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On a representation of deterministic frontler-to-root
tree transformations
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In [8] M. STEINBY introduced the concept of the product of tree automata (the
product of universal algebras, if we disregard the initial vectors and final states),
and gave an algorithm to decide for every finite system of algebras whether or not
it is isomorphically complete with respect to the product. So far, no similar result
has been proved for homomorphic completeness. Moreover, by the knowledge of
the author, there are no investigations concerning a system K of algebras which
is complete for a system L of tree transformations in the following sense: every
transformation from L can be induced by a tree transducer built (in an obvious
way) on a product of algebras from K.

In this paper we introduce special types of products which are the tree automata
theoretic generalizations of a;-products of finite automata introduced in [3]. More-
over, we shall study a weaker form of the last-mentioned completeness (to be called
m-completeness) with respect to the product and the «;-products for the class of all
deterministic tree transformations.

1. Notions and notations

By an operator domain we mean a set X together with a mapping »: £—~N,
which assigns to every o€ X an arity, or rank r(¢), where N, is the set of all non-
negative integers. Forany m=0, Z,,= {o€ Z[r(s)=m} is the set of the m-ary operators
(or operational symbols). If- X is finite then it is called a ranked alphabet. In the
sequel we shall generally omit r in the definition of an operator domain X. More-
over, we shall suppose that if an operator belongs to more than one operator domain
then it has the same rank in all of them.
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178 F. Gécseg

A finite subset RS N, is a rank type. It is said that the rank type of a ranked
alphabet X is R if r(Z)=R; thatis R consists of all m€N, for which Z,=0.

The set of Z-trees over Z (or Z-polynomial symbols with variables from 2Z)
will be denoted by F(Z). Moreover, for every m=0, F7(Z) is the set consisting
of all trees p€ Fy(Z) with h(p)=m, where h(p) is the height of p.

In the sequel we shall use the terms “node of a tree” and ‘‘subtree at a given
node of a tree” in an informal and obvious way. Moreover, relabeling of nodes
of a tree will mean that every label of a tree which is an operator is replaced by an
arbitrary operator of the same rank.

The symbo! X will stand for the countable set {x;, x,, ...} of variables, and
for every n=0, X,={x;, ..., X,}.

Let R be a rank type. Take an operator domain X of rank type R and
a tree p€Fy(X,) for some n=0. Consider another operator domain Q of rank
type R (not necessarily different from 2) and a tree g€ Fo(X,). We say that g is
similar to p if the following conditions are satisfied:

(i) there exist relabelings of the nodes of p and g such that the resulting trees
coincide,

(ii) if at two nodes d, and d, of p the subtrees coincide then ¢ also has
the same subtree at d;, and d,.

The class of all trees similar to p will be denoted by [p].

Take a class § of trces. We say that S is a shape of rank type R if there
exist a ranked alphabet X of rank type R, a non-negative integer n=0 and a tree
PEF(X,) suchthat S=[p]. The height h(S) of S is h(p). A shape S is trivial
if S={x;} for some x;6X. Otherwise § is called nontrivial. If we want to
emphasize that all the frontier variables occurring in trees from § belong to X,
then we write S(n) for S.

Let X be an operator domain. A X-algebra &/ is a pair consisting of a non-
empty set 4 and a mapping that assigns to every operator € Z an m-ary operation
6: A"~ A, where m is the arity of ¢. The operation ¢ is called the realization
of ¢ in &. The mapping o-0“ will not be mentioned explicitly, but we write
#=(A, Z). The Z-algebra &/ is finite if A 1is finite and Z is a ranked alphabet.
Moreover, & has rank type R if X is of rank type R. Finally, if p is a X-tree
then the realization of p in & will be denoted by p“. If there is no danger of
confusion then we omit & in ¢¥ and p“.

A frontier-to-root ZX,-recognizer ot an FXX, -recognizer, for short, is a system
A=(,a, X,, A) where

(1) «#=(A4, X) is a finite Z-algebra,
@ a=(aV, ...,a")eA4" is the initial vector,
(3) A’S A is the set of final states.
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If ¥ and X, are not specified then we speak about an F-recognizer. Moreover,
let us note that in [7] we use a mapping «: X,—~A instead of an initial vector.

Next we recall the concept of a tree transducer. To this we need one more set
of variables Y ={y,, y;, ...}, and let Y,={y,, ..., .} for every n=0. Moreover,
E={, &,, ...} is the set of auxiliary variables; and Z,={,, ...; £,} for arbitrary
n=0.

A frontier-to-root tree transducer (F-transducer) is a system U=(2, X,,, 4, 2,
Y, P, A"), where '

(1) X and Q are ranked alphabets,

(2) X, and Y,, are the frontier alphabets,

(3) A is a ranked alphabet consisting of unary operators, the state set of U.
(It is assumed that A is disjoint with all other sets in the definition of U, except 4’.)

(4) A’ S A is the set of final states,

(5) P is a finite set of productions-of the following two types:

(i) x—~aq (x€X,, acA4, g€ F(Y,)),

(i) o(a, ..., a)—~aq(éy, ..., &) (06€Z;, 1=0, ay,...,aq, acA, q&, ..., &)E
€Fo(Y,UE)).

The transformation induced by U will be denoted by 7,. Moreover, deter-
ministic totally defined F-transducers will be called DTF-transducers, too. One can
easily show, that for every deterministic F-transducer ¥ there is a DTF-trans-
ducer B with 14=14. Accordingly, in this paper we deal transformations induced
DTF-transducers. :

To a DTF-transducer U=(ZX, X,, 4, Q,Y,,, P, A") we can correspond an
FXX,recognizer A=(«,a, X,, A") with o/=(4, 2) and a=(a®, ..., a™), where

1) aP=a if x;~aqcP for some g (i=1,...,n), and

(2) for arbitrary [=0, ¢€ZX, and ay,...,acAd, o%a,...,a)=a if
o(ay, ..., a)—~ag€ P, for some gq.

This uniquely determined recognizer will be denoted by rec (20).

Now take an FZXX, recognizer A=(s,a,X,, A) with o=(4, %) and
a=(a", ..., a"™). Define an F-transducer A=(Z, X,, 4, 2,Y,,, P, A’) by

P = {xl. —_ a(i)q(i)‘q(i)g FQ(Ym)’ i=1,.., n}U
U{o(ay, ..., a)) ~ a9 (ay, ..., @) g% o€ L,
1=0,ay,...,a€A4, 4% W€ F, (Y, UZ)},

where the ranked alphabet €, the integer m and the trees in the right sides. of the
productions in P are fixed arbitrarily. Obviously, % is a DTF-transducer. Denote
by tr(A) the class of all DTF-transducers obtained in the above way. It is easy
to see that for arbitrary DTF-transducer U the inclusion A€tr (rec (20)) holds.
Therefore, we have
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180 F. Gécseg

Statement 1. For every DTF-transducer U there exists an F-recognizer
A such that Uctr (A).

Before recalling the definition of products of algebras, we note that in the sequel
if a is an n-dimensional vector then pr; (a) (1=i=n) will denote its '™ component.
Moreover, we suppose that every finite index set /={i,, ..., i} is given together
with a (fixed) ordering of its elements. Furthermore, for arbitrary system {a,.jli €1},
(a,.1|ij61) is the vector (a;,a;, ..., ;) if iy<i;<...<i; is the ordering of I.

From now on we shall deal with a fixed rank type R. To exclude trivial cases,
it will be assumed that for an m =0, m€R.

Let %, 31, ..., Z*¥ be ranked alphabets of rank type R, and consider the X'
algebras &,=(4;, %) (i=1, ..., k). Furthermore, let

V= {Y. (4, X.. . XA)"XZ, ~ZLX... X2k |meR}

be a family of mappings. Then by the product of o, ..., o, with respect to  we

mean the ZX-algebra
lp('dla sy dk’ 2) = ‘2{ = (A’ Z)

with A=A,X...X A, and for arbitrary m€R, ¢€ 2, and a,, ..., a,CA4,
o-d (al, sevy am) = (o-].‘:{l (prl(al), (] prl(am)): “res al‘?k(prk(all “res prk (am)))’

where (o4, ..., 0,)=V,(a,, ..., a,, 6).

(Sometimes we shall consider ¥, to be an (mk+1)-ary function in an obvious
sense.)

Consider the above product yY(«, ..., &, Z)=«, and define the mappings
Y A"X F(X,)~Fg(X,) (=1, ..., k; n=0) in the following way: for arbitrary
a=(a,,...,a,)€4" and peF(X,)

(1) if p=x; (1=j=n) then yY'(a, p)=x;,

Q@ if p=0(p1,...,Pw) (0€Z,) then Yi(a,p)=c'(Y'a, p), ..., ¥'(a, pn)),
where (01, ..., 6)=¥.(p¥ @), ..., p2(a), o).

One can easily see that the equation

pd (a) = ('l’l (a’ P)’d’ (prl. (al)s RRRE] Pr1 (a,,)), “re l/Jk (aa P)dk (prk (al)s R Pfk (8,,)))

holds. Moreover, for arbitrary i(1=i=k), a€A4" and p€FyX,), V¥(a, p)e[p].
We now define special types of products. First of all let us write ,, in the
form ¥,=@WY, ...,y%), where for arbitrary a,,...,a,(4 and 6€Z,,

lpm(al’ ooy Apyy 6) = (lllr(nl) (als ooy Ay 0'), cety lpr(:) (ala <o Ay U))'

We say that « is an a;-product (i =0, 1, ...) if for any j (1=j=k) and méeR, y¥
is independent of its #'* components if (v—1)k+j+i=u=vk (v=1, ..., m). (Here
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¥4 is considered an (mk+1)-ary function.) In the case of an a;product in Y&
we shall indicate only those variables on which ¥ may depend. For instance,
we write Y3(o) for yP(ay, ..., a,, 6) if i=0.

By the above definition, & is an a;-product if for arbitrary j(1=j=k) and
meER, ://f,{’ is independent of component algebras &/, with i+j=u=k. If i=0
then we speak about a loop-free product, too. Moreover, if for every meR, ¥,
may depehd on its last variable only then & is a quasi-direct product. 1If in addition,
= ...=,=2% then we speak about a quasi-direct power of 4.

One can see easily that the formation of the product, ay-product and quasi-
direct product is associative. (This is not true for the a;-product with i=0.)

Let UA=(2,X,,4,2,Y,,P,4) and B=(X,X,,B,Q,Y,, P,B) be two
DTF-transducers and m=0 an integer. We write Ty=1y if Ty(p)=14(p) for
every p€FT(X,). ' :

Take a class K of algebras of rank type R. We say that K is metrically
complete (m-complete, for short) with respect to the product (o;-product) if for
arbitrary DTF-transducer U=(Z, X,, 4, Q,Y,, P, A’) and integer m=0
there exist a product (a;-product) #=(B, Z) of algebras from K, a vector b¢B*
and a subset B’ S B such that t,=1, for some Betr (B), where B=(B, b, X,, B’).
(The name metrical completeness comes from the fact that soch systems are the tree
automata theoretic generalizations of metrically complete systems of finite automata
introduced in [1].)

Let «/=(A4, Z) be an algebra, n=0 an integer and acA" a vector. For
arbitrary m=0, set A,‘,’”):_{p"(a)lpng"(X,,)}. The system (&, a) is called m-free
if |A{|=|F™X,)|, ie., p#q implies p(a)>qg(a) whenever p, gc FI'(X,).

Now let of =(4, X), #=(B, L) be algebras, n, m=0 integers and acA4", b€ B"
vectors. We say that (%, b) is an m-homomorphic image of (s, a) if there is a
mapping ¢ of A onto B such that

(1) ¢(pr; (@))=prgb) for all i=1,...,n,

2 o(e%(ay, ..., a))=0%(¢(ay), ..., p(a@)) for arbitrary I[€R, o€, and
ay; ... a,EAf,'"_l). )

If in addition ¢ is one-to-one then we speak about an m-isomorphic image, or we
say that (<7, a)and (%, b) are m-isomorphic, in notation (&, a) = (%, b).
We obviously have the following statements.

Statement 2. Let o/ =(4, 2) and %B=(B, L) be algebras. Take two integers
m, n=0 and two vectors ac A", beB". If (s, a) is m-free then
- (1) (£, b) is an m-homomorphic image of (#, a), and
(i1) for arbitrary B=(4,b, X,,, B") and Betr (B) there exist A=(sf,a, X, A')
and Uctr (A) such that ty=1g.
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Statement 3. Let of/=(A, 2) and B=(B, X) be algebras. Take two integers
m,n=0 and two vectors a€ A", beB". If («,a) and (B,b) are m-free then they
are m-isomorphic. Comversely, if («,a) is m-free and m-isomorphic to (#,b) then
(A, b) is also m-free.

Let (o, a) (¥/=(4, X),ac A") be a system, #=(B, Z) an algebra and m=0
integer. We say that (s, a) can be represented m-isomorphically by # if there
exists a bEB" such that (&, a)=(4,b).

Finally, we say that the a;-product and the a;-product (i, j=0) are metrically
equivalent (m-equivalent) if a system of algebras is m-complete with respect to the
a;-product if and only if it is m-complete with respect to the a;-product. The m-equiv-
alence between an a-product and the product is defined similarly. (Let us note
that in [4] the term ‘““metrical equivalence” is used in a stronger sense.)

For notions not defined here we refer the reader to [5] and [6] or [7].

2. Metrically complete systems of algebras

In this section we shall give necessary and sufficient conditions for a system of
algebras to be m-complete with respect to the aiproducts (i=0,1,...) and the
product. It will turn out that all the o;-products are m-equivalent to each other and
they are m-equivalent to the product.

First we prove

Theorem 1. A system K of algebras of rank type R is m-complete with
respect to the ai-product (product) if and only if for arbitrary m,n=0 and ranked
alphabet X of rank type R every m-free system (o, a) with of=(A, X) and acA"
can be represented m-isomorphically by an a;-product (product) of algebras from K.

Proof. The sufficiency is obvious by Statements 1 and 2.

To prove the necessity take an m-free system (&, a) with o/=(4, X) and
a=(a®, ..., a™), where o isofrank type R. Moreover, let 2 be a ranked alphabet
such that for every [l€R, |Q|=|FF+tY(X,)|. Consider the DTF-transducer U=
=(2,X,, 4, Q,X,, P, A), where P consists of the productions

(1) X; —> a(i)x,- (l = 1, ceey n),
2 o(ay,...,a) ~o¥(ay, ..., apo(&,, ... &) (G€Z, weQ, a,,...,a,€A4, 1 =0)

such that n+|{wlo(ay, ..., a)~0%ay; ..., a)o(&y, ..., E)EP, ay, ..., a€ {p“(a)|pc
EFMANN=IFFTY(X,)|. (Since (#, a) is m-free, by our assumptions about the
cardinality of @, P can be chosen thus.)
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"Now let #=(B, X) be an o;-product (product) of algebras from K, b=
=W, ..., b™ecB" a vector and suppose that for some B=(4%,b, X,, B’) and
DTF-transducer B =(Z, X,, B, @, X,, B’)€tr (B) the relation 1414 Holds.
We shall show that («, a)=(4%, b). To this, by Statement 3, it is enough to prove
that (4, b) is m-free. '

Suppose that for two trees p,, p,€ Fy(X,) we have p,>p, and p?(b)=p2(b).
For an /eR with /=0 take a ¢¢X; and arbitrary ry, ..., n€FJ(X,). Set t,=
=0(py, res -, 1) and t,=0(ps, ¥, ..., 1;)- Then the trees ¢, and ¢, obtained
by =g £2(b)g, and t,=%5r2(b)g, have the same label at their roots. Moreover,
by rm";ltg, the derivations #,=% t#(a)g, and f,=} t¥(a)g,; hold, too. Thus,
by the choice of P, g, and ¢, should have distinct labels at their roots, which is
a contradiction. This ends the proof of Theorem 1.

Next we give necessary conditions for a system of algebras to be m-complete
with respect to the product.

Theorem 2. Let K be a system of algebras of rank type R which is m-complete
with respect to the product. Then for arbitrary integers m,n=0 and nontrivial
shape S(n) with rank type R and height less than or equal to m, there is an algebra
A =(A4, D)eK, a vector acA", a tree o(py, ..., p)ESNF(X,) (6€Z,) and an
operator o’€ X, such that o(py(a), ..., p(a))#d’(p:(a), ..., p(a)).

Proof. Assume that there exist integers m, n=0 and a nontrivial S(n) with
WS@m)=k (0=k=m) such that for arbitrary /=(4, )€K, ac4" and
o(p1s s Py 0 (P15 ..., PIESMNF5(X,) (0,0°€Z) the equation o(py(a),...
..., pfa))=0"(ps(a), ..., p(a)) holds. Consider a k-free system (B=(B, Q),b),
where the ranked alphabet @ has rank type R, |Q,/=2 and b=(®, ..., b"™).
We show that (4,b) cannot be represented k-isomorphically by any product of
algebras from K. Indeed, let

C=(C,Q=y(t, ..., Q0 (HeK, i=1,..,r)

be an arbitrary product and c=(cy, ..., ¢,)EC" a vector. Take two trees ¢=
=y, .- q) and ¢ =wyqy,....,q) such that o,,0,€Q,0,#w, and
q,q’€S(n). Then we have

q(C) = (CO} (q} (prl (cl), LERE] prl (C,,)), cevy ‘111 (prl (cl), erey prl (C,,))), e
< 01 (pr,(eD), -, PIL(CY), -y G (DT (C1), - PP, (D))
and

q’ (c) = (w%(q}.(prl(cl)’ ey prl(cn)), [RAS] q}(prl ((‘1), - PIY (cn»)r oo

ety w’é(q;(prr(cl)’ A4 prr(cn))’ M q;.(prr(cl)’ trry prr (C”)))),
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where g/=yi(cy, ... Cpq) (=1, ..., 05 j=1,..,0), (0},...,0)=Y(g(c), ...
s qfc), @) and (wj, ..., w})=¥g:(c), ..., q:(0), w;). By our remark following
the definition of (a, p), the inclusions w!(g}, ..., g/)€S(n) hold for all i(=1,2)
and j(=1,...,r). Therefore, g(c)=q(c), i.c., (¥, ¢) is not k-free. Since (¥, c)
was chosen arbitrarily, by Theorem 1 and Statement 3, this contradicts the assumption
that K is m-complete with respect to the product, ending the proof of Theorem 2.

We shall show that if a system of algebras satisfies the conclusions of Theorem 2
then it is m-complete with respect to the loop-free product. To this two lemmas are
needed.

In the next lemma X will be a fixed ranked alphabet of rank type R such that
for every I€R, X, is a two-element set: X,= {0, 0,}.

Lemma 3. Let K be a system of algebras with rank type R satisfying the
conclusions of Theorem 2. Then for, arbitrary m,n=0, every m-free system (<, a)
(=(4, Z), ac 4") can be represented m-isomorphically by an ay-product of algebras
from K.

Proof. We proceed by induction on m.

Let m=0. It follows from our assumptions that in K there is an algebra with
at least two elements. Moreover, if 0€R then this algebra can be chosen in such
a way that it has at least two distinct 0-ary operations. One can easily show that
a quasi-direct power of this algebra O-isomorphically represents (&, a).

Now suppose that Lemma 3 has been proved for every k=m. Let (4,b)
be an m-free system, where #=(B, Z) and b=(b,, ..., b,)éB". Take the index
set I={(p, P|p,q€Fs(X,), p#q, h(p)=m+1, h(gy=m+1}. Consider a pair
(p, 9)€1, and let p=4,p,, ..., p;) where 8, is o, or o,. Then by our assumptions,
there is a ¥P=(C®P, @) in K, an n-dimensional vector c¢=(c, ..., c,) with
components from C®; a p'=w(p;, ..., p;) (@€ ZP) and an w’€ZP such that
pelpl, and @(py(c), .., pi(e)) = @(p(c), ..., pi(c)). Define an ay-product ¥ =
=A%, D)=y (R, %P, ) in the following way: take an arbitrary node
d of p different from its root. Let ¢=4,(t,,...,¢) be the subtree of p at d,
and t'=w/f, ..., t) thesubtreeof p’ at d. Then yPP(1#b), ..., 12(b), 5,)= o,
In all other cases, except Y»?@(p2(b), ..., p2(b), &), Y@?® (s€R) is given
arbitrarily in accordance with the definition of the ag-product. Moreover, y'»?®
is the identity mapping on X for every s€R. Finally, let

w if g@®9) =(b,c)
Y 2@ (p2(b), ..., pP(b), 5) = and ¢ # w(p(c), ..., pi (©)),
’ otherwise,
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where a®P=((by, ¢y), ..., (b,, ;). (g(@® D) i defined since pxq and (%,b)
is m-free.)
By the m-freeness of (%, b) and the choice of (P, ¢), #/* 9 has the following

properties:

() if 7 and ¢ are distinct trees from Fp(X,) then t(@a®?)=¢'(a® ) since
they differ at least in their first components, and

(i) p(a®D)=q(a®?) since they differ at least in their second components.

Afterwards form the direct product 2=(D, X)= J](«®P|(p, g)€I) and the
vector deéD" with pr; (d)=(pr; @®?)|(p, 9)€I) (j=1,...,n). Obviously, the
system (2, d) is (in+1)-free. Since the quasi-direct power is a special ay-product
and the formation of ay-products is associative this, by Statement 3, ends the proof
of Lemma 3.

Lemma 4. Let X be a ranked alphabet of rank type R such that for every
IER, |X)|=2. Moreover fix an IER and take the ranked alphabet X' with X}=Z,U
U{G} and Zi=2Z, if ksl If for certain m,n=0 and class K of algebras an
m-free system (&, a) with of =(A4, X) and a€ A" can be represented m-isomorphically
by an ay-product of algebras from K then every m-free system (%, b) with B=(B, X')
and bEB" can be represented m-isomorphically by an ay-product of algebras from K.

Proof. Let (<, a) be an m-free system with o/=(4, X) and a=(aV, ..., a™)¢
€ A" which can be represented m-isomorphically by an «,-product of algebras from K.
Take two different fixed elements o,, 0,6 2;,. Define two (one-factor) ay-products
o =(A4, ZY=y(, 2" and ,=(4, Z)=y(«, Z') in the following way:

) Y (0) = §P (0) = 0 (0€Z;, k = D),
o if o#4,
ii (1) —
(ii) M (o) {01 € e
and .
i) e _{0' if o#oa,
(it PO =1, if c=0

One can easily see that in o, the operator & is realized as o, in &, and
in &/, the operator & has the same effect as o, in /. Moreover, all other operators
have the same realizations in «f, &/; and 7,.

For every p€Fu(X,) let p,=y'(@®,...,a", p) and p,=y+a?,...,a", p),
that is p; (i=1,2) is obtained by replacmg every occurrence of the label g in
p by o;. Obviously p(a)=p{(a) and p“x(a)=p;(a).

. We show that the system (#,b), where £ is the direct product o/ X &,
and b=((a", a®), ..., (@, ")), is m-free. Since the direct product is a special
og-product and the formation of the ay-product is associative this, by Statement 3,
will complete the proof of Lemma 4.
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Take two different trees p, g€ FH(X,), and let us distinguish the following
three cases.

(1) None of the nodes of p and g islabelled by G. Then p®(b)=(p“(a), p“(a))
and ¢®(b)=(g(a), ¢”(a)) differ in both of their components.

(2) One of p and ¢, say p, has a node labelled by & and none of the nodes
of ¢ is labelled by &. If p,=¢g(=q,=q,) then p,=gq, since p;#p,. Thus, p(b)
and ¢(b) differ at least in one of their components.

(3) Both p and ¢ have nodes labelled by &. If p,=¢q, then p,>gq, since
p#q. Again p(b) and ¢(b) differ at least in one of their components.

Now we are ready to state and prove

Theorem 5. A system of algebras is m-complete with respect to the product
if and only if it is m-complete with respect to the ay-product.

Proof. Obviously, if a system of algebras is m-complete with respect to the
ag-product then it is m-complete with respect to the product.

Conversely, let K be a system of algebras of rank type R which is m-complete
with respect to the product. Then, by Lemma 3, for arbitrary m,n=0 and X of
rank type R with |Z,|=2 (J€R) every m-free system (s, a) (Z=(4, X), acA4")
can be represented m-isomorphically by an ag-product of algebras from K. From
this, by a repeated application of Lemma 4, we get that the previous statement is
valid for arbitrary ranked alphabet X of rank type R if |Z,|=2 (/€ R). Moreover,
if we omit an operation in an algebra belonging to an m-free system then the resulting
system is m-free, too. Therefore, by Theorem 1, K is m-complete with respect
to the a,-product, which ends the proof of Theorem 5.

From the above theorem we directly get

Corollary 6. For arbitrary i,j=0 the oiproduct is metrically equivalent
to the a;-product.

Since there exists a one-element system of algebras which is isomorphically
complete with respect to the product ([5], [8]) and for arbitrary m, n=0 and ranked
alphabet X there is an m-free system (&, a) (&=(4, Z), ac4") such that o/ is
finite, we have

Corollary 7. There exists a one-element system of algebras which is m-complete
with respect to the ag-product.

Finally, we give an m-complete system consisting of two algebras which is not
isomorphically complete.

Let R be a rank type with Oc6R and X the ranked alphabet of rank type
R fixed for Lemma 3. Consider the Z-algebras & =({a,, a,}, 2) and Z=({b,,b,}, )
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where

o '
G = Ay, 0p = 4y,

a;d(cl, e ) = a,'d(cl, voe)=a1 (=0; c1,....,c€A)
and

g6 = 05" = by,
o2 (c1,...,c)=b (I=0; ci, ..., c€B),

by if ¢, =..=¢,=b,,

a;%(ca, ...,c,)={ (1=0; ¢y, ..., c€B).

b, otherwise

The system K={o/, #} obviously satisfies the conclusions of Theorem 2
(by « for the only nontrivial shape of height 0 and by £ if the given shape is
higher than 0). Therefore, K is m-complete with respect to the ag-product. More-
over K is not isomorphically complete since for arbitrary /€ R with /=0, none
of the equations o¥(a, ..., a)=a,, 6;%(ay, ..., a)=a,, 62(by, ...;b;)=b, and
o7 %(bs, ..., by)=b, holds.

It follows from Theorem 1 in [2] that if a finite system of automata is m-complete
with respect to the ag-product then it always contains an automaton forming a simple
system which is m-complete with respect to the ay-product. One can easily see that
neither {«¢} nor {#} is m-complete with respect to the ay-product, showing that
the existence even of a 0-ary operator (in addition to unary operators) alters the
conditions of m-completeness.
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