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Compact approximants 

RICHARD BOULDIN 

§ 1. Introduction. Interest in approximating a given (bounded linear) operator 
T on a fixed Hilbert space § goes back to [3] and [4], among other references. Each 
of the preceding sources constructed a compact operator C such that ||iT—C|| equa-
led the distance from T to the compact operators; such an operator C is said to be a 
compact approximant. Although much attention has been focused on the Calkin al-
gebra and discovering compact approximants with various algebraic properties, only 
[5] seems to have studied the structure of the set of compact approximants. The 
main results of [5] show that the set of compact approximants has no extreme 
points except in the case that a multiple of T is a compact perturbation of a maximal 
partial isometry and the existence of a finite rank compact approximant is charac-
terized. 

This paper attempts to clarify where the investigation of compact approximants 
stands and to extend it in several directions. The next section compares the methods 
of [3] and [4] and shows that the resulting compact approximants are essentially the 
same. The new derivation of the Gohberg—Krein compact approximant will play 
a key role in several subsequent proofs. Section § 3 gives a simplified criterion for 
when T has a finite rank compact approximant. A similar criterion is given for T 
to have a compact approximant which belongs to the Schatten /7-class. Section § 4 
gives a condition which is necessary and sufficient for T to have a compact approxi-
mant with maximal norm. 

Throughout this work U\T\ will be the polar factorization of T where U is 
a maximal partial isometry and \T\ is (T*T)112. For T compact let Si(T), s2(T),... 
be the eigenvalues of |!T| in nonincreasing order repeated according to multiplicity. 
If for some p ^ 1 one has 
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then one says that T belongs to the Schatten /»-class Cp which is normed with 

\\T\\P = ( 2 SjiTyy». 

The quantities | | r | | e and re(T) are defined to be the norm and spectral radius, re-
spectively, of the coset of T in the Calkin algebra. 

§ 2. Constructing compact approximants. Since the existence of a compact appro-
ximant is proved in [3] as a by-product of the extension of ¿--numbers from com-
pact operators to bounded operators and the latter is only outlined, a brief deve-
lopment of the Gohberg—Krein compact approximant is offered. Through the use 
of the characterization of the essential spectrum for a self-adjoint operator, a much 
quicker derivation is achieved. For any normal operator the essential spectrum 
coincides with the Weyl spectrum which is all the points in the spectrum except 
isolated eigenvalues with finite multiplicity. See [p. 376, 6], [2], [1]. First, a funda-
mental lemma is required. 

L e m m a 2.1. | |TL = | | | r | | | e =r e ( | r | ) . 

P r o o f . Let n denote the canonical map of the operators on § into the Calkin 
algebra <€. Since is a C*-aIgebra and n is a *-homomorphism, one knows that 
l|rc(T)|| = IIKTOIII and 

|rr(R)| = (n(T)*n(T)yi2 = (n(T*T)y/2 = n((T*T)1/2) = 7 T ( | R | ) . 

Thus, imU = | |^(r) | | = ||7i(|r|)|| = | | | r | | | . . Since n(\T\) is normal in V, its norm 
equals its spectral radius and the lemma is proved. 

It is now clear that the spectrum of |y | in the open interval ( | |71e , consists 
entirely of isolated eigenvalues with finite multiplicity; let •••} be a nonin-
creasing enumeration of that possibly finite set with each eigenvalue repeated 
according to its multiplicity. Let E(-) be the spectral measure for |T| and denote 
£ ( [ 0 , l | r y ) S and £ ( ( | | T L , - ) ) § by §„ and respectively. Let {el3 e2 , ...} be 
an orthonormal sequence of eigenvectors of |T| such that ej corresponds to for 
y '=l , 2, ... and note that the spectral representation of | r | restricted to denoted 
i 2 m , i s 

i 

If U\T\ is the polar factorization of T then the Gohberg—Krein compact approxi-
mant of T, denoted by K henceforth, is 

K = 2(-^j)(Aj-\\T\\e)Uej. } 

Since {Al5 A2, ...} cannot have an accumulation point in (||T||e) either the above 
sum is finite or A2, ...} converges to ||!T||e. In either case, it is apparent that 
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K is the limit of finite rank operators and consequently K is compact. The fol-
lowing calculation shows that K is a compact approximant for T. 

I i r - / q = \\U\T\-c/(o|§0©(ir|-lirDisOn s n m - o i s o e a r i - n r u i s j = 

= max{ | | | r | |Sol | . l i r | | . / |S 1 | | } = H r L . 

In sharp contrast to the above contruction Holmes and Kripke obtain a compact 
approximant for T without using the polar factorization of T. They note that if 
there is an orthogonal projection P with finite codimension such that TP does 
not assume its norm — i.e. ||77>x|| = | |rP|| | |x| | implies x = 0 — then T(J-P) is a 
finite rank compact approximant. In the case that T does not have a finite rank 
compact approximant, the compact approximant constructed by Holmes and Kripke, 
denoted by L henceforth, is 

L = z ( - , mm-wmTfjiwTfjW 

where {/ 1 ; / 2 , ...} is. an orthonormal sequence such that ||7yi|| = ||T|| and 
\\TfJ+1\\ — \\TPj\\ where P} is the orthogonal projection onto the orthogonal 
complement of {/1 ; . . . , /}} for j= 1, 2, . . . . 

Since 117-xll = | | t / | r |x | | = || | r |x | | , one has || \T\M =11 \T\ II and || |T|/y + 1 | | = || | r |P y | | 
for j= 1, 2, .... This implies that 

i n / i = limiL/i and \T\fJ+1 = \\\T\Pj\\fJ+1 for j = 1,2, ... . 
Clearly one can choose _/} = ej for j= 1, 2, ... with {e1} e2, ...} given as in the con-
struction of the Gohberg—Krein compact approximant. The formula for L becomes 

L= 2 <•. ejXXj-WTUTej/WTejW or L = 2 ( - , ej)(lj-\\T\\e)Uej 
J J 

where k}=\\\T\P}l for j=0,1,... and P0=/. Here it is used that 

Tejl\\Tej\\ = U\T\e,/|| U\T\ej\\ = Uk^lWUX^W = Uej. 
It is straightforward to see that the formulas for K and L can be restated in forms 
which are independent of the choices of bases for the eigenspaces of |T|. Thus the 
following theorem has been proved. 

T h e o r e m 2.2. For any operator T which does not have a finite rank compact 
approximant the Holmes—Kripke compact approximant L coincides with the Gohberg— 
Krein compact approximant K. 

A slight refinement of the Holmes—Kripke construction produces a unique compact 
approximant even in the case that T has a finite rank compact approximant. If n 
is the infimum of the codimension of orthogonal projections P such that TP does 
not assume its norm then the Holmes—Kripke construction produces a unique rank 
n compact approximant which coincides with the Gohberg—Krein compact approxi-
mant. 
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§ 3. Compact approximants in Cp. In [5] it is shown that T has a finite rank com-
pact approximant if and only if there is no infinite dimensional closed subspace 
Scz9) with [17x11 >|]71e Hxll for all nonzero x^S. Following [5] the set of compact 
approximants of T is denoted 

T h e o r e m 3.1. The following conditions are equivalent. 
(i) contains a finite rank operator. 

(ii) |r| has only finitely many eigenvalues in (||r||e, 
(iii) The Gohberg—Krein compact approximant K has finite rank. 

P r o o f . The alternative derivation of the Gohberg—Krein compact approxi-
mant makes it clear that (ii) implies (iii) which implies (i). Thus, it suffices to show 
that (i) implies (ii). 

Let A be a finite rank operator in SKT and, for the sake of a contradiction, assume 
|!T| has infinitely many eigenvalues {Al5 X2,...} in the open interval (\T\e, Let 
& be the closed span of the eigenspaces of | r | corresponding to A2, ...}. It is 
easy to see that 

lim*ll > imUWI for every x * 0 
and so 

||Tx|| = II C/UWI = |||r|x|| > \\T\\e\\x\\ for such x. 

The argument is finished as in [5]. Since the restriction of A to & must have non-
trivial kernel, there is some nonzero ytSTlker A and ||(T-,4)j>|| = ||7>|| H | 7 1 J j > | | 
which contradicts that A£R T . 

For a given operator T it is much easier to construct T*T and check the number 
of eigenvalues in (||71®, than it is to examine all possible subspaces S. It is not 
difficult to see that if T has infinitely many eigenvalues in {z: \z\H|71e} then there 
is an infinite dimensional subspace S. But the converse of the preceding statement 
is false. Thus, it appears that the criterion for a finite rank compact approximant 
cannot be simplified any further. 

The results in the preceding theorem can be refined to provide a condition which 
is necessary and sufficient for S\T to contain an operator from the Schatten /7-class C p . 

T h e o r e m 3.2. The following conditions are equivalent. 
(i) RT contains an operator in Cp. 

(ii) If {?!, A2, ...}. is a nonincreasing enumeration of the eigenvalues of \T\ in 

(||r||e, repeated according to multiplicity, then 

j 

(iii) The Gohberg—Krein compact approximant K for T belongs to Cp. 
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Proof . The alternative derivation of theGohberg—Krein compact approximant 
given in section § 2 makes it reasonably clear that (ii) implies (iii). That (iii) implies 
(i) is trivial and so it suffices to show that (i) implies (ii). 

Of course, the spectrum of | 7 | in ( | |7 | |e , belongs to the complement of the 
essential spectrum of |T| and, thus, it consists of isolated eigenvalues {A^ A2 , . . .} 
each with finite multiplicity. Furthermore, the only possible accumulation point 
of {Aj, X2, ...} is | |7| |e . Let {e1,e2,...} be an orthonormal sequence such that <?; 

is an eigenvector for | 7 | corresponding to Xj for . / '=1 ,2 , . . . . Each Xj is repeated 
according to its multiplicity. 

Let A be a Cp-operator in and let U\T\ be the polar factorization of 7 . 
Note that U*A is a Cp-operator and 

\\\T\-U*A\\=\\U*U\T\-U*A\\ = | |7 | | e . 

Furthermore, one has 

II 7 | | ; SII | 7I - U*A II •2 s II (I 7I - re U*Af+(im U*Af\\ S || | 7 \ - re U*A ||:2. 

Thus re (U*A) belongs to and it is routine to see that it is a Cp-operator. 
Let C denote re (U*A) henceforth, let ctj—(Cej, e^ for j= 1 ,2 , . . . and 

Cej—iXjej+Xj with Xj ± ej . Note that 

IIT-IIJ ^ \WT\ej-CejV = I I X j e j - C e j V = U j B j - a j e j - X j V = - « ; ) » +| |xy | |« . 

Thus, \\T\\eS;\Xj-aj\ or Xj-\\T\\e^Uj^Xj+\\T\\e. This makes it apparent that 
a y SO and 2Q-j- \ \T \ \eY=I,v-P j - According to [item 5, p. 94, 3] 

j j 

\\CVP^2<\C\ej,ejy j 

and since | C | s C it is apparent that 

<|C|e j.,eJ.>fe<CeJ.,eJ.) = aJ- for j = 1,2, ... . 

Thus, it is proved that ¿ '(A J - | | r | | e ) p < o ° as desired. 
j 

§ 4. A compact approximant with maximal norm. Recall that an operator T is 
said to "assume its norm" provided there is a nonzero v e c t o r / such that | |7/ | | = 
= 1171111/11. Such / i s said to be a maximal vector for T. It is easy to see that 7 assumes 
its norm if and only if ||T||2 is an eigenvalue of T*T. Note that | | 7 | | a | | / | | 2 = | |7 / | | 2 = 
= < 7 * 7 / , / > and | | ( | |7 | | 2 —T*7) 1 / a / | | 2 =0 are equivalent. This makes it clear, for 
example, that any compact operator assumes its norm. 

The condition that 7 assume its norm played a key role in [4] and now it plays 
a key role in determining when contains an operator with maximal norm — i.e. 
AeStT such that implies 



10 R. Bouldin 

T h e o r e m 4.1. There is a compact approximant A of T, i.e. A£$<T, with 
maximal norm if and only if T assumes its norm. 

P r o o f . First it is shown that if T does not assume its norm then S<T does not 
contain an operator with maximal norm. For any B£S\T and / a maximal unit 
vector for B one has 

II711. ^ KB-T)f\\ £ | | 2 ? / | | - | | r / | | = | | 5 | | - | | 7 7 | | 
or 

i m i . + i m i > i i r i i e + n r / i i 

Thus, it would suffice to show that ||71e + | |71 is the supremum of the norms of 
operators in R T . 

Since T does not assume its norm, | r | does not assume its norm. Since ||T|| 
is not an eigenvalue for | r | , it must be an accumulation point for the spectrum. Con-
sequently | | | r | | | e equals | | | r | | | and equivalently | | r | | e equals | |7J. Let E(-) be the 
spectral measure for |T| and choose a unit vector /„ from E([\\T\\ — l/n, | | r | | ] )§. 
Define C„ by 

C„ = <-,/„>(21171-l/n)/„. 

Note that C„ is rank one and | |CJ converges to 2 | | r | | = ||T|| + | | r | | e . 
It now suffices for this half of the proof to show that C„ is a compact approxi-

mant for | r | . Denote E([0, | | r | | - l / « ) ) § and E([\\T\\-l/n, ||T||])§ by §„ and § l f 

respectively. Since § 0 reduces |T| —Cn to | r | |§0 it suffices to sow that 

I K I T I - c j s y | | r | | e = m r i L 

where A\$j1 denotes the restriction of A to Since the above restriction is 
self-adjoint it clearly suffices to show that 

< ( |7 , | -C n )g ,g>€[ - | | r | | , | | r | | ] 

for every unit vector g in Since the numerical range of C„ is [0, 2||7'|| — 1/n], 
one has 

- i m i = | | r | | —l/n—(2||r | | —1/n) S \\T\\ — l/n — (Cng, g ) s 

^ < ( m - c „ ) g , g > == iirn - < c n g , g > ^ urn. 

This shows that ||3p||e + | | r | | =2| |7' | | is the supremum of the norms of the operators 
UC„ which belong to RT, where U\T\ is the polar factorization of T. Thus, half 
of the theorem is proved. 

Now it is assumed that T has a maximal vector and it is to be shown that 
i\T contains an operator with norm | |T | | e+| | r | | . Since T assumes its norm, ||T||2 

is an eigenvalue for T*T and this implies ||T|| is an eigenvalue for |T|. First, 
consider the case that | |r | | has finite multiplicity for | r | and let P be the ortho-
gonal projection onto the corresponding eigenspace. For brevity sake let /? denote 
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l|7||e + | | r | | . In order to show that ßP£$\ ] T i it is noted that the restriction of 
\T\-ßP to (I~P)$> is just |T| Thus, it suffices to show that 

H ( i r i - / H > ) | p s n s u m . . 

Since ( |n -ßP) \PSt> is just - \\T\\eP\P%>, the above inequality is clear and / ?P€f t | r | . 
It follows that ßUP belongs to where U |T| is the polar factorization of T. 

It only remains to deal With the case that | |m is an infinite dimensional eigen-
value of m . In this case it is clear that | |nie = |l|7|||e = FI | . Let P be the ortho-
gonal projection onto some nontrivial finite dimensional subspace of the eigenspace 
for m correspoding to ||T||. Since ( 7 - P ) § reduces | r | - 2 | | r | |P to | 7 , | | ( / - P ) § 
and P9) reduces it to - |1T | |P |PÖ, it is apparent that 2\\T\\P belongs to 5 \ m . 
Thus 2\\T\\UP belongs to SkT and the proof of the theorem is complete. 
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