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The behavior of the Riesz representation theorem 
with respect to order and topology 

J. HORVATH 

Dedicated with admiration to Beta Sz.-Nagy on the occasion of his 70th birthday 

The celebrated representation theorem of Frederick Riesz, the revered teacher 
of both Bela Sz.-Nagy and myself, can be stated in the following form: every Radon 
measure on an open interval of the real line is the derivative in the sense of distri-
butions of a function which is locally of bounded variation. In the present note 
I want to. give some precisions about how this correspondence between functions 
locally of bounded variation and Radon measures behaves with respect to the 
topologies and the order structures on the two spaces involved. 

1. Let I be a non-empty open interval ]a, b[ of the real line R, which may 
be finite or infinite, i.e., — ° W e shall only consider real-valued func-
tions and real measures in this note. We denote by the vector space of all 
functions / : /—R whose total variation 

cjM) = sup 2 IfixJ-fixj-Jl A } = 1 

is finite on every compact subinterval [a, jSJ of I ; here the least upper bound is 
taken with respect to all subdivisions 

(1) A: a = x0 x, = /? 

of [a, /?]. Each is a semi-norm. We consider "^{I) equipped with the non-
Hausdorff locally convex topology defined by the family (qxp) of semi-norms, 
where [a, p\ varies in I. 

A preorder compatible with the vector space structure of ' f ( I ) is defined if 
we take for the cone P of positive elements the set of all increasing functions. 
Then P P l ( — P ) consists of the constants and is, incidentally, also the closure of {0} 
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in the topology defined above. Every is the difference of two increasing 
functions, i.e., r(I)=P-P, and therefore f{x—0) and /(x+0) exist at every 
x(íl. Any two elements /, gd 1^(1) have a least upper bound sup (/, g) which is 
determined up to an additive constant. In particular the positive variation <P = 
= v a r + / = s u p ( / , 0) of /£1^(1) is defined up to an additive constant; it is an 
increasing function such that <P—/ is increasing and such that, whenever g is an 
increasing function for which g—f is increasing, then g— <P is increasing; it is 
given explicitly by the formula 

* ( 0 ) - * ( a ) = sup ¿ m a x ( / ( * , . ) - / ( * , _ 0 , 0 ) , 
A i=i 

where and the least upper, bound is taken with respect to all sub-
divisions (1). Similarly, the negative variation !P=var ~/=sup (—/, 0) is defined, 
and F = <P+!P=var/=sup(/, —/) is the absolute variation of /. 

Since each / € f ( 7 ) is locally integrable, we can associate with it the Radon 
measure Tf which has density / with respect to Lebesgue measure, i.e., which is 
given by 

(Tf,q>) = fcp(x)f(x)dx 
i 

for all functions (p belonging to the space Jf(/) of continuous functions with 
compact support in /. 

With we can associate a second Radon measure, the Stieltjes measure 
S f , defined by the Stieltjes integral 

(Sf,cp)= f <p(x)df(x) 
i 

for all (p£X(!). The inequality 

(2) \(Sf,<p)\^qlfi(f).max\<p(x)\, 

valid for all with Supp <pc[a, /?], shows that Sf is indeed a Radon 
measure. Clearly, f*-+Sf is a linear map from y ( I ) into the space Jt(l) = 
of all Radon measures on /. For we have 

PD =Afi~0)-/(a+0), S,([a, p]) = / 0 ? + 0 ) - / ( a - 0 ) , 

SfQi, P\) =/0?+0)-/(a+0) , Sj([a, p¡) = / ( / J - 0 ) - / ( « - 0 ) . 

The integration by parts formula 

/ q>(x) df(x) = - / <p'(x)f(x)dx 
i i 
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holds in particular for all <p belonging to the space 3>{I) of all infinitely differ-
entiate functions with compact support in I. Rewriting it in the form 

we see that Sf is the derivative 8Tf in the sense of distributions of T f . 
The representation theorem of Frederick Riesz now states that the map f<-*Sf 

is surjective from " f ( I ) onto. Ji{l) [2]. It follows from the formulas (3) that Sf=0 
if and only if there exists a constant C€R such that / ( x — 0 ) = f ( x + 0 ) = C 
at each x£7. It follows furthermore from (3) that if ¡J. is a positive measure, 
one can find an increasing function f^i^(I) for which It is obvious that, 
conversely, if / is increasing, then Sj- is positive. 

2. If n=Sf, we do not have necessarily \fi\ = S w f . Indeed, take 1=R 
and let f ( x ) = 0 for x^O and /(0) = 1. Then v a r + / is the Heaviside function 
Y, var ~f is the function taking the value 0 for i s O and the value 1 for x=-0, 
and 

Thus Sn,f=26 but 5'/=|S'/|=0. The situation improves if we suppose that 
f(x) is between /(x—0) and /(x+0): 

T h e o r e m 1. 7//€ir(/), then 

If we assume furthermore that f ( x ) is between f ( x — 0) and /(x+0) for every 
x£l, then the sign of ¡equality is valid in the three inequalities. 

P r o o f . Set $ = v a r + f !P=var~f and F = v a r / . Both $ and / are 
increasing functions, hence 5 * ^ 0 and S 0 ^ S f , i.e., S ^ s S ^ . One sees similarly 
that S ^ S J . Thus SP=S*+Srs=Sf+Sj = \Sf\. 

Assume next that / is continuous and let n be a positive measure on I such 
that nSSf. There exists an increasing function g such that Sg=n. It follows 
from the above remarks that we can find an increasing function h such that Sh~ 
= H — S f = S g _ f and which satisfies 

(S„<p)=-(Tf,<p') = (dTf,<p), 

0 if x < 0, 
var/ = 1 if x = 0, 

2 if x > 0 . 

(4) Hx-0) = g ( x - 0 ) - / ( x ) , h(x+0) = g(x+0)-/(x) 

at every x£7. Since g is increasing, we have 

(5) g ( * - 0 ) - / ( * ) si g(x)-/(x) s g (x+0)-/(x) 
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at each x£[. Formulas (4) and (5) imply that g—f is an increasing function. 
It follows from the definition of v a r + f that g—<P is increasing. Hence fi = Sg^S0, 
and so is indeed the measure =sup ( S f , 0). One can prove in exactly the 
same way that Sv=Sj=sup i ~ S f , 0). Thus we have also SF=SCl+Sv= 
=S} + SJ = \S,\. 

Consider now a pure jump function f £ V ( I ) . Such a function is determined by 
two families (/x)xS/, (rx)x i I of real numbers such that for every compact subset 
K of I we have 2 and 2 K H 0 0 - Writing jx=lx+rx and taking 

x£K x£K 
<2<a</?<6, the function / is given up to an additive constant by the formula 

m - m = ra+ 2 L+h-2 fi 

One has f(x)—f(x—0)=lx,f(x+0)—f(x)=rx, i.e., / is the pure jump function 
with left jump lx and right jump rx at x. If we define lx = max (lx, 0), l~ = 
=max ( — l x , 0), and similarly for r~, then <P=var+/ is the pure jump 
function with jumps lx,r+, f = v a r ~ / is the pure jump function with jumps 
lx, r~, and F = v a r / is the pure jump function with jumps |/J, The corresp-
onding Stieltjes measures are Sf = 2 jx&x> S9= 2 Sy— 2 Ux+rx)^x 

x£I x£I xil 
and 5 F = ^ ( | / X | +1^1)5,. On the other hand, |S/-| = 2 IaI^X- If we assume that 

x i l x£I 

f i x ) is between fix—0) and /(x+0), then L/xl̂ KxI + kxl and so S'f.= |S'/[. 
Every function feVil) can be decomposed into a sum f = f c + f j of a con-

tinuous function /C<EV(/) and a pure jump function and this decomposi-
tion is unique up to an additive constant. If / satisfies the condition that f i x ) 
is between f(x+0) and fix—0), then so does f j since / has the same jumps 
as f j . The measure S f j is concentrated on the countable set of points where the 
jumps of f are non-zero, i.e., S f j is atomic. By virtue of (3) the measure S f c 

of every countable set is zero, i.e., S f c is diffuse. It follows from what has been 
said above and from [1], Chap. V, §5, n° 10, Proposition 15 that 

(6) IS,I = |S/C| + \Sfj\ = Svar/c + Svar/,. 

Since the functions v a r f c — fc and var f j — f j are increasing, so is var / c + v a r f j — f 
and therefore also var/ c+var/y—var/. Thus 

(7) ^var/c '̂̂ var/j- — "Svar/ = SF . 

Combining (6) and (7) we obtain The opposite inequality has already 
been proved as the first assertion of the theorem, hence |Sy| = SF. 

Finally we have S9=(lJ2)(SP+Sf)=(l/2)(\Sf\+Sf)=S} and Sv= 
= (l/2)iSF—Sf)=(l/2)(\Sf\ — S f ) = SJ. 

3. To conclude, I want to show that the map f>--Sf behaves in the best possible 
way with respect to the topologies involved. I announced this result earlier ([2], 
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Theorem 2) with a somewhat terse proof. The "good" proof is based on the following 
simple, general observation: 

T h e o r e m 2. Let X be a locally compact, paracompact topological space. 
The semi-norms /¿>-*-|/i|(K), where K runs through the compact subsets of X, define 
on the space Jt(X) of Radon measures the strong topology FS(Jt(X), J f ( X ) ) . 

P r o o f . Let us denote by the topology defined by the semi-norms (K). 
(a) Let V be a neighborhood of 0 for the topology ST. We may assume that 

V is of the form {p.£Jt(X): where £>0 and K is a compact subset 
of X. Let L be a compact neighborhood of K. The set 

B = {(p<E$r(X): Supp <p c L, |<p(x)| 1/e} 

is bounded in J f ( X ) . Consider an arbitrary fi in the polar B° of B. If cp is 
a positive function in B and \j/£Jf(X) is such that \\j/\^<p, then \j/ also belongs 
to B, and it follows from [1], Chap. Ill , § 1, n° 5, formula (9) that 

< H <p) = sup (ji, i l / ) s l . 
|iWs? 

tzxrm 

By [1], Chap. Ill, § 1, n° 2, Lemme 1 there exists <p£B such that XK—E(P• Thus 

and therefore n£V. We have proved that V contains the strong neighborhood 
B° of 0. 

(b) Conversely, let W be a strong neighborhood of 0. We may assume that 
W =B° where B is a bounded subset of Since X is paracompact, by [1], 
Chap. Ill , § 1, n° 1, Proposition 2 (ii) there exists a compact set K<zX and a number 
y>0 such that Supp (pczK and for q>(LB, x£X. The set 

is a ^"-neighborhood of 0. If ii£V and (pZB, then \<p\^y*/_K and therefore 

\(p, cp) I == |<M, M>| ^ 7- Wxk) = y\n№ == 1. 

Thus and we have proved that VaW. 
If (Kv) is a family of compact subsets of X such that each compact subset 

of X is contained in some Kv, then the strong topology on J((X) is also defined 
by the family of semi-norms [u—-\n\(Kv). 

If X is locally compact but not paracompact, then the semi-norms n>-*\n\(K) 
define the quasi-strong topology ([1], Chap. Il l , §1, Exerc. 8) on J((X). 

4. "We are now ready to prove the result referred to above. 
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T h e o r e m 3. The surjective linear map f>-+Sf from onto Jt(l) is a 
strict morphism if we equip M ( I ) with the strong topology. 

P r o o f , (a) We first prove that the map is continuous. Let B be a bounded 
subset of Jf(7). There exists a compact subinterval [a, /?] of / and a number 
y > 0 such that Supp <p(z[a, /?] and for (p£B, x£I. Define a neigh-
borhood of 0 in TT(7) by 

V= { f z r { J ) : ^ ( / I s l / f } . 

If /ÇV and <p£B, then by inequality (2) we have K^y, <p)|Sl, i.e., Sf belongs 
to the neighborhood B° of 0 in Jt{I). 

(b) Now we prove that the map is open. Let F be a neighborhood of 0 in 
which we may assume to be of the form 

V={fíV{iy. qap{f) ^ £}, 

where K=[a, )8]c7 and e>0. Let W be the neighborhood {p£Jt(l):\p\(K)^£} 
of 0 in J({1). Given p€fV, we want to find an / in V such that n=Sf; then 
we will have proved that the image of V contains W. 

The existence of such an / is implicit in the proof of Theorem 1 of [2] but we 
can also proceed as follows. Let ¡x=p+—p~, then \n\=p++p~. There exist 
increasing functions g and h such that p+= SB, p~=Sh. Then by virtue of the 
formulas (3) 

qxP(g) S g(p+0)-g(a-0) = p+(K) 

and similarly qxP(h)^n~{K). Setting f=g-h we have Sf=Sg-Sh=p+—p~=p 
and 

M / ) ^ **(«)+ft* Ü0 = N+(K)+p-(K) = \P№ ^ E, 
i .e . ,/€F. 
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