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General'ize'd Hausdorff rhatrices bounded on /7 and ¢

B. E. RHOADES

* Necessary and sufficient conditions for an infinite matrix 4 to belong to B(c),
the algebra of bounded linear operators on ¢, the space of convergent sequences,
have been known since the early 1900’s. Necessary and sufficient conditions for
AcB(l) were established by Knopp and Lorentz in 1949. In both cases the con-
ditions can be verified by examining only the entries of A. Necessary and sufficient
conditions do not exist for a general matrix A€ B(/?) for p>1, in terms involving
only the entries of 4, and it is doubtful that conditions, analogous to the Silver-
man—Toeplitz conditions, will ever be found. However, considerable progress has
been made for certain classes of Hausdorff matrices.

" A Hausdorff matrix is a lower triangular matrix with entries A, = (Z] A"f" e s

where (Z] denotes the ordinary binomial coefficient, and 4 is the forward dif-
ference operator defined by Aw,=p—pxs1, 4" =4(4"" ). H is called totally
1

regular if {u,} has the representation p,= [ t"df(s), B(1)€BVO, 1], satisfying
0

B(0+)=B(0)=0, B(1)=1, and nonnegative and nondecreasing over [0, 1]. The
best known example is C, the Cesiro matrix of order one, obtained by setting
H={m+1)71

For a sequence {a,} let b,=H,(@)= > hya,. In 1934 HARDY [5) established
. =0 :
the following result. If {a,} is a nonnegative sequence in [, p>1, H totally regular,
. .
then 3 bi<K(p) > a?, where K(p)=([ t7?dB(1)y’, unless a,=0 for . all
0

n, or H is the identity transformation. The value of K(p) is best possible.

In 1965 BROwN, HALMOs, and SHIELDS [1] showed that C is a bounded operator
on /2, with norm 2, and is hyponormal. In 1970 Kriete and TRUTT [8] established
the fact that C is subnormal. In 1971 [11] the author showed that the existence of
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1
the integral [ ¢~?dp(t), for totally regular Hausdorff matrices, implies He B(I?),

(1]
with norm K(p). Some specific Hausdorff methods, such as the Cesiro, Holder,
and Euler methods of positive order, were shown to be in B(I?) and their norms
were computed. In 1972 Leieowitz [9], independently, showed that C¢€B(/f) and
computed the point spectrum of its adjoint. The following year [10] he determined
the spectra of those Hausdorff matrices in B(/?) with absolutely continuous mass
functions B. SHARMA [12] observed that all the Hausdorff matrices in B(/?) are
subnormal. In 1974, JAXiMOvVsKI, RHOADES, and TZIMBALARIO [7] obtained necessary
and sufficient conditions for totally regular generalized Hausdorff matrices to belong
to B(/"). The generalized Hausdorff matrices considered are those with entries

hf;’;?:[;i' /t) A"*p,, a=0. In 1977, GHosH, RHOADES, and TRUTT [4] proved that
1

the generalized Hausdorff matrix generated by u,= f t"teds, for positive integer
0

o, is subnormal. Thus, for each positive integer «, the corresponding algebra of
generalized Hausdorff matrices in B(/?) is subnormal. Using some of the results
of SHIELDS and WALLEN [13], DEDDENS [3] described formally the spectrum of each
Hausdorff matrix in B(/?) and also computed the norms of the Cesaro, Holder, and
Euler matrices.

In this paper necessary conditions are established for a generalized Hausdorff
matrix to belong to B(/”), without the assumption of total regularity. Necessary
and sufficient conditions are obtained for those generalized Hausdorff matrices in
B(c) to belong to B(I%). Let |H| denote the matrix whose entries are |, |- In
Theorem 7 it is shown that |H|¢B(/?) if and only if H-"Y9¢B(l). This result,
along with Theorem 2 shows how close one is to establishing the conjecture that-
HeB(IP) if and only if |H{€B(/?).

Throughout this paper o denotes an arbitrary nonnegative real number.
The case a=0 corresponds to ordinary Hausdorff summability.

1
Let C® denote the generalized Hausdorff matrix generated by p,= [ "** dt.
]

A routine calculation verifies that the nonzero entries of the nth row of C® are
(n+a+1)"1, Let % denote the adjoint, 1/p+1/g=1.

Lemma 1. I-2C*®/qc B(1%) and has simple eigenvectors of the form

) X, = X, ﬁ( ——_l—/l—), where x,6C, Re(1/2) = 1/q.
Jj=1 ]+a

Proof. From [8, Theorem 1], C®¢B(lP), so that I—2C®/qc B({?), and
hence I—2C*®/qe B(19). S
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Suppose (I—-2C*®/q)x={x. Then, as in the proofs of [1, Theorem 2] or
[10, Theorem 1], one obtains (1), where 1/A=2/q(1 —{). Asin[l1], it is readily verified
that {x,}€l? for Re (1/1)>1/q. From (1) it is clear that each of the eigenvectors
is simple.

Let 6,(A4), 6 (4), and ¢(A4) denote, respectively, the point spectrum, and resolvent
sets for an operator 4. Let D= {z¢ C||z|<1} D the closure of D.

Lemma 2. ¢,(I—-2C*®|q) contains D and o(I—2C®[q)=D.

The first result is immediate, since, from Lemma 1, every point of D is in the
point spectrum of 7—2C*®/q. To prove the second result it will be sufficient to
show that |{|>1 implies {€o(I—2C®/q). The generating sequence for the gen-
eralized Hausdorff method corresponding to (I—I+2C%jq is p,={—1+
+2/g(n+a-1). Let g,=1/u,. Then '

1 _ 2/q
=T [1 n+a+1+2/q(c—1)]'

If H® denotes the corresponding generalized Hausdorff matrix, then H®=
=(H™)™, and

(u) | 1 = ()
0, = = [+ 2 i),

where §,=(n+a+1+2/g({—1))" . It suffices to show that H®eB(I"). As an
H® matrix, 6, has the representation

5 1 niag h t1+2/11(C—1)
,,———G/‘t ﬁ(t), wihere ﬁ(t) _1_4—-—%({-—_1)

Since [{|>1 implies 1—1/p+Re (2/g({—1))>0,
1 1
ft‘”"ldﬁ(t)l = f £-UPHR2IAG -1 ff oo,
0 0

From [7, Theorem 1] H®¢B(I*) and the proof is finished.

Lemma 3. Let A, BEB(I?), p>1. If a is a simple eigenvalue for A with cor-
responding eigenvector x, and if B commutes with A, then x is an eigenvector for B.

Proof. Let « and x be as in the Lemma. Bx=2B8 (%Ax]=—§B(Ax)=

1 1 .
=—°(—(BA)x=-;—c (4B)x=A4 (—; Bx]. Since x€I”, A, B¢ B(I?) guarantee the associ-

ativity of the multiplication.

7
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Thus A(Bx)=a(Bx); i.e., Bx is also an eigenvector for A corresponding to
the value «. Since the eigenvalues of A are simple, Bx=0x for some scalar §; i.e.,
X is an eigenvector for B.

A special case of Lemma 3 appears as Theorem 1 of [10]. Lemma 3 can obvi-
ously be generalized, but the present form is sufficient for our purposes.

Theorem 1. Let HP¢B(IP). Then

(n+oa—96
2( n_k ]An-k#k

n=k

IH®|, = sup
Red=>1fq

Proof. It is known that H® commutes with C®, Therefore H** commutes
with C*®, and hence commutes with 7—2C*@/q. Let x={x,} be defined as in
(1). Since x is a simple eigenvector for I—2C*®/q, x is an eigenvector for H*®
by Lemma3. H@¢B(/?) implies H*@cB(I?), so that H*®xcl9. Moreover,

(H*(u) 2 h*(n) kz h;s:)-xk

S (k+ o n S(nt+r+a) .
= kZ (n_.k] Ak— Xy = 2( r )A HnXpp-
=n

r=0

n+r
Note that we may write x,,,=x, JJ (1—9/(j+«), where &=1/1. Therefore
J=n+1

L n+tr i —
(H*(“)x),, = x, 2(":—::(1] Ar H M] —

r=0 "j=me1\ jta
n+r+a—9o k+a—6
SR GUaaa PRS- iy FE0R
Si . . * S(k+0e—08\ ;k—n _
ince x is an eigenvector for H*, it follows that kg,'" ken A" u,=c(9),

where c is independent of n. Also,

o> |H@|, = |H*®||, = |H** x| /lxl, = Z’(
so that

k+o— 5] ken
k—n A 5

17O, = swp | 3 (FF4%) grony,
Re@>1/g k=n \ k—n

The above result has shown that each of the column sums of the matrix H®—®
is equal to ¢(é). More is true.

Theorem 2. Under the conditions of Theorem 1, the columns of H®™®
belong to 1.
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Proof. Zlh(“"”l = 2’ (n+a 5] [4%* | =
=k n—k
(n+a 6]
2" - [n+ a] 4] Fk+oa+l) & |Mn+at+1-9) e
ok (n+oc] lF(k+a+1—6)l et TI'(n+a+l)
n—k

Since H®¢B(IP), the columns of H® are uniformly in /7. If
{IF(n+a+1—-8)/T (n+a+1)[}l9,

the result follows by Hélder’s inequality. Since |I'(n4+o+1—¥8)|/I'(n+a+1)~
~n~R@ and Re(d)>1/g, we have {{F(n+a+1-08)/(n+a+1)|}€l

Let ¢ denote the space of convergent sequences. Condition H®¢B(c) implies
that {u,} has the representation

) o= [ "**dB(t), n =0, BHEBVIO, 1).

Theorem 3. Let H®¢B(IP)YN\B(c). If, in addition,

%) [ -1ap) <,
then

5— 14 = H(G) = —l/Pd
@ o, |f el =i, = fimaso,

Proof. H®¢B(c) implies {u,} has the representation (2).

é(ﬂa—-&]m_kﬂk: Z"",(n+oc—5] ft"“"“(l—t)""‘dﬁ(t):

n—k n=k n—k
- jtw () a-ir-raper =

1
= f trell = (1 =)~ CH+e-Dape) = [ £-1dp(),

the interchange of integration and summation being justified by condition (3). The
left inequality now follows from Theorem 1. The right -inequality is Theorem 1

of [7].

7.
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Theorem 4. Let H ¢ B(I?). Then there exists a umque bounded analytic func-
tion f defined on D such that
) H® = f(I- c<“>).

D) is a nonempty opén set, ¢(H®)=closure of f (D), and 6,(H®) contains the set
f @D pty op ( , »

f(D)=, where — denotes complex conjugation. If {u,} are the diagonal eleménts of
H® then

(6 to = f(1=(n+a+17).

Assuming the existence of such an f'satisfying (5), its uniqueness follows from (6).
From Lemma 2, ¢,(I-C*®)2D and ¢(J-C®)=D. The spectral results of the
theorem then follow from the spectral mapping theorem, since £ is analytic in D.

To prove (5) it will be sufficient to construct a Hilbert space H of complex
valued functions defined on D, with the usual addition of functions and multiplicé—
tion by scalars, which satisfies the following four axioms of [13, p. 782]:

(2) Point evaluations are bounded linear functionals on H. Hence, to each
{eD, there corresponds a function fc; in H such that FO=( fc’) for all fEH

(b) The operator M, of multiplication by z on H maps H into itself and is a
contraction.

(c) The functions %, are simple eigenfunctions of the operator M}

(d) The functions in H are analytic in D.

From Lemma 1, each (€D is a simple eigenvalue of —C*®, with correspond-
ing eigenvector f;, whose components are defined by (1) with x,=1. Define k =f;.
Then (I—C*®)k,=Ck;. The vectors {k;}, (€D span [2. To see this, let {e,} denote
the standard orthonormal basis for I2, i.e., e,(k)=0,,, n, k=0. Define a sequence
of real numbers {{,} by {,=(x+r)/(a+r+1), r=0,1,2,..., and denote the cor-
responding sequence of eigenvectors by {f,}. A straightforward calculation verifies

that fy=e,, and that > T (r](—l)"fk—e rlj(1+a)...(r+a) for r=0. Therefore

k=0
{f,} spans 2, 50 that, a fortiori, {kc}, (€D spans /2. -
As in [14], /2 can be transformed into a Hilbert space of complex valued func-
tions. For fe/2, define its transform f by

@ O = (k). teD.

Let H denote the set of all such functions f with the usual addition of functions and
scalar multlphcatlon and with inner product defined by (f,8)=(f,g). Then H
is a Hilbert space, and the mapping U: /*—H, defined by Uf=f, is a unitary
‘transformation of 72 onto H. Also U(I—-C®)=M,;, where M, denotes multi-
plication by z on-H. Since ||f(;i|2 is uniformly bounded on compact subsets. of H,
from (7), |fOI=]S1. lkcll2, and each fin H is bounded over D. :
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To show that each f is analytic, it will be sufficient to show that H contains
a dense subset of analytic functions. The {e,} in /? are transformed as follows:

(——-1)"w(§w-—1)...(w—n+l)F(a+1)
T'(n+oa+l)

&(0) = (e0, k) = 1, 6,(0) = (e, kp) =
' (n=1), {eD

where w-+a={/(1—{). These transforms are rational functions whose only pole
is at {=1. Thus, their finite linear combinations are analytic in D.

That the functions k; are simple eigenfunctions of M follows from Lemma 1
and the argument of [13, p. 782].

It remains to show that M, is a contraction, or equlvalently, that [|I-C@|,=1.
If it can be shown that C® is hyponormal, then, from [15, Theorem 1], its norm is
equal to its spectral radius. From Lemma 2 this value is 1, so that [|I—-C®|,=1.

Lemmia 4. _C(“)-jis hyponormal.

For d é nonnegative integer this is a known result since, from [4, Theorem 2],
C® s subnormal, hence hyponormal.
It is easy to verify that o
: - ﬂn+a))nk’ n=>k
C*® Cc@ _ c@*) e = {
( ) . Bk+ay'lk7 = k
where L .
= 1 1
b= jg:. G+oe+1?  nta+l

VY = 1/(n+o:+1)(k+cx+l)

To show that C® is hyponormal we must show that C *‘“_’C"’—C‘“’C*“’) is a
positive operator; i.e., that D,=0 for each n, where

Bo+ay0o B+ o Baoatayens
D = By+ays. Bi+ayn bes ﬁn—x,‘*‘“Yl,n—l_
ﬂn-1+°‘)’|n—1,0 Bo-1top-n,1 o ﬂn—1+ayn—1,n—l

D, can be written as the sum of two determinants, where the first column of
the first determinant contains the f;, the first column of the second determinant
consists of ay;o, and the remaining columns of the two determinants are identical.
Each of these determmants can, in turn, be written as the sum of two determmants '
by decomposing their second columns. Thus one. has D,=D®+D®+D® DY,

In DY the entries in the i-th row of the first two columns are ay;, and oy;;
respectively. If one factors. 1/(a+1) from the first column and 1/(x+2) from
the second column, then the first two columns of D are identical, 'so D“)—O
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Exploiting this idea, D becomes

Yoo B oo Bar
D® — Y10 B o B
n-1,0 Ba-r - Baoa

In a similar manner one may write

Bo Yoy -+ Ba-a
D@ — B, W o P
ﬁn—l ay,l-l,l ﬁn—l_
One may write
Bo b Be Bs+aygs ﬁn—1+w0,n-l
DI — By B B. Bstoayis - .. Bamatapya- +
ﬂn—l ﬁn-—l ﬂn—l ﬁn—1+aYn—l,3 ﬁn-1+ayn—l,n-1
Bo B Yoz Bs+ayos o Bacitaye sy
+ B B Y12 Bs+ayes oo Ba-rtayon-1
Ba-1i B ®n-12 Bac1t®n-13 oo BaciFWa-1a-1
As before, the second determinant becomes
Bo b GYoe Bs Ba-1

B ﬂ‘l “)312 Bs e ﬁu.—l )

ﬁn—l ﬂn—l a?n—l,Z ﬁn—l ﬁn—l
Continuing in this manner, one may write D,=>," E®, where

Bo B - B
I

B =

>

ﬁu‘—l ﬂn.—l ﬁn-l

and ED, for 0=i<n, is the result of replacing the i-th column of E® with (ay;)}=s-
It will now be shown that each determinant is nonnegative. To accomplish .
this it will be sufficient to show that, for each n,

ﬂn—l_ﬂn Ya-1,n

0.
Bn_ﬁn-{-l yn,n-{-l ~

(i) B, is monotone decreasing, and (ii)
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For (), B,—B,+1=1/(n+a+1)*(n+a+2)>0. Expanding the determinant in
(ii), and using (i), yields.

1 1 1 )
n+ay(n+o+1)2(n+a+2) (n+oz_n+a+1 > 0.

E®™ is an L-shaped determinant, which has been shown in [1, p. 131] to be
nonnegative, since f, is monotone decreasing.

To evaluate E® for 1<i<n, subtract column 1 from column 0. Then sub-
tract column 2 from column 1. Continue in this way through column i—2. Then
E® takes the form

Bo—Br Bi—B: ... Bica—Bioy Bimy H(@+1) Bivy ..o Basy

o 0 Bi—8. 1/(a+2) o Busa
@i+a+1) : |
0 -0 (a+n) Boer ... Bacal

Columns zero through i—~2 of E® have all zeros below the main diagonal, and
the diagonal entries are f;—p;_,, 0=j<i—1, which are positive by (). To show
that E® is positive, it is sufficient to show that

Bi-1 (x+1) Biv1 -+ Buma
ﬁ'i 1/(‘1'1?""'1) Bisr - Bn-—l - 0.

By  @+m) oy o Pocn

Subtract row 1 from row 0, then row 2 from row 1, etc., to obtain

Bi-i—B:  1(x+D(a+i+1) 0o .. ©

Bi—Bivi lY(@+i+D(@+i+2) 0 ... O

®) : : : :
Ba—r 1/(x+n) Buci o PBo-a

The above determinant has all zeros above the main diagonal, beginning with
column 2. The corresponding diagonal entries are f;—p;,,, except for the last
one, which is f,_,. Expanding yields a positive number times the determinant
of (ii).

To evaluate E®, subtract row 1 from row 0, row 2 from row 1, etc., to obtain
a determinant with the same property as (6). Expanding then gives a positive num-
ber times the determinant

(Yoo —Y10) 0
a(Yi0—720) Br—Ps|’

which is easily seen to be positive.
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To evaluate E®, factor af(1+«) from column 0. Then subtract row 1 from
row 0, row 2 from row 1, etc., to obtain a determinant of the same form as (8).

We shall now verify equation (6). First we shall show that (6) is true for f(z)=z2".
The result is trivially true for r=0. Assume the induction hypothesis. Then
fU-CN=(I-COy+1=(I-CP)(I-C™Y, so that

(fU=CNu = > (I=CD),;(I—COY.

i=k
In particular,

Uy = (f(I_ C(a)))rm = (I— C(a))nn (I— C(a));” =

= [1_ n+:z+1)(1_ n+i+1 ) = [1_711::_4-1—)'“ =f(1_("+;‘+1)_1)-

If £ is an arbitrary analytic function in D, then f(z)= 2& a,z*, so that
k=0

o= (PU=-C) = 3 atr-co) =
= éz ak(l —(n+oz+1)—1)k =f(1 —(n+a+ 1)—1).

Theorem 5. Let H®¢BUHNB(c). Then

IH®],= sup

|1—A]<1

where u, is defined by (2).

[ #ape),

0

1
J ”’“"dﬁ(t)’ = sup

0 Re(z)> ~1/2

Proof. From Theorem 4 there exists a bounded analytic function f on D such
that H®=f(I—-C®). From [13],

1= 1/ (=€l = sup |2

To obtain an explicit representation of the norm, it is‘necessary to determine the
particular analytic function f which is associated with H®. Equation (6) says that
fis determined by the u,. Since HEB(c), p, satisfies (2). Therefore

JU—@+at )™ = [ m+2dp().

Writing z=1—(rn+a+1)"* we obtain

7 = [ T=ap).

0
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Note that z/(1 —z)=—1+1/(1—z). With w=1—z, then |z|]<1 gets mapped into
l—w]<1, so that

1 3 1 3
f@ = [T=7"dpey = [~ dB).
0 o

For the second representation of the norm, note that |1 —w|<1 is equwalent

1
to Re(l/w)>1/2, ie., Re(————l]> 1/2. Now set z=——1.
w

Theorem 6. Let H®¢B(I?)NB(c), p=1. If B(t) is a totally monotone mass
Sfunction, then :

sup
Re(z)=1/p lg

[ eape| - f 1B ().

1
Proof. Let t//(z)=f t*df(t). Then Y(z) is analytic for Re(z)>—1/p and

[}
continuous for Re (z)=—1/p. Since B is totally monotone,

sup [y () = sup
Re(z)>-1/p

_/' £iv- 1/l’dﬂ(t)l ;flt-”"dﬁ(t) =0.
[}

The conclusion follows from (4).

Corollary 1. Let H®We¢B(®)NB(c) with B(t) totally monotone. Then
IH®|,=f(—1), where f satisfies (5).

Proof. From Theorem 6, the supremum occurs at —1/2, which corresponds
to w=2, which corresponds to z=—1.

Let C=C®; je., C is the Cesaro matrix of order 1. If one sets H={y|y is
a bounded analytic function on |z—1|<1} and makes the association H=y(C)
for each Hausdorff matrix in B(/2), then, for each Hausdorff matrix with a totally
monotone mass function f, [|H|,=y(2) from Corollary 1. This result has been
verified for several particular Hausdorff matrices by DEDDENS [3].

Let |H| denote the matrix whose entries are |A,,|.
Theorem 7. Let p>1. Then |H|€B(I?) if and only if H-'1¢B(]).
Proof. From the proof of [7, Theorem 2], |H|€B(I?) implies

sup 3 (") g <
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ie, HYP¢B(c). Since |7 |= n+1/pY gor p=0, Hc B(c). Therefore there exists
’ k n—k

a function B(¢)€BV[0, 1] such that
1
= [ 1dp(r).
(1]

1
From [8, Lemma 1], [ +7/7|dB(¢)| exists. We may write
[1]

1 1
o= [ grrta(ie-tap(n) = [ eni-tedy (),
[ [}
t 1
where y(z)=f u~Y?4B(u). Since f t~YP|dB(t)| exists, y€BV[0, 1].
0 [}

Now, from [6, Theorem 16.3], H-1/9¢B(l). This implies H-19¢B(l)

sup Z( /q)lAn k| <o,

B n=k

From [6, Theorem 16.2], there exists a function B(¢#)€BV]0, 1] such that

1
) po= [ t"¥1-Yadp(r), n—1/q > 0.
0

1
Define pu,= f £1~Y?4g(1), which exists, since B(¢1)€BV[0,1]. Then (9) is true

0
for all n=0, which implies H Y? ¢ B(c) and so H¢B(c). Thus there exists a func-
tion y(#¥)€BV]0, 1] such that

PR
= [ tdy(e).
HYP¢ B(c) implies ’
sup 3 (" P ar-t g <n
From [7, Lemma 1], flz““’ |dy(2)] exists. By [7, Corollary 1], |H|€B(I?).
0

A result similar to Theorem 7 is true for H® with «=>0.
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