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Generalized Hausdorff matrices bounded on lp and c, 

B. E. RHOADES 

Necessary and sufficient conditions for an infinite matrix A to belong to B(c), 
the algebra of bounded linear operators oil c, the space of convergent sequences, 
have been known since the early 1900's. Necessary and sufficient conditions for 
A£B(l) were established by Knopp and Lorentz in 1949. In both cases the con-
ditions can be verified by examining only the entries of A. Necessary and sufficient 
conditions do not exist for a general matrix A£_B(lp) for /»>1, in terms involving 
only the entries of A, and it is doubtful that conditions, analogous to the Silver-
man—Toeplitz conditions, will ever be found. However, considerable progress has 
been made for certain classes of Hausdorff matrices. 

A Hausdorff matrix is a lower triangular matrix with entries hnk= A"~k ¡ik, 

where denotes the ordinary binomial coefficient, and A is the forward dif-

ference operator defined by Ap.k=pk—nk+l, A"fik=A(A"~1/j.k). H is called totally 
i 

regular if {fi„} has the representation fin= f t"dfi(t), fi(t)£BV[0, 1], satisfying 
o 

j?(0+)=/?(0)=0, j?(l) = l, and nonnegative and nondecreasing over [0,1]. The 
best known example is C, the Cesaro matrix of order one, obtained by setting 
fi„=(n +1)"1-

n 
For a sequence {a„} let b„=Hn(a)= 2Kkak- 1934 HARDY [5] established 

4 = 0 
the following result. If {a„} is a nonnegative sequence in lp, p> 1, H totally regular, 

i 
then 2K^K(P)2an' where K(p)=(j t~1/pdp(t))p, unless an=0 for all 

o 
n, or H is the identity transformation. The value of K(p) is best possible. 

In 1965 BROWN, HALMOS, and SHIELDS [1] showed that C is a bounded operator 
on /2, with norm 2 , and is hyponormal. In 1970 KRIETE and TRUTT [8] established 
the fact that C is subnormal. In 1971 [11] the author showed that the existence of 
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the integral f t~Vp dfi{t), for totally regular Hausdorff matrices, implies H£B(lir), 
o 

with norm K(p). Some specific Hausdorff methods, such as the Cesaro, Holder, 
and Euler methods of positive order, were shown to be in B{1") and their norms 
were computed. In 1972 LEIBOWITZ [9], independently, showed that C^.B(lp) and 
computed the point spectrum of its adjoint. The following year [10] he determined 
the spectra of those Hausdorff matrices in B(lp) with absolutely continuous mass 
functions /?. SHARMA [12] observed that all the Hausdorff matrices in B(l2) are 
subnormal. In 1974, JAKIMOVSKI, RHOADES, and TZIMBALARIO [7] obtained necessary 
and sufficient conditions for totally regular generalized Hausdorff matrices to belong 
to 2?(/p). The generalized Hausdorff matrices considered are those with entries 
H < N K j t ) A S 0 - I N 1 9 7 7 > GHOSH, RHOADES, and TRUTT [4] proved that 

i 
the generalized Hausdorff matrix generated by p„= f tn+'dt, for positive integer 

o 
a, is subnormal. Thus, for each positive integer a, the corresponding algebra of 
generalized Hausdorff matrices in B(l2) is subnormal. Using some of the results 
of SHIELDS and WALLEN [13], DEDDENS [3] described formally the spectrum of each 
Hausdorff matrix in B(lz) and also computed the norms of the Cesaro, Holder, and 
Euler matrices. 

In this paper necessary conditions are established for a generalized Hausdorff 
matrix to belong to B(lp), without the assumption of total regularity. Necessary 
and sufficient conditions are obtained for those generalized Hausdorff matrices in 
B(c) to belong to B(l2). Let \H\ denote the matrix whose entries are \hnk\. In 
Theorem 7 it is shown that \H\£B(lp) if and only if H('1/q)eB(l). This result, 
along with Theorem 2 shows how close one is to establishing the conjecture that 
H£B(lp) if and only if \H\£B(lp). 

Throughout this paper a denotes an arbitrary nonnegative real number. 
The case a = 0 corresponds to ordinary Hausdorff summability. 

i 
Let C(a) denote the generalized Hausdorff matrix generated by fi„= f tn+" dt. 

o 
A routine calculation verifies that the nonzero entries of the nth row of C ( I ) are 
(n+oc+1) -1. Let * denote the adjoint, l/p + l / g = l . 

Lemma 1. I—2C*{a)lq£B{lq) and has simple eigenvectors of the form 

(1) x„ = x0 / 7 (l - - r ^ ) , where C, Re (1/A) > \ j q . 

Proof . From [8, Theorem 1], C ^ B ( / " ) , so that /-2C ( a ) /g€5(/ ' r) , and 
hence I-2C*w/q€B(l"). 
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Suppose {I-2C*Mlq)x=tx. Then, as in the proofs of [1, Theorem 2] or 
[10, Theorem 1], one obtains (1), where i/X—2/q(l — (). As in [1], it is readily verified 
that {x„}dl9 for Re(l/A)=»l¡q. From (1) it is clear that each of the eigenvectors 
is simple. . 

Let CRP(A), A (A), and Q(A) denote, respectively, the point spectrum, and resolvent 
sets for an operator A. Let D= {z£C||z|<l}, D the closure of D. 

Lemma 2. ap(I-2CH*)lq) contains D and a(I-2C(a)/q) = D. 

The first result is immediate, since, from Lemma 1, every point of D is in the 
point spectrum of I—2C*ix)jq. To prove the second result it will be sufficient to 
show that |C|>1 implies (€{?(/—2C(<z)/<7)• The generating sequence for the gen-
eralized Hausdorif method corresponding to (/—/+2C(c,)/g is n„=£ — 1 + 
+2/#(n+a + l). Let e„=l/fx„. Then 

£ = J _ [ i 2Jl 1 
" C - l L n+a + l +2/q(C, — 1) J ' + 2 M C - 1 ) . 

If H d e n o t e s the corresponding generalized Hausdorff matrix, then Hf^ -
= { f l f T \ and 

IC—11 

where <5„=(n+a + l +2 /? (£- l ) ) - 1 . It suffices to show that Hf^Bi l*) . As an 
H((x) matrix, <5„ has the representation 

-1 ,1 + 2/^-1) 
<5„ = f where m = — — . 

Since |{|>1 implies 1 - 1 / p + R e ( 2 / g ( { - l ) ) > 0 , 

i i 
f t-v\dp(t)\ = J i-i/p+R«(2/«(t-i»di<00> 

From [7, Theorem 1] H^eBil") and the proof is finished. 

Lemma 3. Let A, B£B(l"), p> 1. If a is a simple eigenvalue for A with cor-
responding eigenvector x, and if B commutes with A, then x is an eigenvector for B. 

Proof . Let a and x be as in the Lemma. Bx=B (— Ax]=— B(Ax) — 
W ) a 

=—(BA)X=—(AB)X=a[—BX}. Since x£l", A,B£B(lp) guarantee the associ-
a a U J 

ativity of the multiplication. 
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Thus A(Bx)=a(Bx); i.e., Bx is also an eigenvector for A corresponding to 
the value a. Since the eigenvalues of A are simple, Bx=8x for some scalar 8; i.e., 
x is an eigenvector for B. 

A special case of Lemma 3 appears as Theorem 1 of [10]. Lemma 3 can obvi-
ously be generalized, but the present form is sufficient for our purposes. 

Theorem 1. Let Hia)£B(l*). Then 

№ < > % s sup 1 2 ( n n - k d ) A " - k ^ -
Rei>l/«j ln=k V / 

Proof . It is known that H(a) commutes with C(a). Therefore H*w commutes 
with C*(a), and hence commutes with I—2CHa)/q. Let x = {x„} be defined as in 
(1). Since x is a simple eigenvector for /—2C*(a)/?> x is an eigenvector for H*(a) 

by Lemma 3. H™eB(lp) implies HHa)eB(lq), so that <aq . Moreover, 

(H*Mx\ = 2 = 2 h£xk = 
k—n k—n 

= k2[n-kJ "flnxk = 2o( r J ¿rt*nxn+r. 

n + r 
Note that we may write x„+,=x„ JJ (1—8J(j+a)), where 8=1/L Therefore 

j = n + l 

¿("n-Kiiw)-

Since x is an eigenvector for H*, it follows that i ^ ^ ^ ^ ' V n ^ c W , 

where c is independent of n. Also, 

= ||H*tm% S \\H*Mx\\J\\x\\q S 

so that 

sup 
Re(i)=-l/4 l*=n V K — n ! | 

The above result has shown that each of the column sums of the matrix 
is equal to c(3). More is true. 

Theorem 2. Under the conditions of Theorem 1, the columns of //(ot_,5) 

belong to I. 
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Proof. ¿ 1 ^ 1 = ¿ ( " ¡ ¡ V ) 
n=fc n=* \ n — K / 

I f n + a - ^ l 

~ «Û Jn+aj Xn-kV M |r(k + 

\A-knk | = 

r ( fc+a+1) J [ r ( « + a + 
«+1-3)1 , f» r ( n + a + 1 ) 

Since Hix)eB(lp), the columns of //(o° are uniformly in l". If 

{|r(n + a + l —5)/r(«+a + l)|}Ç/*, 

the result follows by Holder's inequality. Since |r(« + a + l — <5)|/r(«+a+l)~ 
~ n - R e W and Re(<5)>l¡q, we have { |r(«+a + l-<5)/r(n+a+l)|}Ç/4 . 

Let c denote the space of convergent sequences. Condition Hw£B(c) implies 
that {n„} has the representation 

i 
(2) fin = f tn+*dp(t), n^0,P(i)£BV[0,l]. 

o 

Theorem 3. Let Hw£B(lp)0>B(c). I f , in addition, 

(3) 

then 

(4) 

/ t-vp\dfl{t)\—, 

sup / t'-'dm / t - i / p \ d p ( t ) \ . 
9 0 

Proof. H w £B(c) implies {/¿„} has the representation (2). 

= / < ' " i i " + ' t r i ) ( i - 0 " - ' < # K < > = g „=*v n-k ) 
i l 

= / tk+x[]-(l-t)]-ik+1+'-^dp(t) ^ f t^dfiit), 

the interchange of integration and summation being justified by condition (3). The 
left inequality now follows from Theorem 1. The right inequality is Theorem 1 
of [7]. 
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Theorem 4. Let H(ll)£B(l2). Then there exists a unique bounded analytic func-
tion / defined on D such that 
(5) H w = / ( / - C ( a ) ) . 

/(D) is a nonempty open set, a(H(a)) = closure of / (D), and op(Hw) contains the set 
f(D)~, where ~ denotes complex conjugation. If {pin} are the diagonal elements of 
Hw, then 
(6) / W ( l - ( » ! + « + I)-1). 

Assuming the existence of such an / satisfying (5), its uniqueness follows from (6). 
From Lemma 2, ffp(/-C*w)2i) and a(I-Ci")) = D. The spectral results of the 
theorem then follow from the spectral mapping theorem, since / is analytic in D. 

To prove (5) it will be sufficient to construct a Hilbert space H of complex 
valued functions defined on D, with the usual addition of functions and multiplica-
tion by scalars, which satisfies the following four axioms of [13, p. 782]: 

(a) Point evaluations are bounded linear functionals on H. Hence, to each 
{£/), there corresponds a function fcQ in H such that / ( ( ) = ( / . £,) for all f^H. 

(b) The operator Mz of multiplication by z on H maps H into itself and is a 
contraction. 

(c) The functions are simple eigenfunctions of the operator M*. 
(d) The functions in H are analytic in D. 

From Lemma 1, each £££> is a simple eigenvalue of /—C*(a), with correspond-
ing eigenvector/;, whose components are defined by (1) with x0=1. Define k ^ f a . 
Then ( I - C * w ) k t = l k T h e vectors {fcj, ^D span/2. To see this, let {e„} denote 
the standard orthonormal basis for I2, i.e., e„(k)=onk, n, k^O. Define a sequence 
of real numbers {£r} by C r=(a-t-r)/(a+r+l), r=0 ,1 , 2, ... , and denote the cor-
responding sequence of eigenvectors by {/}. A straightforward calculation verifies 

that f0=e0, and that 2 ,
f cL 0 (^)(- 1 ) ' :A=e r r ! / (H-a) . . . ( r+a) for r > 0 . Therefore 

{ / } spans I2, so that, a fortiori, {k;}, £££> spans I2. •< 
As in [14], I2 can be transformed into a Hilbert space of complex valued func-

tions. For fO2, define its transform / by 

(7) / ( 0 = (f,k!), (€£>• 

Let / /denote the set of all such functions / , with the usual addition of functions and 
scalar multiplication, and with inner product defined by ( / , g ) = ( / , g). Then H 
is a Hilbert space, and the mapping U: l2^H, defined by U/=f, is a unitary 
transformation of 7.2 onto H. Also U(I—C(a)) = Mz, where M, denotes multi-
plication by z on // . Since ||£c||2 is uniformly bounded on compact subsets, of H, 
from (7), | / (0 l = ll/ll2ll^cll2. a n d each/ in H is bounded over D. 
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To show that each / is analytic, it will be sufficient to show that H contains 
a dense subset of analytic functions. The {en} in I2 are transformed as follows: 

e0(O = (e0, k) = 1, e„(Q = (en, kc) = r(B+g + 1)
 1 ~ 

(n S 1), UD 

where w+a=£/(l—Q. These transforms are rational functions whose only pole 
is at £=1. Thus, their finite linear combinations are analytic in D. 

That the functions are simple eigenfunctions of M* follows from Lemma 1 
and the argument of [13, p. 782]. 

It remains to show that Mz is a contraction, or equivalently, that ||7—C(a)||2 = 1. 
If it can be shown that C(a) is hyponormal, then, from [15, Theorem 1], its norm is 
equal to its spectral radius. From Lemma 2 this value is 1, so that ||7—C(a)||2=l. 

Lemma 4. C(tz) is hyponormal. 

For a a nonnegative integer this is a known result since, from [4, Theorem 2], 
C(a) is subnormal, hence hyponormal. 

It is easy to verify that 

{ Pn+KVnk, n > k 
o Pk + ccynk, n = k 

where 

To show that C(a) is hyponormal we must show that c t ( a , C w - C ( l , C + w is a 
positive operator; i.e., that 0 for each n, where 

A, = 

Po+Woo Pi+Woi ••• Pn-i+ayo,n-i 

Pi + ay w Pi+ayn ••• Pn-i + a?i,n-i 

Pn-i + «V»-i,o Pn-i + a?»-i,i ••• Pn-i + «y„-i,n-i 
D„ can be written as the sum of two determinants, where the first column of 

the first determinant contains the /?,-, the first column of the second determinant 
consists of ayi0, and the remaining columns of the two determinants are identical. 
Each of these determinants can, in turn, be written as the sum of two determinants, 
by decomposing their second columns. Thus one. has Dn=Z)^ 4- D^+D^+7))

(
1
4). 

In D'^ the entries in the z'-th row of the first two columns are ayi0 and aya," 
respectively. If one f a c t o r s l / ( a + l ) from the first column and l/(a+2) from 
the second column, then the first two columns of are identical, so £><4)=0. 
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Exploiting this idea, becomes 

One may write 

DP = 

Po 
Pi 

Pi ft 
Pi P2 

Ps + «703 
As+ay 13 

+ 

Po Pi 

Pi Pi 

aVo2 
aVl2 

Pa + aVo3 
Pa + Woa 

ft-i Pn-I 1,2 ft-i + ay n —1, 3 
As before, the second determinant becomes 

ft A 
Pi Pi 

a7o2 
aVl2 

ft 
ft 

ayoo Pi •• ft-1 

D = 
a7io Pi • • ft-i 

ay„-i, 0 Pn-1 • ft'-i 

In a similar manner one may write 

Po • Pn-1 

Pi ayn • • ft-1 

Pn-1 ay„-i,i • • ft-1 

Pn-1 Pn-1 Pn-1 ft-l + aVn-l,3 

ft-i + «7o,n-i 

ft-i + ayi,B-i 

ft-i+ay„-i,„-i 
ft-i + ayo,n-i 
ft-i + ayo,n-i 

ft-i + a ? » - i , n - i 

ft-i 
ft-i 

+ 

Pn-1 Pn-1 ay«-i,2 Pn-1 ••• Pn-1 

Continuing in this manner, one may write Z)n=2; "i £n0» where 

ft ft • • ft-i 

ft Pi • • ft-i 

ft-i ft-i • • ft-i 

and E®, for 0 s / < n , is the result of replacing the i-th column of £n
(n) with 

It will now be shown that each determinant is nonnegative. To accomplish . 
this it will be sufficient to show that, for each n, 

(i) ft is monotone decreasing, and (ii) Pn-l-Pn yn-l,n 

Pn~Pn +1 Vn,n+1 
0. 
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For (i), /?„—ft+1 = l/(M+a + l ) 2 (n-fa+2)>0. Expanding the determinant in 
(ii), and using (i), yields. 

1 
(n + a) (« + a + l)2(n + a + 2) P - L _ U o . v« + a n + ct + l J 

E^n) is an ¿-shaped determinant, which has been shown in [1, p. 131] to be 
nonnegative, since ft is monotone decreasing. 

To evaluate E® for l<z'<n, subtract column 1 from column 0. Then sub-
tract column 2 from column 1. Continue in this way through column i—2. Then 

takes the form 

(i + a + 1) 

ft-ft ft-ft P,-t-P,-i Pi-1 l/(«+l) Pi+1 
o ft-ft l/(«+2) 

0 0 !/(«+«) Pn-1 

ft-i 
ft-1 

Pn-x 

Columns zero through /—2 of have all zeros below the main diagonal, and 
the diagonal entries are ft—ft-i, 1, which are positive by (i). To show 
that Efp is positive, it is sufficient to show that 

A - ! l / ( a + l ) ft+1 ... P„.! 
ft !/(<*+i + 1) ft+1 ... ft_x 0. 

ft_x l/(a + n) ft-x ... ft_! 

Subtract row 1 from row 0, then row 2 from row 1, etc., to obtain 

(8) 

ft—i Pi l/(a + 0(a + i + l ) 0 
P,-P,+i l/(a + i + l)(a + i+2) 0 

ft-1 l/(a + n) ft-x 

0 
0 

ft-i 

The above determinant has all zeros above the main diagonal, beginning with 
column 2. The corresponding diagonal entries are ft—ft-+1, except for the last 
one, which is ft-x- Expanding yields a positive number times the determinant 
of(ii). 

To evaluate subtract row 1 from row 0, row 2 from row 1, etc., to obtain 
a determinant with the same property as (6). Expanding then gives a positive num-
ber times the determinant 

a(7oo-yxo) 0 
a(7io-V2o) ft-ft 

which is easily seen to be positive. 
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To evaluate 7T*0), factor a / ( l+a) from column 0. Then subtract row 1 from 
row 0, row 2 from row 1, etc., to obtain a determinant of the same form as (8). 

We shall now verify equation (6). First we shall show that (6) is true for f ( £ ) = ? . 
The result is trivially true for r = 0 . Assume the induction hypothesis. Then 
/ ( 7 - C w ) = ( 7 - C w ) r + 1 = ( 7 - C(a)) ( 7 - CMJ, so that 

(.f(I-C"%k = z (i- c(°%V- C<«%. 

In particular, 
fin = (/(/-C<«>))M = ( / - C ( \ ( / - C < t » = 

= i i L - J f c L _ J = (i L _ - i + 1 = / ( i - ( „ + « + i ) - i y I n + a + 1 ) V n + a + l J { n + a + 1 ) J K v ' J 

oo 
I f / is an arbitrary analytic function in 7), then / ( z ) = Z akzk> so that 

k = 0 

n„ = ( / ( 7 - c<">))m = ( J ^ ( / - C ^ ) = 

- 2 «»(I -(»+«+1)"1)11 =/(i -(«+«+1)-1)-
4 = 0 

Theorem 5. Let Hw£B(l2)C)B(c). Then 

||7/<">||2 = sup \ft~1+1/xdP(t) = sup f t 1 dp(t), 

where ¡in is defined by (2). 

Proof . From Theorem 4 there exists a bounded analytic funct ion/ on D such 
that 77(ot)=/(7—Cw). From [13], 

ll#(a)ll2 = ll/(y-C(<0)||oo = sup |/(z)|. 

To obtain an explicit representation of the norm, it is necessary to determine the 
particular analytic function / which is associated with 77(a). Equation (6) says that 
/ is determined by the n„. Since HfB(c), n„ satisfies (2). Therefore 

i 
, / ( l—(n + a + 1)-1) = f tn+*dp(t). 

o 
Writing z = l — (n+a + 1) - 1 we obtain 

/ ( z ) = f i ^ d P i t). 
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Note that z / ( l - z ) = — 1 +1/(1—z). With w=l-z, then | z |< l gets mapped into 
|1—w|<l, so that 

f ( z ) = f t ^ - 1 d № = / ¿ - 1 d m • 
0 0 

For the second representation of the norm, note that |1 — w[«=l is equivalent 

to Re(l /w)>l/2, i.e., Ref— — ll=—1/2. Now set z=—-1. 
vw ) w 

Theorem 6. Let Hix)^B(lp)C\B(c), p> 1. If P(t) is a totally monotone mass 
function, then 

sup I f i*dp(t) = f t~1/pdp(t). 
(z)=>l/p l y X Re(z)=»l/p 

1 
Proof . Let *l/(z) = f tzdfi(t). Then xj/(z) is analytic for R e ( z ) > - l / p and 

o 
continuous for Re (z)= — I/p. Since p is totally monotone, 

i i 
J f W d f i d ) §r / t~llPdfi(t) s 0. 

i 
sup |<Kz)| = sup 

R e ( z > - l / p y i R 

The conclusion follows from (4). 

Coro l l a ry 1. Let H(ct)eB(P)C]B(c) with P(t) totally monotone. Then 
| | t f ( a ) | | 2 = / ( - l ) , where f satisfies (5). 

P roof . From Theorem 6, the supremum occurs at —1/2, which corresponds 
to w=2, which corresponds to z=—1. 

Let C—C(o); i.e., C is the Cesaro matrix of order 1. If one sets H= {ij/\\j/ is 
a bounded analytic function on |z—1|<1} and makes the association H=\p(C) 
for each Hausdorff matrix in B(l2), then, for each Hausdorff matrix with a totally 
monotone mass function ft, \\H\\2—\j/(2) from Corollary 1. This result has been 
verified for several particular Hausdorff matrices by DEDDENS [3]. 

Let \H\ denote the matrix whose entries are \h„k\. 

Theorem 7. Let p> 1. Then \H\£B{lp) if and only if H~llq£B(l). 

Proof . From the proof of [7, Theorem 2], implies 

sup 
» k=o \ n — k ) • ,.-.. 
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i.e., Hulp)£B(c). Since { ^ ^ { " n - k } f o r p > 0 ' H^B(C)- Therefore there exists 

a function P(t)dBV[0,1] such that 

= f fd№-

From [8, Lemma 1], J r1,p \dfi(t)\ exists. We may write 
o 

i l 
H„= f t"+1~1,9(t1,9~1 dfi(t)) = f tn+1-ll9dy(t), 

0 0 
t 1 

where y(t)= f u~llpdp(u). Since f r1'" \dfi(t)\ exists, y£BV[0,1]. 
0 0 

Now, from [6, Theorem 16.3], H^1,9)£B(i). This implies 77(-l/9)€.B(/) 

" n—k \ n — k J 

From [6, Theorem 16.2], there exists a function P(t)£BV[0,1] such that 

(9) f t " + 1 - ^ d P ( f ) , n - l / q ^ 0 . Define n0= f i1 _ 1 / pd0(t) , which exists, since P(t)£BV[0,1]. Then (9) is true 
o 

for all wsO, which implies HVp)dB(c) and so H£B(c). Thus there exists a func-
tion y(t)£BV[Q>, 1] such that 

i 
Ä = / fdyit). 

o 
HWp)£B(c) implies 

" *=o \ n —k J l 
From [7, Lemma 1], f rllp\dy(t)\ exists. By [7, CoroUary 1], \H\£B(lp). 

o 
A result similar to Theorem 7 is true for 77(<,) with a>0. 
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