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Definable principal congruence relations: Kith and kin 

JOHN T. BALDWIN and JOEL BERMAN 

This paper has two aims. Firstly, it seeks to illumine the way in which principal 
congruence relations are constructed. To this end, a hierarchy of "definability" of 
congruences is presented. Notions both weaker and stronger than (first order) 
definable principal congruences (dpc) are considered. Secondly, it attacks the problem 
posed by BURRIS and LAWRENCE [ 1 3 ] , "If K is a class of algebras and if the quasiva-
riety generated by K, Q(K), has definable principal congruences must the variety 
generated by K, F(K), also have dpc"? These two aims are linked by several results 
of the following form, "If F(K) has (some weak notion of) definable principal con-
gruences and Q(K) has definable principal congruences, then F(K) has definable 
principal congruences." 

The discussion of the hierarchy mentioned above includes a survey of the litera-
ture on such notions and it attempts to connect these properties with others of a 
quite different nature. For example, several levels of the hierarchy are linked with 
n-permutability of (principal) congruence relations. 

We acknowledge a number of very helpful communications with Peter Kohler 
in connection with this paper. 

1. Definitions and notation 
/ i 
In general, we denote algebras by A, B, and C while K denotes a class of alge-

bras of some fixed similarity type. The variety generated by K is F(K); and Q(K) 
denotes the quasivariety generated by the class JL A class of algebras is said to be 
locally finite if every finitely generated algebra in the class is finite; the class is uni-
formly locally finite if there exists a function / such that for all n every «-generated 
algebra in the class has cardinality at most f(n). 

If A is an algebra, and if x and y are elements of A, then the principal congruence 
relation generated by x and y is the smallest congruence relation on A for which x 
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and y are congruent. It is denoted by Q(x, y). For a given algebra A of some simila-
rity type T, Malcev has provided a description of the principal congruence generated 
by the elements a0 and ax solely in terms of the polynomials of the algebra A, e.g. 
[23] or [16, p. 54]. Namely, 

bo^bi 0(flo , at)** 3n3Pi, PnBsSzj., ..., z„ such that 

(M) b0 = Pi(as(1), Zj), ^(«!_,(,), z,) = p i + iK ( i + i ) , z i+1) for and 

h = Pn(al-s(n)> O 

where n is a positive integer, the p, are kraty polynomials of type r, s is a switching 
function, i.e. s: {1,-2, ..., w}— {0, 1}, and z, are kt — 1 tuples from A, for I S i S / j . 
Each fixed instance of the polynomials p{ and the switching function s is called a 
Malcev formula. 

. We write ip(a0, ax, b0, 6 l 5 ..., p„, s, z l5 ...,zn) for the last 2 lines of (M). 
Note that the integer n is implicit in this formula. Also observe that 3z l s ..., z„ ip 
is a positive existential formula. Such a formula was called a congruence formula 
in 13]. 

There is an easy abstract form of this result which is implicit in [25]. (Also see 
[26] for a nice application;) Let Diag+(/4)={i?(z)| R is atomic, A\=R(z)}. Note 
that Diag+ (A) is in a language L(A) which has names for all members of A. 

Lemma 1.1. (Folklore) If a, b, c, d are in A and c=d 0(a, b), then there is a 
positive existential Lrformula S(x,y,u,v) such that 

i) 1= S(x, y, u, u) implies x—y, 
ii) A\=S(c,d,a,b). 

Proof. Note Y>mg+(A){J(a=b)KJ{c?±d) is consistent if and only if there is 
a homomorphic image of A which identifies a with b but does not identify c with d. 
Thus if c=d 0(a,b) then (= A {/?f(c, d, a, b, e)|l S /Sm}&(a=6) implies (c=d) 
for some finite set Rlt ..., Rm bf atomic formula's. But then 

• |=\/x, y, u, v(3 w{A{Ri(x, y, u, v, w)|l S / S w})& (u = «)) 

implies x=y and thus" At= 3wA {^¡(c, d, a,s/gm}. 

. Either of these characterizations allow us to "define" principal congruences in 
the language~L(co1, co) i.e. the language which extends first order logic by allowing 
infinite disjunctions. Namely c~d 0(a, b)~- V{S(c, d; a, b)\S£P} where P is the 
collection of positive, existential formulas satisfying S(x,y,u,u)-+x=y (or the 
collection, of Malcevrformulas). Although some information.can be obtained from 
this weak definability of principal congruences (cf. [2]), in this paper we want to dis-
cuss various stronger notions of definability. The first formalization of this kind 
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occurred as follows in [3]. A class K is said to have definable principal conguences if 
there is a 4-ary first order formula cp in the language of K such that 

\M€K, V.flo» K, b^A, (bo^bj, 6(a0, a,) ** (p(a0, als b0, ¿i)). 

For further details on definable principal congruences see [3] and sections 2 and 5 
below. 

Our earlier work on definable principal congruences focused on varieties. How-
ever, [12] shows the advantages of dealing with more general classes. Thus in the 
following we define these notions for arbitrary classes of algebras. Occasionally it 
will be necessary to assume that such a class satisfies the compactness theorem. Of 
course any elementary class satisfies this condition. For this reason many of our 
results have a dual character, we first describe the effect of a property on a specified 
algebra and then note the effect on algebras in a variety satisfying this condition. 
We call the former a local result, and the latter a global one. 

Since a disjunction of all possible ij/ describes the principal congruences in any 
class K of algebras, it follows from the compactness theorem that if a class K which 
satisfies the compactness theorem has definable principal congruences, then this de-
fining formula is equivalent to some finite disjunction of the ift, i.e. 

(p(a0, a±, b0, f>i)«V ;i/r(a0, a l 5 b0, blt p[, ..., ..., z'), 

where i ranges over some finite index set. Note there is a uniform subscript n in this 
formula. This is possible since the diagonal elements are in any principal congruence 
relation, i.e. w=w 0(x, y) allowing the "padding out" of formulas ijt having dif-
ferent lengths to one uniform length. 

2. DPC and its relatives 

In this section we discuss first some weakenings and then some strengthenings 
of the notion of a definable principal congruence relation. These arise in a natural 
way via a reshuffling of the quantifiers. That is, we require that certain of the existen-
tially quantified variables in (M) do not depend on the particular a0, a1:b0, and bt. 

We start with Malcev's characterization of principal congruences. For any 
algebra A in the class K, and for all a0, ax, b0, b± in A, 

b0 = fcj 0(ao, 3n3Pi, •••,P„3s3z1, ..., z„ 
ai> bo> blt Pt, ...,p„, s, Zj, ... ,z„). 

We proceed to pull out existential quantifiers from the right side of this expression. 
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A) There is a bound n on the number of steps in determining principal con-
gruences for all algebras in K. In this case we say K has n-step principal congruences. 
By previous remarks we can, without loss of generality, assume all principal congru-
ences can be described using a Malcev formula with the same fixed n. Formally, 
this gives 

3n such that \/A€K Va0, a„ b0, b1£A 

(b0 = bx 0(ao, aO— 3Pi, ...,/>„3532!, ...,%„ 

il>(a0, ax , b0, blf plt ..., p„, s, zx, ..., z„)). 

Note that this is not as strong as definable principal congruences since the polyno-
mials which are to be used are not specified (and the language does not allow varia-
bles having polynomials for values). But, by restricting n in this way there are only 
finitely many choices for the switching functions, i.e. the 2" functions from {1, . . . ,«} 
to {0, 1}. Algebras with n-step principal congruences are discussed in section 3. 

B) The class K has n-step principal congruences and there is a specified list of 
switching functions for determining all principal congruences of algebras in K. This 
becomes in the notational pattern we have adopted: 

3n, 3sl5 ..., sk such that \M£K \fa0, a l 5 b0, b^A 

(b0 = bi 0(a0, flj) — , ..., Pn 3/3^, ..., z„ 

4/(a0,a1,b0,b1,p1,...,pn,si,z1,...,znj). 

We will be mainly interested in the case that k=1. Results concerning this situation 
will be given in section 4. 

C) The class K has «-step principal congruences with a specified list of switching 
functions, and there is a specified list of polynomials to be used for determining prin-
cipal congruences of all the algebras in K. This is of course, definable principal con-
gruences. Thus it formally becomes: 

3n, 3s l5 ..., sk3p[, ..., p'n (1 ^i^k) such that K \fa0, a1 ; b0, b^A 

(b0 = b! © ( a c a O — 3 i 3z1 , . . . ,z„ ij/(a0, a l s b0, bu p[, ..., pi, s,-, z l5 ..., z„)). 

A discussion of definable principal congruences in this context is found in section 5. 

D) The class K has n-step principal congruences with a single switching function 
s and a specified list of polynomials px, ...,p„ to be used for determining principal 
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congruences in K. Formally this becomes: 

3n, 3s, 3p i , . . . , p„ such that \M€K \fa0, alt b0, b^A 

(i>0 = bx 0(ao, aj** 3z1, ...,z„ i a l t b0, bl,p1, ...,p„, s, 

If (p defines principal congruences for a class K then q> is a finite disjunction of Mal-
cev formulas. In D) there is only one disjunct (this is exactly the distinction implicit 
in [3] between the congruences being defined by a weak congruence formula or a 
congruence formula). This notion is now called "K has a uniform congruence sche-
me" and has been investigated in [15], [7], [8], [21]. In particular, [15] shows uniform 
congruence scheme is equivalent to their notion of equationally definable principal 
congruences. 

We thus have a hierarchy of properties A), B), C) and D). It is a natural question 
to investigate how this hierarchy behaves in the presence of other properties the class 
K may possess. These questions will not figure in the remainder of this paper; so we 
briefly mention them at this point. FRIED and Kiss [33] have also considered related 
questions. 

One possibility is to restrict the variables zf to take on values from {a0, ax,b0, bi}. 
By a result of DAY [14] this is equivalent to the congruence extension property. 
(For details on the congruence extension property see [17] or [16].) If this restriction 
on the is added to condition A) and if K also is uniformly locally finite (or at least 
4-generated algebras in K have bounded cardinality), then K has definable principal 
congruences, and the defining formula can be made quantifier free as discussed in 
[3]. Moreover, if in D) all zf£ {a0, ait b0, b^, then this gives the restricted uniform 
congruence scheme discussed in [15], [9], [10], [21] and [22]. 

Another possible restriction is to place a bound m on the possible arities of the 
polynomials which appear. In this case, if K is also uniformly locally finite, then con-
ditions A) and B) both collapse to C). This is similar to the property CEP„ discussed 
in [21]. This also has some bearing on the notion of P0-principal congruence relations 
which are defined in the next section. BAKER [31] considers restrictions on the poly-
nomials for varieties of lattices. 

If K is a variety with distributive congruence lattices, then it is shown in [15] 
that conditions C) and D) are the same. We do not know how this affects conditions 
A) and B). 

3. Bounded number of steps 

In this section we investigate condition A) for a class K of algebras. We provide 
some curious examples, pose some questions, and deal with some work of Burris and 
Lawrence on definable principal congruences. 

The simplest example of a class of algebras having a finite bound on the number 
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of steps required in principal congruence relations is provided by sets, i.e. algebras 
with no fundamental operations. For sets, the only polynomials are the projection 
operations. If A is a set, then for x,y£A, the principal congruence relation 0(x,y) 
consists of the ordered pairs (x, y), (y, x), and (w, vv) for áll w£A. It is easily seen 
that these three cases can be handled with polynomial projection functions; but 
both possible switching functions are required, and two different projection functions 
are needed. This simple example is instructive since it shows that condition A) is 
not preserved under extension of varieties, and hence is not a Malcev condition. 
(For details on Malcev conditions see [16], [27], and [3].) This is to be contrasted with 
some of the results in section 4. 

An instance of the significance of n-step principal congruences may be found 
in the work of BURRIS and LAWRENCE [ 1 2 ] , [ 1 3 ] on definable principal congruences in 
groups and rings. In the second of these two papers, they define the notion of P0-
projective principal congruences for a class K of algebras. Essentially this is condition 
A) with « = 1 and with the added stipulation that the polynomials which are to be 
used are drawn from some class PQ of polynomials. They posed the following problem: 

P r o b l e m 1. (Burris and Lawrence) Let K be a class of algebras such that 
Q(K) has definable principal congruences. Does V(K) also have definable principal 
congruences? 

They prove the following in [13]: 

T h e o r e m 3.1. (Burris & Lawrence) Let K be a class of algebras such that 
Q(K) has definable principal congruences and such that F(K) has P0-projective princi-
pal congruence relations for some set P0. Then F(K) also has definable principal con-
gruences. 

For an arbitrary class K of algebras, the class <2(K) and the class ISP(K) of all 
algebras isomorphic to subalgebras of products of members of K need not be the 
same. For example [4] and [5] contain a discussion of this. However, for any class 
K, HQ(K)=HSP(K)=V(K) and the following variant on Problem 1 is possible. 

P r o b l e m la . Let K be a class of algebras such that SP(K) has definable prin-
cipal congruences. Does F(K) also have definable principal congruences? 

We now present a generalization of Theorem 3.1 which answers Problem 1 and 
la for certain classes K of algebras. 

T h e o r e m 3.2. Let K be a class of algebras such that K has definable principal 
congruences and such that H(.K) has n-step principal congruences for some integer n. 
Then H(K) also has definable principal congruences. 

P r o o f . Let <p be any positive 4-ary formula defining principal conghiences for 
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the class K, and suppose H(K) has «-step principal congruences. We claim H(K) 
has definable principal congruences given by 

(•*)'• bo^ .bi 0(ao, ax) iff 3 w0, ..., wn 

(w0 = b0, w„ = bt, and q>(a0, alf w,_i, w{) for 1 z S « ) . ' 

To verify this claim consider B£H(K), A£ K, and a homomorphism h from A onto B. 
Let bij=b1 0 (a0, at) in B. So B models the formula 

for some choice of Pj,s, and Zj, where the p j are kj-ary polynomials. Arbitrarily 
choose a't£A and kj — 1 tuples z) with h(ai)=ai and h(z'J)=zJ. Note that 
h(pj(ai,Zj))=pj(ai,Zj). Also, in the algebra A it is the case that Pj{aa, z'j) = 
=PJ(ai,Zj) 0(ao, a[) for 1 Hence A\=(p(a'0, a'u pj(a'0, z'j),pi(a[, z'j)) and 
since (p is positive and h is a homomorphism B^=(p(a0,a1,pJ(a0,Zj),pJ(a1,Zj)). 
Moreover, in B, Pjia^^, Zj)=pJ+1(asU+1), zJ+1). So choosing w0=p1{asm,z1), 

and Wi=pi+1(asii+1), zi+1) with 1T§/<H. shows (*) holds in B. 

C o r o l l a r y 3.3. Let K be a class of algebras such that the class Q(K) has defin-
able principal congruences and the class K(K) has n-step principal congruences for 
some integer n. Then F(K) also has definable principal congruences. Moreover, this 
result holds if Q is replaced by SP. 

Because of Theorem 3.2 and because the formula \j/ is positive, it would be tempt-
ing to conjecture that «-step principal congruences is preserved under homomor-
phism. The following shows this is not the case. 

E x a m p l e 3.4. Let A have universe consisting of the positive integers and sup-
pose for each positive integer i there is a unary operation gt such that 

g i ( 1) = 2/+1, g l(2) = 2/4-2, and gi(k) = k for all k > 2. 

Then A satisfies condition A) with n=2, but A has a homomorphic image B which 
does not satisfy condition A) for any n. In order to verify this, first observe that there 
are only four types of principal congruences on A (we list the nontrivial blocks): 

0 (1 ,2 ) = 1,2/3,4/5,6/.. . , 
0 (1 , k) = /k, odds/, (k > 2) 
0(2 , k) = /k, evens/, (k > 2) 
0(k, m) = \k, ml (k, m > 2). 

It is easily seen that the first and last of these congruences can be done in one step, 
while for the others, two steps will suffice. Define a homomorphism h of A so that h 
has kernel consisting of Vj0(2/, 2/+1) as z ranges over all /=»1. Then in the algebra 
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h(A), the principal congruence relation 0(/i(l), h(2)) will require an arbitrarily 
large number of steps. 

P rob l em 2. Let A be an algebra that satisfies condition A) for its principal 
congruences with n= 1. Does every homomorphic image of A also have this prop-
erty? 

We now present another approach to Problem 1. If A is an algebra, and if h is 
a homomorphism of A and if 0 is some congruence relation on A, then the image of 
0 under the homomorphism h, denoted h(0), will consist of {(h(x), j>(/i))|(x, >>)€ 0}. 
Note that in general, because of transitivity, h{0) need not be a congruence in h(A). 
We say that the homomorphism hpreserves the congruence 0 if h(0) is a congruence 
relation of h(A). Consider the following property for an algebra A: 

(* *) For any homomorphism h of A any principal congruence relation 
0(h(x), h(y)) of the algebra h(A) is the image of some principal congruence 
relation of A. 

Note that if h preserves 0(x, y), then 0(h(x), h(y))=h(0(x, y)). Thus if every 
homomorphism of A preserves every principal congruence relation of A, then A has 
(* *). In section 4 we investigate the condition that a given homomorphism preserve 
a given congruence relation. Our interest in ( * * ) stems from the following. 

Theorem 3.5. Let Kbe a class of algebras with definable principal congruences, 
and suppose each algebra in K has property (* *). Then H(K) also has definable prin-
cipal congruences. 

Proof . Let K have definable principal congruences given by some positive 
formula (p. Consider A£K and some homomorphism h of A onto an algebra B. 
If u=v 0(x, y) in B, then by property (**) , there are u', v', x', y' in A such that 
h(0(x',y'))=0(x,y) and h(u')=u, h(v')=v, and u'=v' 0(x', y'). Hence, 
A N= <p (x', y', u', v'), and since q> is positive, it follows that B\=(p(x, y, u, v). Thus <p 
serves to define principal congruences in B. as well. 

We can relate property (* *) to our hierarchy by the following observation. If 
K is a class of algebras for which the class H(K) satisfies condition A) with n= 1, 
then every algebra A in K has property (* #). The proof of this is immediate since 
transitivity will not be violated. This observation gives Theorem 3.1 as a corollary 
of Theorem 3.5. 

We note that condition (* *) is not trivial. 

Example 3.6. There exist finite algebras A and B and a homomorphism h 
from A onto B such that the algebra B has a principal congruence relation that 
is not the image under h of any principal congruence relation on A. For example, 
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let .¿ = {1 ,2 ,3 ,4 ,5 ,6} and let A have two unary operations / and g given by: 

1 2 3 4 5 6 

/ 3 4 3 4 5 6 
g 5 6 3 4 5 6 

Let h be the homomorphism of A which identifies only 4 and 5. The principal con-
gruence 0 (/i(l), h(2j) in the algebra h(A) is not the image under h of any principal 
congruence of A ; for if it were, a simple argument shows it would be the image of 
the congruence 0(1, 2), but the image of this relation under the homomorphism h 
is not transitive. 

We conclude this section by discussing the relation between «-step principal 
congruences and n-permutability of principal congruences. This is motivated, in 
part, by work of MAGARI [ 2 2 ] . 

If R and S are binary relations on the same set, then the composition of them, 
denoted RoS, consists of all pairs (x, j ) for which there is some z such that 
(x,z)£R and (z,y)<£S. Let R0R0...0R with « factors be denoted by R". Also, 
R~1=z {(j, The equivalence relations R and S are said to be «-permut-
able if 

RoSoR... = SoRoS..., each side having n factors. 

Thus 2-permutable is the usual permutable: RoS=SoR. If jR and S are «-permut-
able then 

RMS = R0S0R... (n factors). 

T h e o r e m 3.7. Let A be an algebra such that A and every homomorphic image of 
A has n-step principal congruences. Then the principal congruences of A are 2 « + l 
permutable. 

Proo f . We will prove a slightly stronger result: If 0 is any principal congruence 
relation, 0 = 0(tfo , flj), and if I is any congruence relation, then 

0V21 = í o 0 o l o . . . o í (2«+l factors). 

To this end, let (0V£) . So there exists a sequence of elements /„, t u . . . , tk 

such that t0=b0, tk=b1, t2i = t2i+1 0 , and í2¡+1 = /2¡+2 I. Let h be a homomor-
phism with kernel I. So h(t2i+1)=h(t2i+2) and h(t2í)=h(t2í+1) 6(h(a0), h(a¿¡). 
Therefore, h(t0)=h(tk) 0{h(ao),h(a1)). By hypothesis h(A) has «-step principal 
congruences, so there exist polynomials pt and elements z¡, 1 Si 'Sn, and a switch-
ing function s to establish that h(t0)=h(tk) 0 (h(a0), h(ax)) in h(A). But then in 
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A, > I(a1_s{0,z I.)=Jp1+i(aJ( i+1),z I+1) I and p¡(a0, z¡) 0 . Therefore, the 
chain b0=t0, p¡(asa), z j , z j , p2(as(2), z2), ..., i„=&i, establishes the 
claim. 

Note that the algebra ^ = <{0,1,2, ...},/> where f(f)=i-1, and / ( 0 ) = 0 
has permutable congruences as do all its subalgebras and homomorphic images; 
but principal congruences in A require an arbitrary number of steps. Hence Theorem 
3.7 has no natural converse in this local form. However, a reasonable converse for 
the global version might be: 

P r o b l e m 3. If a variety K has the property that there is some m for which 
all principal congruences are m-permutable, does K have «-step principal congruences 
for some «. 

4. Bounded steps and specified switching 

We next investigate condition B) for a class K of algebras. This general problem 
has not received much attention in the literature. However, if K is a variety and if 
only one switching function is allowed, and if this function is a constant function, 
then such K have been studied in some detail, although from a different point of 
view. For the remainder of this section we confine ourselves to classes K satisfying 
condition B) and having only one switching function s. 

As in section 2, the easiest example is furnished by sets. For if K is the variety 
of sets, then all principal congruences in K can be obtained using only 2 steps and 
with a switching function j ( l ) = 0 and s(2)=l. Note of course that several dif-
ferent polynomials will be required in the different cases. One consequence of this 
example is that condition B), even with only one switching function, is not a Malcev 
condition. This has also been observed by P. Kohler. However, compare this with 
Theorem 4.2 below. 

In [ 2 2 ] M A G A R J considers the notion of a good «-family for a class K of algebras. . 
In the case of « = 1 this reduces to K having m-step principal congruences for some 
integer m and some fixed switching function s, with all of the z¡^{a0, als bo,.^}. 
He shows in the proof on pp. 695—696 that if an algebra has this property then if 0 
is any principal congruence relation and I is any congruence relation, then 

0 o Z o 0 o . . . o 0 Q Z o 0 o í o . . . o í (2m+l factors in both). 

It follows then that in K principal congruence relations are 2m+1 permutable. 
We have shown in Theorem 3.7 that this result of Magari does not depend on 

fixing a particular switching function. In fact, by specifying the switching function 
(to be a constant) and working, in a global setting, an even stronger result can be 
obtained. 
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We now consider varieties with «-permutable congruences. The following is 
d u e t o HAGEMANN a n d MITSCHKE [19] a n d HAGEMANN [18]. 

Theorem 4.1. For a variety K of algebras, thé following are equivalent: 
(i) The congruence relations of every algebra in K are n-permutable. 

(ii) There exist ternary algebraic operations qit ...,qa on K such that 

<li{x, y, y) = x, q¡-i(x, x, y) = q¡(x, y, y) and qn-i(x, x, y) = y. 

(iii) For any A in K and any reflexive subalgebra R of A2, R~1QR"~1. 
(iv) For any A in K and for any reflexive subalgebra R of A2, Rn=Rn~1. 

The following is implicit in HAGEMANN and MITSCHKE [19] and is an unpublished 
result of H. Lakser. Also see CHAJDA and RACHUNEK [32]. 

Theorem 4.2. For a variety K of algebras, the following are equivalent: 
(i) K has n +1 permutable congruence relations. 

(ii) There is a constant function s: {1, ...,«}->-{0, 1} such that all principal 
congruences of algebras in K can be done in n steps using s as the switching function. 

Proof . To show (i)-(ii) let A£K and suppose c=d 0{a,b) in A. Define a 
relation R={(p(a, z),p(b, z))| p is any k-ary polynomial and z is any k— 1 tuple 
of elements of A, k= 1,2,...}. We wish to show (c, d)£R". Note that the relation 
R is reflexive and is a subalgebra of A2. Also, by Malcev's lemma, there éxists an m 
such that (c,d)£RxoR2o... oRm, where each R¡ is either R or R'1. By Theorem 
4.1 R^QR", so (c, d)£R' for some t^m. But again by Theorem 4.1, R%R", 
and hence (c, d)€ R" as desired. 

For the opposite direction, assume, without loss, that s(i)=0 for all i. Let F 
be the free K algebra on the three free generators a, b, and c. Note b=a ©(a, b). 
So there exist polynomials px, ...,p„ such that 

b = px(a, Zi), p¡(b, z¡) = pi+1(a, zi+1), a = pn(b, z„). 

Each z¡ is a sequence of elements of F, and each element of F is itself a polynomial 
in the variables a, b, and c. Denote this sequence of polynomials by z¡(a, b, c). Fi-
nally, defining q¡(x, y, w)=p¡{y, z¡(w, x, w)) gives the desired polynomial identities 
of Theorem 4.1. 

Combining Theorem 4.2 with Theorem 3.2 we have: 

Coro l l a ry 4.3. If the variety V has n-permutable congruences for some n, 
K g V , and Q( K) has definable principal congruences, then V(K) has definable prin-
cipal congruences. 

Coro l l a ry 4.4. (Burris and Lawrence) 7 /K is a class of groups or rings and 
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Q (K) has definable principal congruences, then V(K) has definable principal congru-
ences. 

P r o b l e m 4. Can the condition that K is a variety in Theorems 4.1 or 4.2 be 
relaxed in some way? 

P r o b l e m 5. Are there any results, analogous to Theorem 4.2, for switching 
functions s that are not constant? Observe that the argument using the free algebra 
can still be used to produce polynomial identities. 

With regard to Problem 5, Peter Köhler has observed that the variety of distri-
butive lattices has a restricted uniform congruence scheme with /7=4 and j (1 )= 
=J (3 )=0 and J(2)=J(4)=1, but by a result of WILLE [29, p. 79], distributive latti-
ces are not m-permutable for any integer m. 

We conclude this section by exhibiting a few curiosities concerning 3-permuta-
bility. It is easily seen that if an algebra A has principal congruences that are 2-per-
mutáble (i.e. permutable), then all congruence relations of A are permutable. This is 
not the case for 3-permutability; witness e.g., sets have all principal congruences 
3-permutable, but congruences in general for sets are not. Indeed, congruences on 
sets are npt n-permutable for any n, since a constant switching function will not suf-
fice for generating them. 

If a class K has the property that //(K) has 2-permutable congruences, then by 
Theorem 4.2 and by the remarks following the proof of Theorem 3:5, it follows that 
every algebra in K has property ( * *). A similar result is possible for 3-permutability 
as well. In [29, Satz 6.19] WILLE proved that a variety K has the property that arbit-
rary homomorphisms preserve congruence relations iff K has 3-permutable congru-
ences. We now present a local version of his result, via a similar proof, and thereby 
give another sufficient condition for ( * *). 

T h e o r e m 4.5. Let A be an arbitrary algebra. A congruence relation © of A 
is preserved by á homomorphism h i f f 0oker(h)o0Qker(/¡) o 0 o ker (/¡). 

P r o o f . To show h preserves 0 , it suffices to show /i(0) is transitive. So let 
(h(w), h(x)) and (h(y), h(z)) be in h{0), with h{x)=h{y). Then there exist w', x /, y', 
andz ' in ^-such that h(w')=h(w), h(x')=h(x), etc. with (w',x') and (y',z') in 0. 
Note h(x')=h(y'). By hypothesis, 3M, V£A such that h{w')=h{u),h{z')=h(v), and 
(w, V)£0. Hence h(W)=h(u), h(z)=h(v), and (h(u), h(v))eh(0). So (h(W), h(z))£h(0) 
as desired. 

Conversely, let (w, x), (y, z)6 0 with h(x)=h(y). Apply h to give 
(h(w), h(x))£h(0), (h(y), h(z))ih{0). So there exist w', z'^A such that h(w')= 
=h(w), h(z')=h(z) and (w',z')£0. This gives (w, z)i ker (h) o 0 oker (A) as de-
sired. > 
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Note that the variety K of 1-unary algebras in which f ( x ) =f (y) for all x and y 
has the property that any homomorphism preserves principal congruences, but not 
arbitrary congruence relations. 

A specialized version of Theorem 4.5 gives the next result. The proof is an easy 
modification of the proof of 4.5. 

T h e o r e m 4.6. Let K be a class of algebras. The following are equivalent; 
(i) every homomorphism of an algebra in K preserves principal congruences; 

(ii) principal congruences are 3-permutable for algebras in K. 

5. Definable principal congruences 

The notion of definable principal congruences was introduced in [3] in an attempt 
to describe the behavior of subdirectly irreducible algebras in a variety. Interest in 
the concept has continued, not only for its own sake, but also as a crucial hypothesis 
for other theorems in universal algebra and equational logic. One direction of re-
search has been to classify varieties by whether or not they have definable principal 
congruences. This was done in [3] and has continued with the previously cited work 
of BURRIS and LAWRENCE [12], [13] for groups and rings, and by BAKER [1] for groups. 
Negative results have also been obtained by BURRIS [11] who exhibited a 4-element 
algebra that generates a variety without definable principal congruences (but which 
does have distributive congruence lattices); by MCKENZIE [24] who »showed that 
every nondistributive variety of lattices fails to have definable principal congruences; 
and by TAYLOR [28] who showed that the variety of commutative semigroups satis-
fying the law xy=uv (which is generated by a 3-element semigroup), does not have 
definable principal congruences. In [6] it is shown that every 2-element algebra 
generates a variety with definable principal congruences. A useful theorem of 
MCKENZIE [24] states that if a variety V of finite similarity type has definable princi-
pal congruences and if there is a finite bound on the cardinality of subdirectly irre-
ducible members of V, then V has a finite basis for its polynomial identities. (Also 
J6NSSON [20] has a similar result.) This was used, for example, in [30] to show that a 
certain variety of upper bound algebras is finitely axiomatizable. Several strengthened 
versions of definable principal congruence relations have been given in the literature ; 
some of these were discussed in section 2. Recently TULIPANI [34] has shown that if 
a variety has definable principal congruences, then for any n there is a first order 
formula for describing the join of n principal congruence relations. 

One possible way to obtain a positive solution to Problem 1 would be to show 
that whenever an algebra A has definable principal congruences with defining for-
mula q>, then every homomorphic image of this algebra also has its principal congru-

6» 
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ences defined by <p. We now present another example to show that this is not the case. 
Note that we cannot use Example 3.4 since the algebra in that example did not have 
definable principal congruences. 

Example 5.1. There exists a groupoid A and a homomorphic image B of A 
such that A has definable principal congruences and B does not. 

Let the groupoid A have universe {0,1, 2, ...} and define ffi on A by 

l © x = xffil = x Vx, 
0©0 = 0, 
x©.y = x Vx,y => 1, 
Offix = xffiO = x Vx = 3 /± l , / > 0 , 

0©3/ = 3 / - l V / > 0, 
3/©0 = 3 / + l V/ > 0. 

The principal congruence relations of A are listed below, where only nontrivial 
blocks are given and x, 1. 

0(0,1) =/0 ,1 /2 , 3,4/5,6,7/.. . 
0(O,x) = /O,2, 3, 4, . . . / 
0(1, x) = /0,1,2, 3,. . . / 
0(x, y) = /x, yj X , y ^ 0 (mod 3) 

0(x,y) = / x—1,x ,x+1 , j / x = 0(mod3), j>=£0(mod3) 
0 ( x , y ) = /x-l,y-l/x,y/x + l,y+l/ x,y = 0(mod3). 

All of these principal congruences can be achieved in at most six steps using unary 
algebraic polynomials of the form g(x)=z4ffi(z2ffi(xffiz1)©z3) where the zt are in 
A. Thus, A has definable principal congruences. Let 0 denote the congruence rela-
tion 

0 = V i0(3/ + l ,3/+2), i = l , 2 , . . . ; 

Let h be any homomorphism with kernel 0 and let B=h(A). Consider the principal 
congruence relation 0(/i(O), /i(l)) in B. x=y 0(0, 1) in the algebra A implies 
h(x)=h(y) 0(/i(O),/i(1)). So the block of 0(h(O), h(l)) includes {h(3i-1), /i(3/), 
/i(3/+1)}, for all />0. Thus 0(/i(O), h(l))=/h(0), h(\)/ the rest of B\. But for 
any polynomial p, 

{p(h(0), /i(z)), p(h( 1), h(z))} i h{{p(0, z'),p(l, z')| z- = z 0}) ^ 

i / i ( { 3 ( / - l ) - l , 3 ( / - l ) , 3 ( / - l ) + l , 3 / - l , 3 / , 3 / + l ) } ) 

for some /, and so an arbitrarily large number of steps are required. 
With regard to Example 5.1, note that SP(A) does not have definable principal 
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congruences. For let C be the subalgebra of A" generated by {3, 4, 6, and tl (1 ^i^n)}, 
wehre k is the «-tuple of all k's, and tl consists of all 8's, except for /J=0. We leave 
it to the reader to verify that 4 = 6 0(3, 6) in the algebra C, and that polynomials 
of arity n + 1 are required. 
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