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A Mal'cev condition for compact congruences to be principal 
PAVO ZLATOS 

The aim of this note is to show that the following property of a variety (equa-
tional class) K of algebras is equivalent to a Mal'cev condition: 

For any algebra 21 £K each compact congruence relation <£ on 21 is principal. 
We shall refer to the property above as "21 has (PCC)" (principal compact con-
gruences). As usual, a class K of algebras has (PCC) iff every 216K has (PCC). 
Though the fact that (PCC) defines a Mal'cev class of varieties could be easily 
proved using the general results on Mal'cev conditions (see [1], [8], [9] or [5, Appendix 
3]), we prefer to describe this condition explicitly. 

In [5] and [7] a wide use of algebras enjoying (PCC) is made, in particular, they 
are employed in the proof of the characterization theorem of congruence lattices. 
In [6], to every algebra 21 an algebra 21 with an isomorphic congruence lattice having 
(PCC) is constructed (see also [5, Exercise 2.30]). In view of this result when study-
ing lattice-theoretical properties of congruence lattices, it is sufficient to deal with 
algebras having (PCC) since the principal congruences can be better described. 
The authors in [6] raised the question to characterize those classes K of similar 
algebras having (PCC). We shall solve this problem in the case when K is a variety. 

Throughout the paper the standard notation and terminology of [5] is used. 
For the reader's sake, we summarize all the results needed in the following four 
easy lemmas which will be stated without proof. The first one is actually [5, Lemma 
10.6]. 

Lemma 1. A congruence relation on an algebra 21 is compact if and only 
if it can be represented as a finite join of principal congruences. 

Thus, particularly, principal congruences are compact. 
The second lemma is a modified version of [5, Theorem 10.4], describing the 

smallest congruence 0(H) on an algebra 21 containing the subset H g A X A (i.e., 
the binary relation H on A; see also [5, Theorem 10.3] and the final note in [4]). 
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L e m m a 2. Let 91 be an algebra, H a symmetric binary relation on A, and 
x,y£A. Then 

(*,jO€0(H) 

if and only if for some natural number ms 1 there exist a sequence of pairs 
(a0,b0), (a^bd, ..., (am,bm)£H and a sequence g0,g1,...,gm of unary algebraic 
functions on 91 such that for i=0,1, ..., m — 1 the following algebraic identities 
hold in 91: 

x = g0(z), gm(z) = y for each z£A, 

gi(a<) = gi+i(ai+1) for i even, 

gi(b,) = gi+i(bi+1) for i odd. 

The third lemma gives in view of Lemma 1 an immediate characterization of 
(PCC) for single algebras. 

Lemma 3. For every algebra 91 the following two conditions are equivalent: 

(i) 91 has (PCC); 
(ii) for all a0, ax, b0, b^A there are c, d£ A such that 

0(ao,bJ\/B(flubJ = 0(c,d). 

The last lemma is rather technical, enabling to state the final result in a "nicer" 
form. 

Lemma 4. Let 91 be an algebra generated by a set S ^ A . For every algebraic 
function g: A"—A on 91 there is a natural number m, a m+n-ary polynomial p 
and elements s„, ..., s m + 1 from S such that for all a0, ..., an_1^A holds 

g(a0, ...,«„_!) = p(s„, . . . ,sm_1 , a 0 , ...,a„_1). 

Now, everything is ready to state the promised Mal'cev condition. 

Theorem. For any variety K of algebras the following four conditions are 
equivalent: 

(i) There are quaternary polynomials r and s such that for each algebra 9i£K 
and all a0, alt b0, b^A holds 

9(a0, b0)yd(a1, bj = 6(r(a0, ax, b0, bj, s(a0, alt b0, bx)). 

(ii) K has (PCC). 
(iii) The free algebra over K with four generators FK(4) has (PCC). 
(iv) For some natural numbers m ^ l , n ^ l there are quaternary polynomials 

r, s, quinternary polynomials pl,p\,p\,p\, •••,p°m,p1
m, q0, qx, .... qn and a 
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function f : {0,1, ...,«}—{0,1} such that for i=0, l,j=0,1, ..., m—l and 
k =0,1, ..., n — l the following identities hold in K: 
xi = Pb(*o, xx,y0, y±, z), p'm(x0, J0> yi, z) = Ji, 

Pj (x0,x0, y0, yx,r) = p)+1(x0, x±, y0, y1, r) for j even, 

Pj(.xo, x1,y0, y!,s) = Pj+i(x0, xx, y0, y±,s) for j odd, 
r = 9o(*o,*i,:)Wi>z)> qn(x0,x1,y0,y1,z) = s, 
qk(xo, X1,y0, yx, xf{k)) = qk+1(x0, xx,y0, yt, xf(k+1)) for k even, 

<Jk(x0, y0, yi,yf(k)) = <]k+i(x0, y0, yi, y/(k+D) for k odd. 

Proof . Applying Lemmas 1—4 we can easily establish the implications (i)=> 
(ii)=Kiii) and (iv)=>(i). It suffices to prove (iii)=»(iv). According to Lemma 3, 
there exist elements r, s£FK(4) (i.e. polynomials in variables x0, x l 5 the 
latter being the free generators of FK(4)) such that 

6(x0,y0)\/6(x1,y1) = 6(r,s). 

This equality of congruences is equivalent to the conjunction of the following three 
conditions : 

( x „ y k e ( r , s ) (¿ = 0,1) 
and 

(r, s)0(xo, Jo)V0(x1 , j1) = 0({(xo, y0), (x l5 jO})-

Then, combining Lemmas 2 and 4, these conditions yield the identities. 
Finally, we shall present three examples of known varieties enjoying (PCC). 

Example 1. The variety of residuated lattices (and hence also the varieties 
of Heyting algebras and Boolean algebras) has (PCC). 

A residuated lattice £ = ( L ; A, V, •, ->-, 0,1) is an algebra of type (2,2, 2, 2,0,0) 
such that (L; V, A, 0,1) is a bounded lattice, (L; •, 1) is a commutative monoid 
and the identities 

x ^ y - x y , (x-y)xi£y 

hold in fi. If in addition the identity 

(*) x-x = x 
is satisfied, then £ is a Heyting algebra. (Note that (* ) is equivalent to xy=xAy 
in the variety of residuated lattices.) Similarly, a residuated lattice satisfying the 
identity 

xV(x - 0 ) = 1 . . 

(which already implies (#)) is a Boolean algebra. For closer discussion see [3]. 
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Let us introduce the polynomial 

x~y = (xVj) - (xAy) = (x - j)A( y *)• 

Then the Theorem applies with m=2, w = 3 , / ( l ) = 0 , / ( 2 ) = l and 

r(x0, x1,y0,yj = (x0 — J o M f o — jj), 

pi(*o> *i> Jo, J i , ¿) = (x ;(r — z)Vj;)A(x;V j , z ) (i = 0, 1), 

<h(x0, Jo, Ji} = ((x0 ~ Jo))A(x! — jj), 
q-i(xo, *i , Jo, J i , z) = (xx — j ^ V f o — z). 

E x a m p l e 2. A variety D is said to be a discriminator variety iff there is a 
ternary polynomial t which is the ternary discriminator, i.e. 

on every subdirectly irreducible algebra (see [10]). Assuming D to be a dis-
criminator variety, let us introduce the following polynomials: 

T(x, y, ZQ, Zj) = t(t(x, y, Zq), t(x, y, Zj), Zj), 

on every subdirectly irreducible 5l£D. Applying the Theorem for m=2, n = 3, 
/ ( 1 ) = 0 , / ( 2 ) = 1 , again, and 

xlt Jo, Ji) = t(x0, j 0 , j , ) , s(x0, x1? j 0 , y j = t(y0, x0, x^, 

Pi(x0, x1,y0,y1, z) = d(x0,y0, z), 

Pi(*o, x l 5 J 0 , JL5 z) = T(x0,y0,t(x1, z, y j , T(x0,z,xI, yj), 

<h(x0, x l 5 j l 5 z) = t{d(x0,z, y0), i(x0, z, jo), Ji), 

JO, J I , z) = t(y0, x0, z), 

the fact that D has (PCC) follows immediately (cf. also [10, Theorem 2.2]). 

and 
d(x, y, z) = T(x, y, x, z) = t(x, t(x, y, z), z). 

Hence, T becomes the normal transform or quaternary discriminator 

and d becomes the dual discriminator 
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Example 3. For fundamentals on lattice-ordered groups we refer to [2]. We 
shall use the additive notation without requiring the /-groups to be commutative. 
Let us introduce the polynomial 

|x| = —xVx. 

The well known fact that /-groups have (PCC) (see [2, Theorem XIII. 18]) follows 
then from our Theorem by putting m = n = 3 , / ( l ) = 0 , / ( 2 )=1 and 

r(x0, x1} y0, yj) = + = 0, 

Pi(x0,x1,y0,y1,z) = (zA(xi-y,)) + yi, 
(t = 0,1) 

P'a(x0, x1,yQ, >>!, z) = (zACVi-x^ + x,-, 
? I ( * O > * I , J W I . * ) = + 1 * 1 - ^ 1 , 

qz(x<>,x1,ya,y1,z) = \xx-z\. 
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