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Self-dual polytopes and the chromatic number 
of distance graphs on the sphere 
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0. Introduction 

Let S""-1 denote the unit sphere in the »-dimensional euclidean space and let 
0 < a < 2 . Construct a graph G(n, a) on the points of S"1-1 by connecting two of 
them iff their distance is exactly a. We shall study the chromatic number of the 
graph obtained this way and prove that this chromatic number is at least n. This 
answers a question of ERDŐS and GRAHAM [ 2 ] , who conjectured that this chromatic 
number tends to infinity with n. 

Let us modify the definition of the graph and construct another graph B(n, a) 
by connecting two points of 5"1-1 if and only if their distance is at least a. The 
graph B(n, a) obtained this way is often called Borsuk's graph because a classical 
theorem of BORSUK [1] implies (in fact, is equivalent to) the result that B(n, A) 
has chromatic number at least n+1. Since, however, G(n, a) is a proper subgraph 
of B(n, a), Borsuk's theorem has no immediate bearing on the chromatic number 
of G(n, a). 

If a is larger than the side of a regular simplex inscribed in the unit ball, then 
it is easy to describe an (n+l)-coloration of B(n, a) (and so, a fortiori, of G(n, a)). 
Let R be the regular simplex inscribed in S"-1 and use the facet of R intersected 
by the segment OX as the "color" of XtS"-1. Hence if x>^2{n+ l)/n then 

Z ( G ( M ) ) S ] [ ( i ( M ) ) = » + l . 

It is easy to see that the colors of the vertices of R can be chosen different, and 
hence this is also true for oc=^2(n +1)/«. 

In this paper we apply a lower bound on the chromatic number of a general 
graph, derived in [4], to an appropriate subgraph of G(n, a). It is interesting to 
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remark that to prove this lower bound in [4], Borsuk's theorem was used. Thus in 
this sense we do establish a connection between the chromatic numbers of B(n, a) 
and G(n, a). 

In section 1 we define, construct and study certain polyhedra called strongly 
self-dual. It seems that these polyhedra merit interest on their own right. In sec-
tion 2 we state the general lower bound on the chromatic number mentioned above 
and apply it to prove our main result. In section 3 we discuss the question of 
sharpness of our results. 

1. Strongly self-dual polytopes 

Let P be a convex polytope in R". We say that P is strongly self-dual if the 
following conditions hold. 

(1) P is inscribed in the unit sphere S"~l in R" (so that all vertices of P lie 
on the sphere Sn _ 1) ; 

(2) P is circumscribed around the sphere S' with center 0 and radius r 
for some 0 < r < 1 (so that S' touches every facet of P); 

(3) There is a bijection a between vertices and facets of P such that if v is 
any vertex then the facet o(v) is orthogonal to the vector v. 

If n—2 then the strongly self-dual polytopes are precisely the odd regular 
polygons. If n S 3 then there are strongly self-dual polytopes with a more compli-
cated structure. 

Let us start with proving some elementary properties of strongly self-dual 
polytopes. 

Le mma I. If v1,v2 are vertices of a strongly self-dual polytope P and 
is a vertex of the facet o(v2) then v2 is a vertex of the facet a(vi). 

Proof . Let v be any vertex of P. The inequality defining o(v) is v-x^—r. 
For v=v2, the vector x=vt lies on the facet a(v2), and so v2-v1 = —r. But by 
interchanging the role of v± and v2, we obtain that v2 lies on <r(i>i). 

Call a diagonal of a strongly self-dual polytope principal if it connects a vertex 
v to a vertex of the facet o{v). The proof of Lemma 1 implies: 

Lemma 2. Every principal diagonal of a strongly self-dual polytope is of the 
same length. 

This length a will be called the parameter of P. Clearly a = / 2 + 2r. As r > 0 , 
we have a > / 2 . This trivial inequality can be improved. We show that the least 
possible value of the parameter of a strongly self-dual polytope in a given space 
is the side length of the regular simplex inscribed in the unit ball: 
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Lemma 3. Let P be a strongly self-dual polytope in R" with parameter a. 
Then a sV2(n+ l ) /n . 

P roo f . We prove more generally that if a polytope P is inscribed in S"~l 

and contains the origin, then it has a pair of vertices at a distance at least f / 2(n+1 )/n 
apart. Since the principal diagonals of a strongly self-dual polytope are obviously 
its longest diagonals, this will imply the Lemma. 

Observe further that we may assume that P is a simplex, since if a polytope 
contains the origin then some of its vertices span a simplex which also contains it. 

So let P be a simplex inscribed in S"1-1 and containing the origin. Let P' 
be its facet nearest 0, and let z be the orthogonal projection of 0 on P'. It is 
easy to see that P' contains z. Let t=\z\. We claim that t s l/n. In fact, let 
v0, ...,v„ be the vertices of P. Then since 0 is in P, we can write 

2 AjO, = 0 with Xi ^ 0, 2 h = 1-
1=0 . ¡=0 

We may assume without loss of generality that A 0 ^l / (n+l ) . Consider the point 

wo = 2-j—rvi — ¡=1 1— ¿0 l—^o 

This point is on the boundary of P. Furthermore, |w0|=A0/(l— A0)=l/«- Hence 
the facet of P nearest to the origin is at a distance at most l/n, which proves that 
t^l/n. 

By induction on n, we may assume that the facet P' contains two vertices 
whose distance is at least 

This proves the Lemma. 

We do not know which values of a can be parameters of strongly self-dual 
polytopes, except in the trivial case n=2. But the following result will be sufficient 
for our purposes. 

T h e o r e m 1. For each n^2 and a x < 2 there exists a strongly self-dual polytope 
in R" with parameter at least . 

Proof . We give a construction by induction on n. For n = 2 the assertion 
is obvious. 

Let /7^3 and let P0 be a strongly self-dual polytope in dimension n—1 such 
that the parameter a0 of PQ satisfies a 0

> a i - Thus the radius r0 of the inscribed 
ball of P0 satisfies r^rx=tx 1/2 — 1. 
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We begin with an auxiliary construction in the plane. Let C be the unit circle 
in R2 and let E be an ellipse with axes 2 and 2r0, concentrical with C. Thus 
E touches C in two points x and y. Choose any t with r^t^-r^ and let 
C, denote the circle concentrical with C and with radius t. It is clear by a continuity 
argument that t can be chosen so that we can inscribe an odd polygon Q= 
=(x0=x,..., x2t+i=x) in E so that the sides of Q are tangent to Ct. Let a be 
an orthogonal affine transformation mapping E on C and let y0=x0,yi, •••, J ^ + i — 
=x0 be the images of •••,x2k+1 under a. 

Consider C as the "meridian" of S w i t h x as the "north pole". Let 
Sn~2 be the "equator" and suppose the P0 is inscribed in the "equator". Let, 
for each vertex v of Pa, Mv be the "meridian" through v (so Mv is a one-
dimensional semicircle). Let Lt denote the "parallel' through yt (/ = 1, ..., k). 
We denote by u(v,i) the intersection point of Mv and Lt. Further, let u(v,0)=x 
for all v. We define the polytope -

P = conv {u{v, i): vf V(P0); i = 0, ..., k}. 

(Here V(P0) denotes the set of vertices of Pa.) We prove that P is a strongly 
self-dual polytope with parameter l /2+2r>a 1 . 

Claim 1. The facets of P are 

conv {u(v, k): vZV(P0)} 
and 

f°> = conv {«(»,»): i£{j,j+l}\ 

where F is a facet of P0 and O^j^k — 1. 

Proof . Consider the affine hull A^ of the points u(v, j) (v£V(F)). Then 
Ap* and A^+r> -are parallel affine (n—2)-spaces (1S j ^ k — l ) and so they span 
a unique hyperplane For j = 0 , let B ^ denote the hyperplane through the 
affine (n—2)-space A^ and x. We denote by H(/} the closed halfspace bordered 
by B ^ and containing the origin.. Clearly PczH^. 

Let, further, B0 be the affine hull of the points u(v, k) (vg V(P<$) and let H0 

be the closed halfspace bordered by B0 and containing the origin. Again, PczH0. 
It is easy to see that 

p = nnBpnH0. . • , 
F j=0 

This proves the Claim since each as well as B0 are spanned by the vertices 
of P. 

Claim 2. The ball concentrical with Sn~1 and with radius t touches every 
facet of P. 
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Proof . This is clear for the facet B0. Consider B^K Let N be the 2-dimen-
sional plane through 0 and x, and orthogonal to B^; without loss of generality 
we may assume that N intersects S n _ 1 in the circle C featured in the auxiliary 
construction. Then since P0 is a strongly self-dual poly tope with inscribed ball 
radius 7-0, it follows that N intersects A^ and A^+1) in the points x} and 
JCj+1, respectively. Thus it intersects B(f in the line through Xj and xJ+1. Since 
by construction, the,circle C, touches this line, it follows that the ball about 0 
with radius t touches the hyperplane B^. 

Claim 3. B0 is orthogonal to the vector B(p~j) is orthogonal to the 
vector u(v,j), where Fv is the facet of P0 opposite to the vertex v 

Proof . The first assertion is trivial. To prove the second, we use induction 
on j. Let w be any vertex of P0. First we show that u(w,k) is orthogonal to 
B f \ This follows easily on noticing that the plane D through x, 0 and u(w, k) 
is orthogonal to A^ by the hypothesis that P0 is strongly self-dual, and since 

, it followsWthat D is .also orthogonal to Bf^- Since A:)|=a= 
= f l + 2t, considering this plane D we see easily that u(w, k) is orthogonal to 

Consequently, u(w, k) is at a distance a from all vertices of the facet 2?®. 
We can repeat the same argument to show that u(v, 1) is orthogonal to 

and'then the same argument can be used to show that u(v,k— 1) is orthogonal 
to BjP, etc. This proves Claim 3 as well as Theorem 1. 

2. The chromatic number of distance graphs 

We now use the existence of strongly self-dual polytopes to derive lower bounds 
on the chromatic number of Gin, a), the graph obtained by connecting all pairs of 
points on the unit sphere S" - 1 at distance a apart. 

In [4] the following lower bound on the chromatic number of a graph was 
proved. Let G be a finite graph, and define its neighborhood complex N(G) as 
the simplicial complex with vertex set V(G), where a subset A Q V(G) forms 
a simplex if any only if the points of A have a neighbor in common. 

Theo rem A. Let G be a graph and suppose that N(G) is k-connected (k^O). 
Then xiG)^k+3. 

The main result of this section is the following. 

Theo rem 2. The graph formed by the principal diagonals of a strongly self-
dual polytope in R" has chromatic number n+1. 

One half of this Theorem follows immediately from Theorem A and the next 
Lemma. 

21* 



322 L. Lovász 

Lemma 4. Let P be a strongly self-dual poly tope and let Gp be the graph 
formed by its vertices and principal diagonals. Then N(GP) is homotopy equivalent 
to the surface of P. 

Proof . Let N(GP) denote the geometric realization of N(GP). Consider the 
natural bijection <p from the vertex set of N(GP) onto the vertex set of P, and 
extend (p affinely over the simplices of N(GP). This results in a continuous mapping 
<p: N(GP)-*dP since by the definition of the neighborhood complex and of GP, 
each simplex of N(GP) is mapped into a facet of P. 

On the other hand, let i//=<p_1. Subdivide each facet of P into simplices 
without introducing new vertices, and let K denote the resulting simplicial complex. 
Then dP may be viewed as a geometric realization of K. Extend i¡/ affinely over 
the simplices in K, to obtain a continuous mapping dP—N(GP). 

Now (po\ji—idbp. Further, ipocp is a simplicial map of N(GP) into itself 
such that (¡¡¡o(p)(S)US is contained in a simplex of N(GP), for every simplex 
5 of N(GP). Hence ¡J/oip is homotopic to id j^r^, and the Lemma follows. 

To complete the proof of Theorem 2, it suffices to remark that GPQG(n, cc)Q 
QB(n,a), and even B(n, a) is (« +l)-colorable as («+ l)/n - by Lemma 3. 

C o r o l l a r y 1. If there exists a strongly self-dual polytope in R" with parameter 
a, then x(G(n,a)) = n + l. 

To treat the values a which are not parameters of strongly self-dual polytopes, 
we need a simple lemma. 

Lemma 5. Let a</?<2. Then G(n—l,/}) is isomorphic to a subgraph of 
G(n, a). 

Proof . Consider a hyperplane at distance \ l — a2//?2 from 0. This intersects 
the unit sphere in an (n—2)-sphere with radius a//?, and hence the restriction of 
G(n, a) to this hyperplane is isomorphic with G(n— 1, /?). 

By Theorem 1 and Lemma 5 we obtain the following. 

Coro l l a ry 2. For any a<2 , x(G(n, a ) ) sn . 
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3. Concluding remarks 

To determine the chromatic number of G(n, a) exactly appears to be a difficult 
question. For small values of a, %(G(n, a)) grows probably exponentially fast 
with n; a similar result for euchdean spaces was proved by FRANKL and WILSON [ 3 ] . 

The situation is simpler when a is large; in this paper we have shown that for 
a>j/2(n + l)//i, 

n^x(G(n,<x)) s n + 1, 

where the upper bound is attained by infinitely many values of a. If n=2 , then 
the lower bound is attained for every a which is not the length of a diagonal of a regu-
lar odd polygon. We do not know if the lower bound is ever attained for 
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