is a strongly self-dual polytope with parameter $\sqrt{2+2r} > \alpha_1$.

Claim 1. The facets of P are

conv {
$$u(v, k): v \in V(P_0)$$
}

and

$$F^{(j)} = \operatorname{conv} \{ u(v, i) : v \in V(F), i \in \{j, j+1\} \}$$

where F is a facet of P_0 and $0 \le j \le k-1$.

Proof. Consider the affine hull $A_F^{(j)}$ of the points u(v, j) $(v \in V(F))$. Then $A_F^{(j)}$ and $A_F^{(j+1)}$ are parallel affine (n-2)-spaces $(1 \le j \le k-1)$ and so they span a unique hyperplane $B_F^{(j)}$. For j=0, let $B_F^{(0)}$ denote the hyperplane through the affine (n-2)-space $A_F^{(1)}$ and x. We denote by $H_F^{(j)}$ the closed halfspace bordered by $B_F^{(j)}$ and containing the origin. Clearly $P \subset H_F^{(j)}$.

Let, further, B_0 be the affine hull of the points u(v, k) $(v \in V(P_0))$ and let H_0 be the closed halfspace bordered by B_0 and containing the origin. Again, $P \subset H_0$. It is easy to see that

$$P = \bigcap_F \bigcap_{j=0}^{k-1} H_F^{(j)} \cap H_0$$

This proves the Claim since each $B_F^{(j)}$ as well as B_0 are spanned by the vertices of P.

Claim 2. The ball concentrical with S^{n-1} and with radius t touches every facet of P.

320

Proof. This is clear for the facet B_0 . Consider $B_F^{(j)}$. Let N be the 2-dimensional plane through 0 and x, and orthogonal to $B_F^{(j)}$; without loss of generality we may assume that N intersects S^{n-1} in the circle C featured in the auxiliary construction. Then since P_0 is a strongly self-dual polytope with inscribed ball radius r_0 , it follows that N intersects $A_F^{(j)}$ and $A_F^{(j+1)}$ in the points x_j and x_{j+1} , respectively. Thus it intersects $B_F^{(j)}$ in the line through x_j and x_{j+1} . Since by construction, the circle C_t touches this line, it follows that the ball about 0 with radius t touches the hyperplane $B_F^{(j)}$.

Claim 3. B_0 is orthogonal to the vector y_0 . $B_{F_v}^{(k-j)}$ is orthogonal to the vector u(v, j), where F_v is the facet of P_0 opposite to the vertex v.

Proof. The first assertion is trivial. To prove the second, we use induction on *j*. Let *w* be any vertex of P_0 . First we show that u(w, k) is orthogonal to $B_{F_w}^{(0)}$. This follows easily on noticing that the plane *D* through *x*, 0 and u(w, k)is orthogonal to $A_{F_w}^{(k)}$ by the hypothesis that P_0 is strongly self-dual, and since $A_{F_w}^{(k)} || B_{F_w}^{(0)}$, it follows that *D* is also orthogonal to $B_{F_w}^{(0)}$. Since $|x-u(w,k)| = \alpha =$ $= \sqrt{2+2t}$, considering this plane *D* we see easily that u(w,k) is orthogonal to $B_{F_w}^{(0)}$. Consequently, u(w,k) is at a distance α from all vertices of the facet $B_{F_w}^{(0)}$.

We can repeat the same argument to show that u(v, 1) is orthogonal to $B_{F_v}^{(k-1)}$, and then the same argument can be used to show that u(v, k-1) is orthogonal to $B_{F_v}^{(1)}$, etc. This proves Claim 3 as well as Theorem 1.

2. The chromatic number of distance graphs

We now use the existence of strongly self-dual polytopes to derive lower bounds on the chromatic number of $G(n, \alpha)$, the graph obtained by connecting all pairs of points on the unit sphere S^{n-1} at distance α apart.

In [4] the following lower bound on the chromatic number of a graph was proved. Let G be a finite graph, and define its *neighborhood complex* N(G) as the simplicial complex with vertex set V(G), where a subset $A \subseteq V(G)$ forms a simplex if any only if the points of A have a neighbor in common.

Theorem A. Let G be a graph and suppose that N(G) is k-connected $(k \ge 0)$. Then $\chi(G) \ge k+3$.

The main result of this section is the following.

Theorem 2. The graph formed by the principal diagonals of a strongly selfdual polytope in \mathbb{R}^n has chromatic number n+1.

One half of this Theorem follows immediately from Theorem A and the next Lemma.

21*

L. Lovász

Lemma 4. Let P be a strongly self-dual polytope and let G_P be the graph formed by its vertices and principal diagonals. Then $N(G_P)$ is homotopy equivalent to the surface of P.

Proof. Let $\overline{N(G_P)}$ denote the geometric realization of $N(G_P)$. Consider the natural bijection φ from the vertex set of $\overline{N(G_P)}$ onto the vertex set of P, and extend φ affinely over the simplices of $\overline{N(G_P)}$. This results in a continuous mapping $\overline{\varphi}: \overline{N(G_P)} \rightarrow \partial P$ since by the definition of the neighborhood complex and of G_P , each simplex of $\overline{N(G_P)}$ is mapped into a facet of P.

On the other hand, let $\psi = \varphi^{-1}$. Subdivide each facet of P into simplices without introducing new vertices, and let K denote the resulting simplicial complex. Then ∂P may be viewed as a geometric realization of K. Extend ψ affinely over the simplices in \overline{K} , to obtain a continuous mapping $\overline{\psi}: \partial P \to \overline{N(G_P)}$.

Now $\overline{\varphi} \circ \overline{\psi} = \mathrm{id}_{\partial P}$. Further, $\overline{\psi} \circ \overline{\varphi}$ is a simplicial map of $N(\overline{G}_P)$ into itself such that $(\overline{\psi} \circ \overline{\varphi})(S) \cup S$ is contained in a simplex of $\overline{N(G_P)}$, for every simplex S of $\overline{N(G_P)}$. Hence $\overline{\psi} \circ \overline{\varphi}$ is homotopic to id $\overline{N(G_P)}$, and the Lemma follows.

To complete the proof of Theorem 2, it suffices to remark that $G_P \subseteq G(n, \alpha) \subseteq \subseteq B(n, \alpha)$, and even $B(n, \alpha)$ is (n+1)-colorable as $\alpha \geq \sqrt{2(n+1)/n}$ by Lemma 3.

Corollary 1. If there exists a strongly self-dual polytope in \mathbb{R}^n with parameter α , then $\chi(G(n, \alpha)) = n+1$.

To treat the values α which are not parameters of strongly self-dual polytopes, we need a simple lemma.

Lemma 5. Let $\alpha < \beta < 2$. Then $G(n-1, \beta)$ is isomorphic to a subgraph of $G(n, \alpha)$.

Proof. Consider a hyperplane at distance $\sqrt{1-\alpha^2/\beta^2}$ from 0. This intersects the unit sphere in an (n-2)-sphere with radius α/β , and hence the restriction of $G(n, \alpha)$ to this hyperplane is isomorphic with $G(n-1, \beta)$.

By Theorem 1 and Lemma 5 we obtain the following.

Corollary 2. For any $\alpha < 2$, $\chi(G(n, \alpha)) \ge n$.

3. Concluding remarks

To determine the chromatic number of $G(n, \alpha)$ exactly appears to be a difficult question. For small values of α , $\chi(G(n, \alpha))$ grows probably exponentially fast with n; a similar result for euclidean spaces was proved by FRANKL and WILSON [3].

The situation is simpler when α is large; in this paper we have shown that for $\alpha > \sqrt{2(n+1)/n}$,

$$n \leq \chi(G(n, \alpha)) \leq n+1,$$

where the upper bound is attained by infinitely many values of α . If n=2, then the lower bound is attained for every α which is not the length of a diagonal of a regular odd polygon. We do not know if the lower bound is ever attained for $n \ge 3$.

References

- K. BORSUK, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math., 20 (1933), 177-190.
- [2] P. ERDŐS-R. L. GRAHAM, Problem proposed at the 6th Hungarian Combinatorial Conference (Eger, July 1981).
- [3] P. FRANKL-R. M. WILSON, Intersection theorems with geometric consequences, Combinatorica, 1 (1981), 357-368.
- [4] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A, 25 (1978), 319-324.

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF ANALYSIS I MÚZEUM KRT. 6—8 1088 BUDAPEST, HUNGARY

21*