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The range of the transform of certain parts of a measure

KERRITH B. CHAPMAN and LOUIS PIGNO

In this note we point out a very elementary condition which provides a uniform
treatment for the results in [2, 4, 5] concerning the range of the transform of certain
parts of a measure. We assume familiarity with the basic facts of {8].

Let G be a nondiscrete LCA group with character group I' and let M (G) denote
the customary convolution algebra of bounded Borel measures on G. Denote by
S the structure semi-group of M(G) and let S denote the semi-characters of S;
recall that .S is the maximal ideal space of M(G), see [8]. For u¢ M(G) let 2 denote
the Gelfand transform defined on S by

AG) = [ xdp

N

where we have identified u and the image of g in M(S); we will also let ~ denote the
usual Fourier—Stieltjes transformation. By My(G) we mean the set of ucM(G)
such that £ vanishes at infinity, i.e. i is zero on I'\[I.

The main result of this paper is the theorem stated below; its proof is quite
simple. After stating and proving our theorem, we present two examples which
serve to indicate its scope. Example 1 is obtained by adapting the work of B. Host
and F. PARREAU [3]. In order to present Example 2, we prove a proposition by modi-
fying an argument of I. GLICKSBERG and I. Wik [2]. Professor Glicksberg has kindly
pointed out (private communication) that the proposition is also a consequence of
the main result of [1].

Theorem. Let he'\I' and EN\I'. Then for every pcM(G),

M (h)™ (') € A(TN\E)~
if and only if
) he(INYE)~ for every vy<I.
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Proof. Let E satisfy (2) with respect to some he€I\I. Fix 7,€I'; since
he (I\ys*E)~ there is a net (y;)CI' such that y;—~h and y;¢ys'E for all j.
Observe that

(h)" (y)) = A(yoh) = lig_n ﬂ()’o?j)

because fi is continuous on $. Thus (2) implies (1).

Now let h¢ '\I' and suppose for every ucM(G), (h) (F)CA(IN\E)™; we
want to see that F satisfies (2) with respect to 4. With this in mind fix y,€I" and let V'
be any open set of S containing {h}. It suffices to confirm that VN (I™\y,E) is not
empty.

Let W=7,V. Then W is an open set containing {fsh}; by the definition of the
Gelfand topology on $ there exist measures yy, ..., 4, M(G) and £>0 such that

iél {0 100 — AGoh)| <€} S W.

For ucM(G) put ji equal to the measure such that ()" =g on I' and let &,
be the identity measure in M(G). Define auxiliary measures by:

v, = wi—LFh)é, and o, =v;x¥; i=1,2,...,n

Put 0 = 3 6;; now, on the one hand, &(hy,)=0, while, on the other,

i=1
(ho) (7o) = 8 (hF)EG(IN\E)~
by hypothesis.

We gather from all this that there is a net (y,)<I'\E such that &(y,)—0.
Now given ¢=>0 choose o such that for all a=o’

18 (y)l < &%
consequently for all az=ao’

3 1B~ AGRI <

Thus |2;(y,)—f;(Fh)|<e for a=a’, and so y,€W for all az=da'.
We have now proved that if a=a’, 77,V (I\YoE); thus hc (I\yoE)™
and this means that (1) implies (2).

Let G be an infinite compact abelian group; a subset RcI” is called a Rajchman
set if whenever u¢ M(G) and supp AICR then u€My(G); here ~ is the Fourier—
Stieltjes transformation. Examples of Rajchman sets can be found in [7]; all the sets
considered in [4, 5] are Rajchman sets.

Example L If R is a Rajchman set then R satisfies (2) with respect to every
idempotent h¢’\I'; we point out that this fact is more or less implicit in [3]. To
be explicit we need to reproduce some details from [3].
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To confirm that R satisfies (2) with respect to every h=h2¢I\I" we fix an
hi=hyc¢ \I" and suppose by way of contradiction that there is a y,€I" such that
ho& (I'\yoR)~. Thus, there is an open set V, with hy€¥V, such that VN (IN\y,R)
is empty and 1¢V¥,. For the remainder of the proof, ~ is complex conjugation.

By the definition of the Gelfand topology on § there exist measures p,, ..., 4,€

¢M(G) and &€=0 so that ﬂ {o: 1800 — Ri(ho)l <&} is open and contained in V.
Put A,={z€C: |z—4, (h0)|<s} and consider the open set ﬂ {(hop)"}"(A4); since
ho=h it follows that hy¢ ﬂ {(hor)” }"4(4)} and therefore

_ {r'j ﬂfl(Ai)} N {r:] (hou)” —l(Ai)}

is an open set about h,. Put Wi={y:x€W,} and define V,=W,NW7F; since
hy=h, we see that ¥V,CV, and V, is an open set about h,. Choose B,€I" such
that By, Br1€V;. Next define B,={f;, f7,1}; let

= {x: 1€ {(B1)"}*(4) for all i and all BEBIN
N{x: x€{(Bhou)"}2(4,) for all i and all f¢B,}

and V,=W,NW}; evidently V,c¥; and h,€V,. Since ¥, is open and B, is finite
we select B,€I’ such that S,€¥V,\B;.

Put By={f= I B :€{—1,0, 1JU{1}; let
i=1

Wo={x: x€ {(Bu;)"}~(4;) for all i and all BEB,}N
N{x: x€ {(Bhon)"}X(4;) for all i and all e By}

and V,=W,NW}; evidently V,CV, and h€V;. Since V; is open and B, is finite we
select B¢’ such that B,€V,\B,. Continuing in this manner we inductively con-

struct a sequence of distinct characters (f;);° such that f= ]JI B3, 6,€¢{—1,0,1}
and 6,0 for some i, then B€¥,; since BeV,NI, this me;;; that By, '€R for
all § of the form f= ]J] B%, 6,€{—1,0,1}. As shown in [3] (see Theorem 2.8 of
[6,p. 21]) there isa drssocrate sequence (w,)y with the property that if w is of the
form o= ]] ol, 6,€{—1,0,1}, then wis also of the form w—j[]1 By, mie{—1,0, 1}.

Srnce (w,,)l is dissociate we may now construct a Riesz product A€M (G)
such that supp ACR and A¢ M,(G); this contradicts the fact that R is a Rajchman
set and so our discussion is complete.

2%
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The above example is not the only one we know: Let R denote the additive
group of real numbers and let ¢ : 'R be a nontrivial homomorphism. A measure
HEM(G) is said to vanish at infinity in the direction of ¢ if whenever @(y;)—~+ o
then A(y;)—0; denote the set of all measures vanishing at infinity in the direction
of ¢ by M,(G). A subset RCI is said to be @-Rajchman if for ué¢ M(G) and
supp ACR=u€M,(G). Then it can be shown that if E is ¢-Rajchman, E satisfies
(2) with respect to various h’s. Notice that in general there are ¢-Rajchman sets
which are not Rajchman sets; let I'={m+n}2 : m,ncZ)} and let ¢ be the identity
homomorphism of I' into R. Then the set {x€I' : x=0} is ¢-Rajchman but not
Rajchman.

Although ¢-Rajchman sets and Rajchman sets are the same for the additive group
of integers Z, there do exist non-Rajchman subsets of Z which determine the range
of the transform of certain parts of a measure. For the circle group T put u=p,+p.
where up€M(T), u; is discrete and u. continuous.

Let 8(Z) denote the Bohr compactification of Z and for EcZ let E be the
closure of E in f(Z). Our result is then:

Proposition. If ECZ and ZN\E is dense in B(Z) then for uc M(T)
84(Z) € J(Z\E)~.

Proof. For u€M(T) write p=p;+p.; fix O<e<l and meZ\E. We see
from [2] that there is an infinite sequence (m;);> of distinct integers satisfying

2.1) [A.(mo+m,—m))| < —% for j<n.

Put H={m;); and consider H where the closure is of course taken in B(Z).
Since card H= <, thereisan x¢Z and a net m,€H, a€A such that m,—x€f(Z).

Inasmuch as m,Z\E it follows that there is an oy€ A such that for all «
and p greater than o

(2.2) my+m,—my¢ E
and
23 1Ra(mo) = Aa(mo+ m, —mp)| < =

/

Notice that (2.3) is valid since fi; is a continuous function on S(Z). As a conse-
quence of (2.2) and (2.3) there is a k=1 and an r=k such that my+m,—m ¢ E

and  |f1,(mo) — fi(mo+m,—my)| <% - Since

[Aa(mg) — A(mo+ m,—m)| = |A4(mg) — fs(My+m, —m)| + 1. (mo+ m,—m,)],
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and r=k, we gather from (2.1) that
[2a(mg) — f(mo+m, —my)| = e.

Thus A,(Z\E)CA(Z\E)~ and since Z\E is dense in f(Z) we obtain 2,(Z)c
CA(ZN\E)~. The proof is complete.

Example II. Let N be the natural numbers and for each n€N put E,=
={m:m= 3685, 6,6{~1,0,1}}; set E=(J E,. Let D={e""" : kcZ, jeN}
i=1 1

and consider E as a subset of D where D is given the discrete topology. Now the
integer accumulation points of E in D belong to E so it follows that E is a closed
subset of Z in the relative tolopogy of (Z). Notice that E has natural density zero
so by Wiener’s Theorem it follows that if supp § CE then ¢ is continuous and this
in turn implies that Z\E=Z\E is dense in f(Z). Clearly E is not a Rajchman set
since it contains the spectrum of an infinite Riesz product.

Remark. An easy application of Theorem 1 and Corollary 2 of [5, p. 2] estab-
lishes the following assertion: Let ECI satisfy (2) with respect to some h=h%¢
€I\ and let S be an infinite Sidon subset of I'; then EUS' satisfies (2) with respect
to h.

The authors wish to thank Professor Colin Graham of Northwestern University
for helpful correspondence.
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