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Semigroups of continuous functions 
ÁKOS CSÁSZÁR 

To Professor Béla Szökefalvi-Nagy, to our Master, to my Friend 

0. Introduction. Let X be a topological space and C{X) denote the set of all 
continuous, real-valued functions defined on X. C(X) is a ring under pointwise 
addition and multiplication of functions. A classical theorem [2] states that the iso-
morphy of the rings C(X) and C(Y) implies the homeomorphy of X and Y 
provided X and Y are compact Hausdorff spaces. Somewhat surprisingly, A. N. 
MILGRAM [7] has shown that the same is true if one replaces the isomorphy of the 
rings C(X) and C(Y) by the isomorphy of the multiplicative semigroups of C(X) 
and C(Y). 

Another generalization was furnished by E. HEWITT [5]; he replaced the condi-
tion for X and Y to be compact by that of being realcompact (but kept the ring 
isomorphy of C(X) and C(Y)). As to the concept of a realcompact space, let us 
recall the following definitions. 

In a topological space X, denote 

(1) Z ( / ) = {x£X: f(x) = 0} 
for fiC(X), 

(2) Z(X) = {Z ( / ) : f£C(X)}. 

A subset 3 czZ(X) is said to be a z-filter iff 

(3.a) 0 * 3 * Z(X), 
(3.b) Zj£3, Z2ÇZ(X), Z1czZ2 implies Z2Ç3. 

(3.c) Zx, Z263 implies Z1i)Z2e3. 

A z-filter 3 is said to be fixed iff 0 3 ^ 0 , maximal iff 3'=3 for every z-filter 3 '33, 

and real iff Z„£ 3 (n^N) implies C\Zn£ 3. Now X is said to be realcompact iff it is 
1 

a Tychonoff space such that every real maximal z-filter is fixed. 
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It is a natural question whether these two generalizations can be unified. In 
fact, the paper [8] contains the following statement: 

Theorem A. If X and Y are realcompact spaces such that the (multiplicative) 
semigroups C(X) and C(Y) are isomorphic then X and Y are homeomorphic. 

However, the proof in [8] of this statement is rather long, goes through arguments 
concerning the lattices G(X) and C(Y), and seems to contain some gaps. There-
fore it is desirable to have a short proof operating directly with the semigroup 
structure of C(X) and C(Y). This is desirable also because, as it was shown in [4], 
Theorem A implies 

TheoremB. If X and Y are arbitrary topological spaces, then the isomorphy 
of the semigroups C(X) and C(Y) implies the isomorphy of the rings C(X) and 
C(Y). 

The proof of Theorem B is based on Theorem C below. In order to formulate 
it, we have to recall one more definition. Let X be a Tychonoff space, and denote 
by vX the set of all real maximal z-filters in X, equipped with the topology for 
which the sets 

(4) B{Z) = {tfvX: Zis} (ZeZQO) 

constitute a closed base; vX is realcompact and is called the Hewitt realcompactifica-
tion of X (see the monograph [3] for more details). 

Theo remC. If X and Y are Tychonoff spaces such that the semigroups 
C(X) and C ( r ) are isomorphic then vX and vY are homeomorphic. 

Theorem C contains Theorem A because vX is homeomorphic to I if I 
is realcompact. 

One of the purposes of the present paper is to present a method furnishing 
a simple proof of Theorem C. However, our method furnishes essentially more. 
Firstly, we can consider, instead of real-valued functions, functions with values in 
suitable topological semigroups. Secondly (which is more important), the condition 
of semigroup isomorphy can be replaced by an essentially weaker condition. 

I . ¿-mappings and ¿/-ideals. Let S be a semigroup. For f,g£S, we introduce 
the notation gof iff / is a right divisor of g, i.e., iff there is h£S such that 
g=hf. The relation t> is transitive; it is reflexive (i.e. a preordering) if S contains 
a left unity element. 

If Sx and S2 are semigroups with the respective relations and o 2 , we 
say that a mapping <p :Si—S2 is a d-mapping iff / , g€S1,go1f implies <p(g)o2<p(/)-
A bijective mapping <p:Si—S2 such that both <p and <p-1 are ¿/-mappings will 
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be called a d-isomorphism; Sx and S2 are said to be d-isomorphic iff there exists 
a ¿/-isomorphism from S^ onto S2. If 5"i and S2 are semigroup isomorphic 
then they are clearly ¿/-isomorphic but the converse is false; e.g., two groups of the 
same cardinality are always ¿/-isomorphic (because gx>f holds for any two elements 
/ , g of a group S). 

A subset D of a semigroup S will be a called a d-ideal iff 

This is a special case of the general Definition 1.2 in [6]. A ¿/-ideal is (by (1.2)) 
a left semigroup ideal. 

Lemma 1. If the semigroup S contains a right unity element e, and eof 
then f cannot belong to any d-ideal D. 

Proof . Clearly gx>e for every g£S, hence /€Z) would imply D=S. • 

A ¿/-ideal D is said to be maximal iff D'=D holds for every ¿/-ideal D'z>D. 
By the Kuratowski—Zorn lemma, in a semigroup with right unity element, every 
¿/-ideal is contained in a maximal ¿/-ideal. For a ¿/-isomorphism cp: Si—S2 and 
DcSx, <p(D) is a (maximal) ¿/-ideal in S2 iff D is a (maximal) ¿/-ideal in S±. 

2. Quasi-real semigroups. Let R denote the real line, R+ the subset (0, + 
and Rq the subset [0, + Both R + and Rj" are semigroups (the first one even 
a group) under the multiplication of real numbers, and also topological spaces as 
subspaces of R equipped with the usual topology. 

A set S will be called a quasi-real semigroup iff 
(2.1) S is a semigroup; 
(2.2) S contains R,J~ as a subsemigroup; 
(2.3) 0£R+ is a zero element in S (i.e., 0 ^ = a - 0 = 0 for a£S); 
(2.4) l£R,f is a unity element in S (i.e., 1 -a=a- l=a for S); 
(2.5) For ¿z6S, a^O, there is b£S such that a -b~b- a= 1 (such a b is clearly 

unique and will be denoted by I/a); 
(2.6) S is a topological space; 
(2.7) R+ is a subspace of S; 
(2.8) The mappings (a,b)>-+a-b and a>—l/a are continuous from SXS into 

S and S —{0} into S, respectively; 
(2.9) There is a continuous mapping a^ \a \ from S into R^ such that \a-b\ = 

= |a|'|6|, \a\=a for 
(2.10) Thesets Fe={;c£S: |x|<e} (e>0) constitute a neighbourhood base of 0 in S. 

By (2.5) and (2.9), |a |=0 iff ¿i=0. 

(1.1) 

(1.2) 

(1.3) 

® D S, 
feD, geS, g o / implies g£D, 

f , gdD implies the existence of h£D such that f o h , gc=-h. 
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As examples of quasi-real semigroups, we can mention the semigroups R,^, R, C 
(=the complex numbers) with the usual multiplication, topology, and absolute value, 
further many subsemigroups of C, e.g., those composed of the numbers with 
arguments 2nr where r£Q, or r=m/n where n£N is fixed and m£Z. These 
examples are commutative; a non-commutative one is furnished by the real quater-
nions with the usual multiplication, absolute value and the topology inherited 
from R4. 

We obtain further examples from 

T h e o r e m 1. Let G be a topological group that contains R + as a (topological) 
subgroup; suppose there is a continuous homomorphism a: G—R+ such that a{a)=a 
for a£R + . Let S = GU{ci>} where co$G, and define 

a • co = at • a = co (a£G), ca-oj = a>, a(<a) = 0. 

Equip S with a topology in the manner that G be a subspace of S and the sets 
Ue U (a)}, where 

Ut = {x£G: a(x) < e} (e 0), 

constitute a neighbourhood base of co. After having identified w with the real 
number 0, S will be a quasi-real semigroup {with \x\=a{pcj). 

Conversely, every quasi-real semigroup can be obtained from a topological group 
G with the help of this construction. 

Proof . S fulfils (2.1)—(2.5) with the identification of ca and 0. The continuity 
of a implies that every Ue is open in G; therefore there is a topology on S such 
that G is a subspace of S and the sets UeU{a>} constitute a neighbourhood base 
of (o (see e.g. [1], (6.1.2)). Such a topology is unique because G is necessarily open 
in S; indeed, if co belonged to every neighbourhood (in S) of a point a£ G, then 
the filter base {Ue: e>0} would converge to a in G, which is in contradiction 

{ a.(a) "I 
xgG:«(x)> ^ | is a neighbourhood of a. For this topology 

(and |x|=a(x)), (2.6)—(2.10) are evidently true. 
Conversely, if S is a quasi-real semigroup, define G=S—{0}. By (2.1)—(2.5), 

G is a group containing R + as a subgroup; by (2.6)—(2.8), it is a topological 
group, and R + is a topological subgroup of G. By (2.9), a(x) = |x| defines a 
continuous homomorphism a: G—R+ , and, by (2.10), all requirements are fulfilled 
for co=0. • 

E.g., let G be the set of all non-singular, real, quadratic matrices of order 
m (for a given m€N) with matrix multiplication and the topology inherited from 
Rm \ The diagonal matrices with all elements in the diagonal equal to the same 
c > 0 constitute a topological subgroup isomorphic to R + ; after having identified 
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this matrix with c, define a(M)=|det M|1/m in order to obtain a group G satisfying 
the hypotheses of Theorem 1. 

Many examples can be obtained from 

Theorem 2. Let T be an arbitrary topological group with unity element e. 
Then the direct product G = T X R + satisfies the hypotheses of Theorem 1 provided 
the elements (e, y) are identified with y > 0 and oc(x,y) = y. • 

Observe that Theorem 1 furnishes examples that are not contained in Theorem 2. 
E.g., let G be the multiplicative group of all non-singular, real, quadratic matrices 
of order 2 with the topology inherited from R*. Identify the matrix 

(S 9 
with the number x, and define a(Af)= idet M\. If G were of the form T x R + 

then T would be isomorphic to the subgroup of G consisting of the elements 
M such that a(M)= 1. However, this is impossible because, e.g., 

G 0(o 3 - (o % !)• 
3. ¿-ideals of S(X). Let X be a topological space, S a quasi-real semigroup, 

and denote by S(X) the set of all continuous functions from X into S. S(X) 
is a semigroup under pointwise multiplication of functions. Our purpose is to show 
that the ¿-ideals of the semigroup S(X) are connected to the z-filters in X in the 
same manner as the ideals of the ring C(X) are (see [3]). 

For f£S(X), define 
(3.1) Z ( f ) = {x£X: f(x) = 0}, 

(3.2) l/l(*) = l/(*)| 

Lemma 2. f£S(X) implies \f\<^C(X). Conversely, g£C(X), gSO implies 
giS{X). • 

Lemma 3. For f£S(X), we have Z ( / ) = Z ( | / | ) ; consequently 

{Z(f): f£S(X)} = Z(X). • 

Lemma 4. Z(fg)=Z(f){JZ(g) for / , g£S(X). • 

Lemma 5. If D is ad-ideal in S(X), then 

(3.3) 
is a z-filter in X. 

Zip) = {Z i f ) : feD} 
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Proof . By Lemma 3, Z ( D ) c Z ( I ) . ZM0 implies Z(Z>)?i0. On the other 
hand, since the constant function 1 is a unity element in S(X), and f£S(X), Z(f)=& 

1 1 
implies 1 = — . / for —dS(X), where, of course, 

(3.4) ( x € n 

/€£> is impossible by Lemma 1. Therefore 0(£Z(£>). 
If Z^Z{D), Z2tZ(X), Z 2 c Z 2 , say Z , = Z ( / ) , f e D , Za=Z(g), g£S(X) (cf. 

Lemma 3), then, by Lemma 4, g/€D implies Z2=Z2{JZl=Z(gf)£Z(D). 
Now let Z lsZ2eZ(Z>), say Z l = Z ( / ) , Z2 = Z(g),f g£D. By (1.3), there is 

/i£D such that / o / i , g>l i . By Lemma 4, Z ( / )nZ( / i ) , Z(g)^>Z(h), hence 
Z ^ Z g D Z i / O e Z p ) . Thus Zif lZaeZiD) because Z(Z) is a lattice ([3], 1.10) 
so that Z ^ Z ^ Z { X ) . • 

Lemma 6. If 3 is a z-filter in X, then 

(3.5) Z-*(3) = {/65(Z): Z ( / )€ 3 } 

is a d-ideal in S(X). 

Proof . 0^3 implies 1 $Z_1(3), and 3^0 implies Z _ 1 (3 )^0 by Lemma 3. 
If .feZ-Hz), giS(X\ gx^f then Z ( g ) 3 Z ( / ) by Lemma 4 so that Z(g)£3 , 
gZZ-\3). 

Now let f g £ Z - \ i ) . Define 

h(x) = (|/(x)| + |g(*)l)1/2 (*€*)• 

Then h£S(X) by Lemma 2, and Z(h)=Z(f)HZ(g) implies h£Z-\z). We 
show fc=-h. 

For this purpose, define 

k(x) = 0 if x€Z(f), 

' v - m i f 

Then k£S(X). In fact, k is obviously continuous at the points of X—Z(f). 
The equality 

| t w l = r / ( i i X ) r - | / ( J [ ) | 1 ' ' 

shows by (2.10) that the same holds at the points of Z ( / ) . Finally f—kh is obvious. 
We prove g> l i similarly. • 
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Lemma 7. If D is ad-ideal in S(X), 3 a z-filter in X, then 

(3.6) Z'\Z{D))^D, Z(Z-*(3)) = 3- • 

Lemma 8. If D is a maximal d-ideal, then Z(D) is a maximal z-filter, and 
D=Z~1{Z(D)). 

Proof . For a z-filter 3'DZ(Z)); we have by (3.6) Z - \ i ) ^ Z ~ \ Z { D ) ) r D D , 
hence Z-\^)=Z~\Z{D))=D, and ¿=Z(Z-\f))=Z(D). • 

Lemma 9. If 3 is a maximal z-filter, then Z~x(3) is a maximal d-ideal. 

Proof . For a ¿-ideal D'z)Z~\i), we have by (3.6) that Z(D')z>Z(Z-\i))=i, 
hence Z(Z>')=3, and D' ^Z~\z)=Z-l{X{p'))^D' so that D'=Z~\z). • 

Lemma 10. The formulas 

(3.7) 3 = Z(D), D = Z - H 3) 

establish a bijection from the set of all maximal d-ideals D In S(X) onto the set 
of all maximal z-filters 3 in X. • 

4. Construction of vX. Let X be a Tychonoff space. Our purpose is to show 
that DX or, more precisely, a space homeomorphic to vX can be constructed as 
soon as we know the relation o in S(X) (not necessarily the semigroup structure 
of 

In fact, the knowledge of this relation permits us to determine all ¿-ideals, 
hence all maximal ¿-ideals in S(X); thus we have, by Lemma 10, a set from which 
a bijection goes onto the set of all maximal z-filters in X. In order to know vX as 
a set, we have to select those maximal ¿-ideals D for which Z(D) is a real z-filter. 

Lemma 11. If / , g£S(X), then Z(f)czZ(g) holds i f f g belongs to every 
maximal d-ideal containing f 

Proof . If D is a maximal ¿-ideal, /£Z>, and Z ( / ) c Z ( g ) , then Z(f)£Z(D), 
hence Z{g)£Z(D) by Lemma 5, and g£D by Lemma 8. 

Conversely, if x£Z(f)-Z(g), then 3 ={Z£Z(X): x£Z) is a maximal z-filter 
([3], 3.18) such that Z(/)€3, Z(g)i3, hence Z ~ \ i ) is a maximal ¿-ideal (by 
Lemma 9) such that g i Z ~ \ i ) . • 

Lemma 12. For a maximal d-ideal D, Z{D) is a real maximal z-filter i f f 
fn£D (n£N) implies the existence of g£D such that Z(g)czZ(f„) for n£N. 

Proof . If Z(D) is a real z-filter, and f£D for «£N, then . 

z 0 = nz(/„)ez(z>), 1 
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hence Z„=Z(g) for some g£D. Conversely, suppose /„€•£>, g£D, Z(g)<^Z(f„) 
for every «£N. Then Z0 defined as above belongs to Z{X) ([3], 1.14), and Z ( g ) c Z 0 

implies Z0€Z(D) by Lemma 5. • 

By Lemmas 11 and 12, the knowledge of t> permits to determine those maximal 
¿-ideals D for which Z(D)£vX. For f€S(X), Z=Z(f), the set B(Z) defined 
by (4) is composed of all Z(D)£DX for which /££> (Lemma 8). Hence we obtain 
a space homeomorphic to OX by defining the points to be those maximal ¿-ideals 
D that fulfil the condition formulated in Lemma 12, and by choosing for a closed 
base the system of the sets B ( f ) consisting of those points D for which fdD 
{ f e s ( X ) ) . 

5. Main results. We get as an immediate consequence of the argument above: 

Theorem3. Let X and Y be Tychonoff spaces, Si and S2 quasi-real semi-
groups. Define SX(X) and S2(Y) to be the semigroups of all continuous functions 
f: X-*S! and g: r-<-S2, respectively. If S^X) and S2(Y) are d-isomorphic, 
then X and Y are homeomorphic. In particular, X and Y are homeomorphic 
provided they are realcompact. • 

We obtain Theorem C as a corollary because R is a quasi-real semigroup and 
semigroup isomorphy implies ¿-isomorphy. One can, of course, prove this theorem 
directly, without making use of the definitions and results in Section 2; the state-
ments concerning S quoted in Section 3 are obvious in the case S = R . 

Moreover, the argument applied in [4] leads to the following sharper form of 
Theorem B: 

Theorem 4. For arbitrary topological spaces X and Y, if the multiplicative 
semigroups C(X) and C(Y) are d-isomorphic, then the rings C(X) and C(Y) 
are isomorphic. • 

6. The case S=R. I f S = R then S(Z)=C(A'). If we agree in calling ¿-ideals 
of a ring A the ¿-ideals of the multiplicative semigroup of A, Lemmas 8 and 9 
imply, according to [3], 2.5: 

Theorem 5. The maximal d-ideals of the ring C(X) coincide with the maximal 
ideals. • 

It is a natural question whether there is some connection between ¿-ideals 
and ideals of C{X) in general. 

Lemma 13. Every d-ideal D of a ring A is a left ideal in A. 

Proof . It suffices to prove that f,g£D implies f—giD. Now there is h£D 
such that f=fih, g=gji for some f , g^A, hence / - g=(fx-gdh£D. • 
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In particular, every ¿-ideal of the (commutative) ring C(X) is an ideal. The 
converse is not true in general. In fact, let X= R, 

(6.1) fo(x) = max (x, 0), g0(x) = min (x, 0) (x£X), 

and let / be the ideal generated by {/0, g0}> ¡-e-> 

(6-2) I — {ffa+ggo'- f , g£C(X)}. 

Suppose h£l,f0oh, g0t>h. Then 

(6-3) fo=fxh, g0 = gA A , g l € C ( n 

hence Z(h)czZ(f0)C)Z(g0)= {0}. Consequently 

(6.4) (— 0) c Z(/ j ) , (0, + » ) c Z ( & ) . 

Select / , g£C(X) such that h=ff0+gg0; then (by (6.3)) 

(6.5) h = ( f f 1 + ggl)h 
so that 
(6.6) /(*). / i(x) + g(x)g l(x) = l 

for x^O and, by continuity, for x=0, too. The first member of the left-hand side 
of (6.6) vanishes for the second one for x > 0 (see (6.4)), hence both vanish 
for x=0: a contradiction. 

The ideal I in the preceding example was generated by a subset of cardinality 2. 
For 1 instead of 2, we have the following obvious 

L e m m a 14. Every proper left ideal generated by an element of a ring A with 
unity element is a d-ideal. • 

For another result in the same direction, let us recall that an ideal I of C(X) 
is said to be a z-ideal iff / = Z _ 1 ( Z ( / ) ) (with a notation analogous to (3.3) and (3.5)). 

Lemma 15. Every proper z-ideal of the ring C(X) is a d-ideal. 

Proo f . By [3], 2.3, Z ( / ) is a z-filter for every proper ideal I of C(X), hence 
Lemma 6 furnishes the statement. • 

On the other hand, a ¿-ideal of C(X) need not be a z-ideal. Again for Z = R , 
the ideal I generated by {/J„}, where h0(x)=x for X, is a ¿-ideal by Lemma 14, 
but fails to be a z-ideal ([3], 2.4). 

We can summarize our results as follows: 

T h e o r e m 6. We have the following implications in C(X): 

proper z-ideal => d-ideal =>• proper ideal, 
and none of them can be reversed in general. • 
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