Acta Sci. Marh., 43 (1981), 383—387

A Mal’cev condition for compact congruences to be principal

PAVO ZLATOS

The aim of this note is to show that the following property of a variety (equa-
tional class) K of algebras is equivalent to a Mal’cev condition:

For any algebra W€K each compact congruence relation @ on W is principal.
We shall refer to the property above as “¥ has (PCC)” (principal compact con-
gruences). As usual, a class K of algebras has (PCC) iff every U<K has (PCC).
Though the fact that (PCC) defines a Mal’cev class of varieties could be easily
‘proved using the general results on Mal’cev conditions (see [1], [8], [9] or [S, Appendix
3]), we prefer to describe this condition explicitly.

In [5] and [7] a wide use of algebras enjoying (PCC) is made, in particular, they
are employed in the proof of the characterization theorem of congruence lattices.
In [6], to every algebra U an algebra A with an isomorphic congruence lattice having
(PCC) is constructed (see also [5, Exercise 2.30]). In view of this result when study-
ing lattice-theoretical properties of congruence lattices, it is sufficient to deal with
algebras having (PCC) since the principal congruences can be better described.
The authors in [6] raised the question to characterize those classes K of similar
algebras having (PCC). We shall solve this problem in the case when K is a variety.

Throughout the paper the standard notation and terminology of [5] is used.
For the reader’s sake, we summarize all the results needed in the following four
easy lemmas which will be stated without proof. The first one is actually [5, Lemma
10.6).

Lemma 1. A congruence relation ® on an algebra U is compact if and only
if it can be represented as a finite join of principal congruences.

Thus, particularly, principal congruences are compact.

The second lemma is a modified version of [5, Theorem 10.4], describing the
smallest congruence 6(H) on an algebra U containing the subset HS AXA (i.e.,
the binary relation H on A; see also [5, Theorem 10.3] and the final note in [4]).
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Lemma 2. Let ¥ be an algebra, H a symmetric binary relation on A, and
x, y€A. Then
(x, y)6(H)

if and only if for some natural number m=1 there exist a sequence of pairs
(ag, by), (@1, b)), ..., (@m, b )EH and a sequence g,,g&,,...,8n of unary algebraic
functions on N such that for i=0,1,...,m—1 the following algebraic identities
hold in U:

x =go(2), gn(2) =j’ for each z€A,

8:1(a) = gir1(a@iyy) for i even,

8i(b) = gi1(biyy) for i odd.

The third lemma gives in view of Lemma 1 an immediate characterization of
(PCC) for single algebras.

Lemma 3. For every algebra U the following two conditions are equivalent:

(i) U has (PCO);
(ii) for all a,, a;, by, b,€A there are ¢, d€A such that

0(aq, by)VO(ay, b)) = 0(c, d).

The last lemma is rather technical, enabling to state the final result in a ““nicer”
form.

Lemma 4. Let W be an algebra generated by a set SSA. For every algebraic
Sunction g: A"—~A on U there is a natural number m, a m+n-ary polynomial p
and elements s, ..., Sy41 Jrom S such that for all ay, ..., a,_,€A holds

g(a09 [RRS ] an—l) = p(s09 "'3sm—15 aO, ""an—-l)'
Now, everything is ready to state the promised Mal’cev condition.
Theorem. For any variety X of algebras the following four conditions are
equivalent:
(i) There are quaternary polynomials r and s such that for each algebra N¢cK
and all ay, ay, by, b,€EA holds
0((10, bO)Vo(a19 bl) = o(r(ao, als bo: bl)a s(aO’ als b09 bl))

(ii) K has (PCC).

(ii) The free algebra over K with four generators ¥y (4) has (PCC).

(iv) For some natural numbers m=1, n=1 there are quaternary polynomials
r, s, quinternary polynomials p3, pg, P, Piy oo %y PLs Gos Qys -o-» G, and a
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function f: {0,1, ..., n}~{0, 1} such that for i=0,1,j=0,1, ...,m—1 and
k=0,1, ...,n—1 the following identities hold in K:

X; = P5(Xos X1, Yo» Y152y Ph(Xas X1, Yo, Y15 2) = Vi

P; (xo,xm Yos V1 r) = Pj‘+1(x0a X15 Yo> Y15 r) for j even,

Pi‘(xm X1, Y0, V1, 5) = P§'+1(xo, X1, Yo, Y1,8) for j odd,

r = qo(Xo, X15 Yos Y15 2y 4u(Xo, X1, Yos V1, 2) =5,

9 (X5 X1, Yo» V15 xf(k)) = Gx+1(Xo5 X1, Yo» V15 xf(k+1)) for k even,

9 (Xos X1, Yo» 15 yf(k)) = Gr+1(Xo5 X1, Yos 1> Vi) Sor k odd.

Proof. Applying Lemmas 1—4 we can easily establish the implications ()=
(i)=(iii) and (iv)=(). It suffices to prove (iii)=(iv). According to Lemma 3,
there exist elements r, scFg(4) (i.e. polynomials in variables xq, x;, Yo, 1, the
latter being the free generators of Fx(4)) such that

0(x0: yO)Ve(xla yl) = 6(7‘, S).

This equality of congruences is equivalent to the conjunction of the following three
conditions:

(xi ¥DEO(r, ) (=0, 1)

(r3 s)eg(xo, yO)VB(xla yl) = 0({()&'0, yo)’ (xla yl)})' -

Then, combining Lemmas 2 and 4, these conditions yield the identities.
Finally, we shall present three examples of known varieties enjoying (PCC).

and

Example 1. The variety of residuated lattices (and hence also the varieties
of Heyting algebras and Boolean algebras) has (PCC).

A residuated lattice 8=(L; A, V, +, -, 0, 1) is an algebra of type (2,2,2,2,0,0)
such that (L;V, A, 0, 1) is a bounded lattice, (L; -, 1) is a commutative monoid
and the identities

xX=y—>xy, (x—>p)x=y
hold in £. If in addition the identity
(*¥) x-x=x
is satisfied, then £ is a Heyting algebra. (Note that (%) is equivalent to xy=xAy
in the variety of residuated lattices.) Similarly, a residuated lattice satisfying the
identity '
xV(x >0 =1

{(which already implies ( *)) is a Boolean algebra. For closer discussion see [3].
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Let us introduce the polynomial
x <y =(xVy) = (xAy) = (x > Ny ~ x).
Then the Theorem applies with m=2, n=3, f(1)=0, f(2)=1 and
7 (X9, X15 Yos Y1) = (Xo + YO A(xy < ),
5(Xo5 X1, Yo, ¥) = 1,
Pi(xo, X315 Yos V1, 2) = (xi(" hag Z)VJ’i)/\(xiVyu‘Z) (i=0,1),
q1(Xo, X1, Yo, 1} 2) = ((xo -~ yo)V(Z"’yo))/\(xl ~ ¥,
g2(Xo> X1, Yo Y1, 2) = (X1 = yPV (3 = 2).
Example 2. A variety D is said to be a discriminator variety iff there is a

ternary polynomial ¢ which is the ternary discriminator, i.e.

z if x=y,
1x, y, 2) = x if x#y

on every subdirectly irreducible algebra AeD (see [10]). Assuming D to be a dis-
criminator variety, let us introduce the following polynomials:

T(x, y, 2o, 2) = 1(1(x, ¥, 2o), t(X, ¥, 21), Zy),
and

d(x,y,2) =T(x, y,x, z) = t(x, t(x, y, 2), 2).
Hence, T becomes the normal transform or quaternary discriminator

zo if x=1y,

T(X,y,Zo,Zl)={z if X#y
1 ]

and d becomes the dual discriminator
d(x, y,2) = {

x if x=y,
z if x##y,

on every subdirectly irreducible WeD. Applying the Theorem for m=2, n=3,
J1)=0, f(2=1, again, and

r(Xo, X1, Yo, Y1) = t(Xo, Yo, Y1), §(Xo5 X15 Vo5 Y1) = 1(¥p, Xo, X1,

Pi(xo, X1, Yo, Y15 2) = d(x, Yo, 2),

Pi(xos X1, Yos V1, 2) = T(xo’ Yo, t(x1, 2, y1), T(xo, 2, Xy, Y1))s

q1(x0, X1, Yo, V1, 2) = t(d(xm 2z, ¥o)s t(Xo, 2, Yo)s J’1),

g2(Xo, X35 Yos Y15 2) = (Yo, X0, 2),

the fact that D has (PCC) follows immediately (cf. also [10, Theorem 2.2}).
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Example 3. For fundamentals on lattice-ordered groups we refer to [2]. We
shall use the additive notation without requiring the /-groups to be commutative.
Let us introduce the polynomial

Ix] = —xVx.

The well known fact that /-groups have (PCC) (see [2, Theorem XI11. 18]) follows
then from our Theorem by putting m=n=3, f(1)=0, f(2)=1 and

r(Xo> X15 Y5 Y1) = [Xo— Yol +1x1—y1l,  s(xg5 X1, Yo, ¥1) = 0,
Pi(xm X1, Yos V15 2) = (Z/\(xi_yi))+yia

) (=01
pl2(x0’ X15 Vo> V1» Z) = (ZA(yi_xi))+xi’
g1(X0, X1, Yo, Y1, 2) = 12— yol + 12— »1l,
q2(x03 X315 Yo> V1s Z) = le—-Zl.
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