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Von Neumann’s coordinatization theorem »

ISRAEL HALPERIN
In Honour of Béla Szdkefa Iui-Nagj on his 70th birthday

1. Notation. L denotes a complemented, modular lattice with homogeneous
basis a,...,ay, N=4 [2; Part II, Def. 3.1]; 4'=a,V...Va;; ab means apb;
aVb means aVb if ab=0; L;=(b€L:bVa;=a,Va)). :

If # isaringandm=N,then 2"(m) denotes the right #-module (s -ees ay):
all 0,62 and «=0 for m<i=N); (%,..,%,), is an abbreviation for
(&15 <o Oy O, ..., OVERN(m); RV=R"(N); L(#"(m)) denotes the set of finitely
generated submodules of #™(m), ordered by inclusion.

2. Von Neumann’s theorem. In each Lj; (j#i), addition and multiplication can
be defined so that: : _

(2.1) The Ly become regular rings with unit, isomorphic to a common regular
ring # [2, Part 11, Theorem 9.2].

(2.2) For each j the sublattice (b€L:b=a;) is isomorphic to IL(Z), the
lattice of principal right ideals of # [2, Part II; Theorem 9.2].

(2.3) L is isomorphic to L(#")[2, Part II, Theorem 14.1].

3. Outline of von Neumann’s proof. (3.1) Choose ¢;;=c;, 2=j=N, so that
cpVa;=cpVay=a;Vay; set cy=(cpVe)a;Vay) for 1,14,/ all different.

(3.2) Call a family a=(x;€L;;: i#/j) an L-number if (a;Vcp)(@Va)=oy,
and (a;Vep)(@;Va)=ay. Note: For every bCLj; there exists a unique L-number
o with a;=>5 [2, Part II; Lemma 6.1]. ’

(3.3) Let # denote the set of L-numbers with operations:

@+p); = (ajkv(ﬁjiv ay)(a;V cw))a;Vay,
(aﬁ)ji = (O‘jkvﬁki)(a jV a;).

(3.4) Foreach ac# and 1=j=N, define the reach of « into a; by ocg.’)z

=(x;;Va)a; (does not depend on i, i #j).
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(3.5) Prove: ay=p has a solution y if and only if ﬂg-’)éaﬁ.” (holds for all
j if for some j) [2;, Part 1I, Lemma 9.4] or (1, (3.2) with multiplication reversed].

(3.6) Prove: For each b=a;: b=e§-’) for some*idempotent e€Z% [2, Part II,
Theorem 9.3].

(3.7) Deduce: Parts (2.1); (2.2) of the theorem hold {2, Part 1I, Theorem 9.2].

(3.8),, Prove: For 1=m=N there exists an isomorphism

@On: (bEL: b=A™) —~ L(#"(m)) with ¢, C @, C...C @y.

Note: ¢y establishes Part (2.3) of the theorem. The outstanding difficulty in von
Neumann’s proof is to establish the ¢,,.

4. Von Neumann’s strategy to prove (3.8),. (4.1) Call b an m-element if
() m=1and b=a,, or (ii) 2=m=N and by A™ '=4"

(4.2) For each m-element b define ¢@(b), a submodule of L(.%"(m)) as
follows:

() If b=a, define @(b)=(e,0,...,002 with ‘e idempotent and e"=b.

(i) If 2=m=N define @b)=(—0y, ..., —0p-1, 1)ye with e idempotent
and €¥=(4""'vb)a,, with b'VeP=a, and (y im=(be’VAi‘1Vai+1v...
Va,-1)aVa,).

Note: @(b) is determined uniquely by b though e, b’, and the «; may not be;
also (ay), (A'"‘lVb)=(bVAi‘1Va,-+1V...Va,,,_l)(a-Va,,,).

(4.3) For each x€L and decomposition x—Vx with x; an i-element,
i=1

(such decompositions exist for all x), assign to x the submodule @(x;)+ ... +@(xy).
(4.4),, Prove: the set (@(x)+...+¢(x,): x=A™)=L(#"(m)).

(4.5),, Prove: For decompositions x=Vx,-,y=\'/y,~: x=y if and only

if S’(p(xi).s_ Zm'(p(y,-). Note: (4.5), implies that ¢, (x)= th(x) has the same
i=1 i=1
value for all decompositions of x; then (4.4),, (4.5, estabhsh 3.8),,-

Von Neumann established (4.4),, without difficulty [2, Part II, Theorem 11.2];
(4.5), follows immediately from (3.5), (3.6). But von Neumann’s proof of (4.5),,
2=m=N [2, Part 11, pages 168—208), is a virtuoso demonstration of mathematical
technique.

5. A new proof of (4.5),,, 2=m=N. We use direct lattice calculations (for the
case m=2, in particular) and reduce part of the case m (to the case m—l) when
3=m=N.

We require the following properties of L-numbers.

.1 (a_B)jk = (ajiv (akVﬂji)(ajV Cik))(ajvak) 1, 2.3)}:
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hence _
(5.2 - @—p)" = (ajivﬂji)aj’
(5.3) (@+B7);: = (BaV (@Y @)V a,))a;V a;)

{1, (5.2) with multiplication reversed]

6. Proof of (4.5),. We assume x;=a;, y,=a;, X,V =a,Va,, y.Va,=a,V a
and we need to prove:

(6.1) xVx,=y,Vy, if and only if ¢(x1)+@(x)=@(y1)+¢(r2). Because of
modularity we need consider only the case x;=0, ¢(x;)=0 (use (4.5),).

Now the inequality @(x;)=@(y,)+@(y,) is equivalent, in turn; to each of:

(6.2 (= (xoe(x), e(xa))y = (e(¥1), O)y By +{(— (32)e(y2), e(y)nBe
for some By, B.€ZX;
(6.3) e(yoe(xz)=e(x;) and (o (y2)e(xs)—a(x)e(x))” = (e(y)){”;
(6.4) (a,Vx)a,=(a,Vy)a, and, (use (5.2)),

(o (xp)e(xp)hisV (an (P e (xDhs)ar = yi;

6.5) . (1) ayVx=a,Vy, and
(i) (a(xde(xX))s=y1V ((“1(}’ 2)e(X2))1-

The inequality (6.5) (ii) is equivalent to each of:

(6.6) (Ca (xaD1zV (e rals)(@1V ag) = 11V (1 (PDiaV (€ (x3))zn),
6.7) (o (eaD)nzV (€(x2))es)(a1V a5V (€(x2))en) = 11V (1 () h2V (€ (%2))ss,
(6.8) (0 (xhe(@1V (@5 V (e (x2))as) a3) = y1V (02 (V2)has
(6.9) (0 (xDha(a1V (@ V (e(x2))a) a2) = »1V (o (¥2D)rzs
(6.10) (o (x)2(@1V x2) = 3, V(o (P e

Now (6.5) (i) and (6.10) together are equivalent to:
(6.11) X2 =1 VYes

which establishes (6.1), i.e. (4.5),.

7. Proof of (4.5),, assuming (4.5),,_;; 3=m=N. We assume x;=A4""1, y =
=A™ XV A" =AT, p,V A" =A™ and we must prove

(7.1) x,Vxp=»Vy, if and only if @,_1(x1)+@(X2)=¢,-1(y1)+¢(y;) where
®n-1 is the isomorphism on 4™ determined by ¢ (existing since (4.5),_, is
assumed to hold). We may assume that x;=y, (=z, say).
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We recall that [2, Part II, Lemma 13.2] states: if a=b then every x can be
expressed as (x\Va)(xVc) for some ¢ with aVc=b. Repeated application of this
lemma shows that our z can be expressed as z®) Az® /\.../\z("'“) where, for each
Jj<(m—=1): z29va;=A4""1, and z"VDz=4""2

It is clearly sufficient to establish (7.1) with z replaced by 2, j=1,...,m—1.
Thus, in (7.1), we need consider only:

case (1): z=A™% and case (2): zVa;=A™"" for some j<(m—1).

The proof of (7.1) for case (1). We use lattice calculations as in the
proof of (4.5), in § 6. With the present z, x,, y,,

Om-1(2) =B+t s R+t R

where u; is the vector in #Y with j-th component 1 and all other components 0,
and g is an idempotent with (g)? ,=za,,_,.

Let

P() = (s =2 Dwe, @(32) = (~Bs o sy DS R,

Then the last inequality of (7.1) is equivalent to each of the following:
(72) () ef=e and (i) (Bp-1—om-1)e€ g%,
(73) () (VA" V8, =V A" g, ie, XVA" =y, VA’”“, and
(i) ((Br—1—%m-1)€)S 1 =2Gp_,
Choose any k=N with k dlﬁ'erent from m—1, m. Then (7 3) (i) is equiv-
alent to each of the following:

7.9 ((Br=19),-1..V Cm-10),,_, )1 = 20 _y;

7.5 R CT N zam_IV(ﬁm_l)m_l’mVemk; |

(7.6) (Om-1_s, m(Am-1V AV Er) = zam_;V(ﬁm-l)m_,'mVemk;
X)) (a,,,_l)m_lym(a,,,_1Va,,,(akVe,,,k)) = 281V B,y e

The left hand side of (7.7) equals
@n=ppor(Gmm1V €D) = s, (Y A™D) = (raV A" (@ ).
In the presence of (7.3) (i), the right hand side of (7.7) may now be replaced by each of
(21 By OV A, 20 2V G2V A" ) @V ),
(VA" za,, ) (a,Va,_-), (¥V2) (amVam_l), ysVz,
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so (7.4) (ii) is equivaleﬁt to each of
(xVA" )V an-1VA"T D) = yVz, XVA"E=2zVy,.
Thus (7.4) is equivalent to: x,= szz and this establishes (7.1) for case (1).

The proof of (7.1) for case (2) Choose z,.; so that z,,,_l\'/zaj=
=2(a;V@p-1). Then: z, 1=z 2,1V a;=0p_1V 8} Zpy VA" F=2zV A" 2= g1
and ¢,_1(Zn-1)=90H-1)=(, ..., =8,0, . 1),,,96? with —p in the j-th place
and 1 in the (m—1)-th place.

Set Xo=(X;VzZp-)(A™2Va,), Je=(¥:VZp-1)(4""%Va,). Then X,A™" '=0=
=5,A™Y; zVXy=2zV X,; zVFs=2zVy, and so the inequality zVx,=zVy, can be
expressed as: zVX,=zV ;. ' ,

If (p(x2)=(A—oc1,’ vy TUpogy Uy, I)N‘e'% and (P(y2)=(_ﬂl.’ crey _ﬂm—2a
—Bu-1, DnfZ# then (use (5.3)): '

90(552) = (_al, <oy &1, _aj_ﬁam—p =&y eeey —Opy—25 0, l)Ne.%,
(P(}_’z) = ("‘ﬂl’ cees —'ﬂj—n _"Bj—ﬁﬁm—h _ﬁj+1’ vary —ﬁm—Z’ 0, l)Nf'%

so the inequality

Pm-1(2)+ 9 (X)) = @p-1(2)+0 (1)
can be expressed as:

On-1(2)+ @ (%) = @p_1(2)+0(72)

(use: (0, ...;0, =B, 0, ..., 1)y(Bp-1—%n-1)e, With — B in the j-th place and 1 in the
(m—1)-th place, is in @,,_1(2))-

Thus we need only prove (7.1) in case (2) with z, x,, y, replaced by z, X;, ¥,
respectively. We may now also replace z by z=zA"~2 Then we observe that all of
Z; X35 Vas _A’"‘2\7a Hence we can apply (4.5),,—1 with ay, ..., @y —3, a,,-1 replaced
by ay, ..., an-z, Gy (replacing (a3, ..., @p-y)y in RY(m— 1) by (g, ves Oz, 0,

®,—1)y IN 92 N(@m)); this replacement is permltted because it preserves the order of
the a;, and the functions ¢, ¢,_,. This establishes (7.1) for the case (2) and
completes the proof of (4.5),,. This completes the proof of von Neumann’s theorem.

8. Supplementary remark. Call a;;...,ay, N=3 a Desarguesian basis for
a complemented modular lattice L if for some ¢y;, j>1:

(i) (Bjarni J6nsson) a; is perspective to some b;=q, for i =2 with b,=b;=a,;

(ii) a,a,=asx(a,Va)=0 and a,V...Vay=1, and '

(iii) the formulae (3.3) make £ a regular ring if, in the definition of L-number,
i, j are restricted to {1, 2, 3}.

If such a Desarguesian basis for L exists, then the a;, i>3 can be altered
so that {a, ..., ay} becomes an independent basis for L and, with some changes,
the above proof of von Neumann’s theorem holds; the condition (iii) can be replaced

L ]
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by certain Desarguesian-type lattice conditions (K. D. FRYER and 1. HALPERIN,
Acta Sci. Math., 17 (1956), 203—249; B. JoNssON, Trans. Amer. Math. Soc., 97(1960),
64—94).

The proof is simplified when, in the definition of L-number, the i, j are further
restricted to j<i; but then the use of €} in (4.2) above and (e(x)),, in (6.9) above,
and the use of k (<m—1)in (7.5) above (wheri m=N) must be (and can be) adjusted.
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