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- Functional models and extended spectral dominance

H. BERCOVICI, C. FOIAS, C. M. PEARCY, and B. SZ.-NAGY

In the paper [4], ScorT BROWN showed that every subnormal operator on
Hilbert space has nontrivial invariant subspaces, and thereby originated techniques
which could be applied to broader classes of operators also; from the rapidly growing
number of pertinent papers let us only mention a few: say [1], [2], [5], [7}. Two
further papers, [9] and [10], took the first steps to exploit similar techniques in
the setting of the functional model of contractions. The present paper is a partly
expository synthesis and a continuation of these two papers, with some applica-’
tions to invariant subspace problems. We have chosen to reproduce here, with
some rearrangement and simplifications, the pertinent parts of [9] and [10] because
of some shortcomings in their redaction (in particular the definition of the functional
n in [9]), which unnecessarily restricted the applicability of the results.

1. Function spaces. Dominance of sets. Convex hulls

In this paper we shall have to do with Lebesgue and Hardy spaces L?, H”
(1=p=o) relative to the unit-circle C={e": 0=t<2n} and the normalized Lebes-
gue measure dm=dt/(2n) on C; the general reference may be, e.g., [6]. For any
measurable subset s of C, L? will denote the subspace of L? consisting of functions
vanishing outside of 5. Every function f¢L? admits a harmonic “extension” f
to the unit disc D={A: |A]<1}, defined by

(L.1) fw = [rP,dm,
where P, is the Poisson kernel function on C corresponding to the point ué D, Le.,
(1.2) Py(e") = (1—|p®) 11— Ee"| 7% |1Pfa=1.

The function f can be recovered from falmost everywhere on C, as a “non-tangential
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limit”: f(e")=lim f(u) as p—e”, non-tangentially to C. If feH?, f is analytic
in D, and in this case it is customary not to distinguish between f and . We denote by
H? the subspace of H?, consisting of the functions vanishing at the point 0.

Recall that H= is the Banach dual of the space Ll/H; through the bilinear
form (f*, wy={ fudm (feL', u¢ H*), f—~f* denoting the natural map of L* onto
LY/Hj. For the sake of simplicity, we shall also write, for any feL!, || fllzys2 instead
of || f*llyud, and | fllpe instead of || f|sllis. By the definition of the norm in
a Banach quotient space, we have

(1.3) Sl g = Jnf,I.f+glu, and hence, ISl ymg =10z
0

A subset S of the unit disc D is called dominating for a (measurable) subset s
of the circle C if almost every point of s is the non-tangential limit of a sequence of
points of S. (It is easily seen that for any set ScD the set of all non-tangential’
limits of S on C is measurable, indeed an F_,,.) A set S dominating for the whole’
circle C will be also called simply dominant. Such a set enjoys the property -

19 sup [u()| = |ull. forall ucH=; cf. [3].
. : €S

" Consider now an arbitrary complex Banach space X, its (closed) unit ball X,
and an arbitrary subset E of X. The absolutely convex hull of E (aco E) is defined by

aco E = {3 ¢ix; (finite sums): x,€E, ¢,€C, 3 le| = 1};

its closure will be denoted by aco E.
We shall need the following standard consequence of the Hahn—Banach theo-
rem (cf., e.g., [5], Prop. 2.8):

_ Lemma 1. 1 Let the subset E of the unit.ball X1 of the complex Banach space X _
satlsfy _ "
(L5 - sup I(p(x)l =gl for all @ in the dual space X*.

- R x€E . .

Then aco E=X. : _ R
We consider two special cases: .
a) X=L'(s) and E={P,|s: pcS}, where Sis a subset of the unit dlSC D
dominating for the measurable set s on C.
b) X=LYH; and E={P;: pu€S}, where S is 4 dominant subset of D. |
In case a) we have X*=L>(s) and we infer for any £€L*(s), using Fatou’s.
theorem, - ‘ ’

sup| [ P, dm| = sup |E(u)| = ess sup lé] = €l
HES HES s et .
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- .In.case b) we have X*=H"= and we deduce for any (€ H*, again by using
Fatou’s theorem, .

sup P, &) = sup| [ P, £dm| = sup1€(w)| = ess sup [&] = [1¢]|n~-
ues nes T nes c :
Thus condition (1.6) holds in both cases, and we deduce from Lemma 1.1:

Lemma 1.2
a) If the set Sc D is dominating for the measurable set sCC, then

aco {P,ls: ueS} = (L*G):.
b) If the set ScD is dominating for C then
aco {P,: ucS} = (L' Hp),.

2. Functional model and representation theorem for L' and L'/H;

Preliminaries. Denote by (CNU) the class of completely nonunitary contrac-
tion operators T on a separable complex Hilbert space §. The (unitarily equivalent)
“functional model” of an operator T€(CNU) is the operator S(@) on the Hilbert
space $(O) associated with a purely contractive analytic function {€, €,, ©(1)},
on the unit disc D (€ and €, being separable Hilbert spaces) in the following way.
O (e") being defined as the a.e. existent radial limit of @(4) on C, and setting 4(e*)=
[I—-0(e*)* O (e"]¥?, consider the Hilbert function spaces

@1 K,(0)=H*E)SAL(E)  and- $(0) = K. (0)0 {Ow D dw: we H2(E)}

and the orthogonal projection operator Pgyg,: R.,.(0)~9H(0). Then the operator
S§(O) defined on H(O) by '

(22) S(@)(u@v) = Ps(a)(eitu$e“v) (u®v€5(@))

is in (CNU). It is unitarily equivaleﬁt to a given operator T¢€ (CNU)‘on 9 if O coin-
cides with the characteristic function @1 of 7, i.e., with the function {Dy, Dz., Or (1)}
defined by

Q3. - 02(A) = [~ T+ADge(I—AT*) "1 D]| Dy,
where
@4)  Dy=(I—T*TY, Dy = (I~TT*)2, D= D19, D+ =DpsH.

Note that ©7(0)=—T|Dy, and hence @;(0)*=—T*|Dy. so that ©,(0)* 0:(0)=
=T*T|Dr and ©O7(0)0;(0)*=TT*|Ds,. Further, note that T*T|HOD,=
=lgon;, and TT*9O© D =I555. ., whence we infer that ©,(0)*@r(0) -and
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T*T, and hence their positive square-roots also, have on [0, 1) the same spectra
o and the same essential spectra o,. The same holds for the other two products
with the factors in the reverse order. It is also known (we refer for all these facts
-to Chapter VI of [8]) that for any u€D the characteristic function of the M&bius
transform

@5 T, = (T—pD)(I-T)™
coincides with {DT, D, Of (-f_:—é;]}, whence it follows as above that the parts

on [0, 1) of the spectra and of the essential spectra of (@ (u)*@(W)"* and (T} T2
are equal, and the same holds for the factors in the reverse order. We shall only
need that, in particular,

(2.6) inf o, (Or () Or(W*)2 = inf o, (T, T2,

where, in case dim Dj.<oo, the left hand side is taken to be 1.

Let us add the remark that, for any selfadjoint operator R on an infinite dimen-
sional Hilbert space R, we have

info,(R) = sup inf ||Rq]|,
NED acu
Nall=1 .
where @ denotes the family of finite codimensional subspaces of . As a con-
sequence,
.7 infe,(SS™Y2 = sup inf ||S*a|
Aco 06911
lall=

for any operator S: $—~$" where H’ may be another Hilbert space. Thus (2.6)
may be written in the form

2.6y sup inf [@r@)*a| = sup inf (|Tfa’|],
UED a€cYU Wed adeW
llall=1 =1
where @ and @’ denote the families of finite codimensional subspaces of Dy, and 9,
respectively.

The product /#.h* and some of its properties. Starting from a purely contrac-
tive analytic function {€, €., ©(A)} we define, for h=udv, I'=u'®V'€H(O),
the “product” A& -A'* by
2.8)  (h-H")(e") = (h(e"), B (e))e,0c = (u(e"), u'(¢M))e, +(0(€"), v'(¢M))e;
it is clear that
.9 h-h™* =N .-h*e L.

We are looking for conditions under which every function fin L can be represented
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in the form f=h-h"* on C or on a given subset s of C, or on C in the form
f=h-K* modulo Hy. In order to do so we use elements of $(O) associated with
points p€D and vectors acE, in the following way

(2.10) Hoa = Ps(g)(p“a®0),
where
(2.11) P,(A) = (1= [ud2(1 — @A) 1€ H™.

A straightforward calculation yields that
(2.12) poa = (p,a—Ow)@(—4w), where wecH=(€) is given by
(2.13) w(e") = [p,(e") O (¢")*a], = p, (") O (W)*a;
[1+ and []_ denote the natural orthogonal projections of any (scalar or vector
valued) function space L? onto its subspaces H2 and L2@ H?, respectively.
For any h=u®veH(O) we have then, using the second representation of w
in (2.13),
2.14) (roa)-h* = (p,a—0Ow, u)g, — (4w, V)¢ = (p,a, X)g, = (@, P, X)g, >

where x=u—0 (W) (O™ u+ A4v).
, If {a,}7" is any orthonormal sequence in €, then (2.14) implies that (uoa,) - A*~0
pointwise on C, as n—o. Moreover, we have

I(uoa,)-h*| = |p,|lxlle, €L, because p,cL2 x€L*E,);

by virtue of the Lebesgue dominated convergence theorem we infer [|(uoa,) +4*|| . —~0
as n—oo, Recalling (2.9) also, we have proved:

Lemma 2.1. If dim €, =< and {a,};" is an orthonormal sequence in €, then,
for any ueD and he$H(O),

(zoa,)-h* -0 and h-(uoa)* —0°

in L, and a fortiori in every L(s) and in L*/H,y. (Cf. (1.3).)
Next we derive from (2.12) and (2.13) the following relations for u¢D, ac€,,
lalle,=1,
(2.15) (noa)-(noa)" = |p,a—Owlg,+dwlg = _
= Ipulz_(puaa @W)G*"(@W, Pua)(z*+"W”(2£ = Ipulz—-(@*pya: W)(E_ya
where, using the first one of the representations in (2.13) for w, we have
y= (W: @*pua)ﬁ—(w’ [O*Pua]+)6 = (W’ [@*pua]—)(i'
As we H” we infer that y¢ Hy, while
I¥lls = [Iwlel[0*pual-lledm = Wl I[O*P,a)- 13 =

= Wl L3y ©* Py all ae) = Wit Lacey | P all L2ey = Wl Lace)-
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For the middle term in the last member of (2.15) we have the same evaluation.
Observe that |p,|* equals the Poisson kernel function P, (see (1.2) and that, by
(2.13), <
"W"L’(G) = "Ppg(ﬂ)*a"u(cm = | Pp" Lt "6(#)*“"(5 = leW*alle;

we conclude:

Lemma 2.2. For any ac€C€, of norm 1, and any u€D we have
(2.16) Iwoa)-(uoa)* —P,|l. = 210 (1)* alle,
(2.16) l(moa)- (oa)* — Pl = 10 () alle.

The representation theorems. From now on we shall always assume that
dim €, = (this was tacitly assumed in Lemma 2.1), and consider the quantity,
already appearing in (2.6) and (2.6)":

.17 ’78(#):;1;1; ’2{, l©W*alle(= info.[(O (W) @ (W*)); ueD,
lali=1

@ denoting the family of finite codimensional subspaces of €, .

Lemma 2.3. For any given p€D, U ®, and ¢>0, there exists an ortho-
normal sequence {a,};" in W, such that

(2.18) ; 10 W™ a,lle = ne (1) +e.

Proof. By induction: Suppose that for some m=1 the vectors acU, with
n<m have been already chosen so-that they form an orthonormal system and sat-
isfy (2. 18) (these conditions are void if m=1). The subspace U, Qroe( \/ a,)

belongs to &, so by (2.17) we have mf 1@ ()*all =ne(1); and hence there e)usts

Ilall 1
a unit vector a,€U, satisfying (2.18) for n=m. Clearly {a,}' is orthonormal.

The proof is done. .
In the sequel we shall be concerned, for any 796[0, 1), about the set

(2.19) Sy = {ueD: ne(u) = 9}

Lemma 2.4. Suppose that, for some 93€[0, }), the set Sy is dominating for
some measurable set sCC, and take a 3€(29, 1). Suppose we have

Nf—h-k*lps =w for some f in L, and h, k in 33(@)
Then there exist i, k' in $(O) such that
(2.20) W K lue = Y,
(2.21) - fh—H| = o'?, Jk—k'|| = 02
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- Proof. Fix-an £=>0, to be specified later. By Lemma 1:2 there exists a ﬁmte

sum Z’c P w1th Um€ S such that

.(2.22)

;f—h k*— Zc P, =z and Zlcmlu

L(s)

Accordmg to Lemma 2 3 we can choose an orthonormal sequence {a,) in €,,
satisfying (2.18) for u=y,. By Lemma 2.1 we know that [.(p04,)*->0 in L!
as n—oo, for any fixed I€9H(®). Therefore we can find b,, equal to some a,,
such that

1h-(uob) o =e lk-(mob)in=c¢

(indeed every a, with n large enough does it). Next, again by Lemmas 2.3 and 2.1,
we can choose a unit vector b, in €, &(V b,) such that

0 ()" bolle = e (ua)+& and [[I-(uy0b)*ln=¢ for I =hk pob,.
Continuing, we find step by step an orthonormal sequence {b,}; in €, such that

2.23) 10 (1) bulle = ne(un)+e and |I-(unob,)*lm=¢

for
l="hk,pu,ob, (n<m).

Now choose complex numbers d,,, e, such that c,=d,é,, |d,,,|=|e,,,|=|c,,,]1'/2,"
and set '

r r
h,:h+2dm'(”mobm)5 k,=k+26m'(”mobm)'
1 1

. Inequalities (2.21) are easily verified; it suffices to look at the first one. Indeed,
using (2.10) we have

Ih=Rl| = || 3 dun(ttm 0 b)|| = ||Psey Z dm(Py,, b ®O)| =

= || Z dn Py bulasen = (S 1dnl?)? = (Z leal)V* = w2

For the difference Q=f—4" -k’* we begin with the following rearfangement:;
Q=(f—h-k*=3c,P, )= 3 cul(timobp) - (0 bp)* — P, 1
=2 du(imoby)-kK*— 2, h -(ﬂmobm)*—ZZ' A€, (1, 0b,) - (B 0 by)™.
From inequalities (2.22), (2.16), and (2.23) we deduce: _

"Q"Ll(s) = et 3 lenl 210 ()" m|l+2ldml8+21em|8+22 ldmlle..ls<

= ¢+ 029+ (@2 2+ 02 r 2+ wr)g,

and this is obviously =% @ if & was chosen approprlately small thus (2.19) holds.
The proof is done.
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In the case s=C a similar result can be obtained even under a milder condi-
tion, namely that S be dominant for some 9€[0, 1) (instead of 9€[0, 1)). How-
ever, we get then, for any 9€(9, 1), evaluations in the quotient space L'/H, (instead
of the space L'(C)=L"). The method of proof is the same except that we can now
refer to part b) of Lemma 1.1 (instead of part a)), and in particular, to the estimate
(2.16) in Lemma 2.2 (instead of the estimate (2.16)).

Let us formulate the result so obtained, without repeating the details of the
proof:

Lemma 2.4°. Suppose that, for some 3€[0, 1), the set S, is dominant and take
a Y€, 1). Suppose we have
1f=h k¥ gz = @ for some f in L*, and h, k in $H(O).
Then there exist b’ and k" in H(O) such that
V=1 Ky = 0,
[h—F| = 02, [k—Fk'| = o2
Now we can turn to our main “representation theorems”.

Theorem A. Suppose that, for some 9€[0, 1), the set S, is dominating for
some measurable subset s of C, and take 9'€(29, 1). For every f€lI* and h, ke H(®)
there exist W, k'€ $H(O) such that

f=h-kK* ae. ons, and -
Ih=Hl, Ik=K] = 1= f—h-k*| iy
Proof. Repeated application of Lemma 2.4, with w=| f—h-k*| 1, shows
the existence of sequences {,});’, {k,};° in H(O) such that h,=h, ky=k and
If=ha Kl = 9", and |l —hopill, fka—kosall = ") (n=0,1,..).
This obviously implies that the limits h’=li£n h,, k’———li{'n k, exist, satisfy
| S~ K gy=1im | S~ k139 =0, and

= > S w2 =(1 —yz)-1 iz,

0

h=1=| 3 Gty

similarly for {|k—k’}. The proof is complete.
An almost identical proof, based on Lemma 2.4°, yields:

Theorem A’. Suppose that, for some 9€[0, 1) the set Sy is dominant and take
Y€(9, 1). Then, for every fEL' and h, k€H(O) there exist I, k'€ H(O) such that
f=hW-k* modH; on C, and

M=kl k=Kl = A=) f—h kg
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Corollary A. Under the hypotheses of Theorem A the set
Z = {he$(®): h-k* =0 a.e. on s for some nonzero k€H(O)}
is dense in 9H(O). ‘
Corollary A'. Under the hypotheses of Theorem A’ the set
Z- = {h€H(O): h-k* =0 mod Hy for some nonzero k€H(O)}
is dense in H(0O).
Proof. Choose $ and § as required in the respective Theorem. For a fixed

u€S; choose, as in Lemma 2.3, an orthonormal sequence {g,}; such that
1O@W*a,ll¢=9. Using also (2.12) and (2.13) we have

lpoal® = Ip.aulfe@ — 1P, O W aline = 1-10W*ale¢ = 1-9,

and hence, poa,>0. Now apply Theorem A or A, respectively, with /=0, k=yuoa,,
and an arbitrarily chosen A€$(©). We infer the existence of sequences {#.}, {k.}
in $(O) such that

hi-ki*=0 ae. ons, or h,-k*=0 mod H} on C,

respectively, and moreover,
Mh—h)l, e~k = (1= 1B+ (10a,) | By or sz -

By Lemma 2.1, || -(oa,)Y[—~0 as n—oo, which implies the same in the metrics
of L'(s) and L'/H] as well. This concludes the proof of both corollaries.

’

*

The first interest of these corollaries lies in their implication to the existence
. of non-cyclic vectors for the “model” operator S(0) defined on H(O) by S(O)h=
=Py (eth), cf. (2.2).
Indeed, if the set S, is dominant for some 9¢]0, 1), then no vector A€Z- is
“cyclic for S(®), because if k is a nonzero vector in $(O) such that A -k*=0
mod Hj, then
(2.249) (SO)h, k)= (e"h, k)= f e (h(e"), k(e"))e, 06 dm =
= [em(h-k*)()dm=0 for n=0,1,....
In case Sy is dominant even for some 9€[0, 1) then we have for every A€ Z and a
corresponding k>0 such that k-k*=0 a.e. on C, besides (2.24) also
@25 (5(0)*"h, k) =(h, S(O)K) = [ e (h(e"), k(e") e 00 dm =
= [e=™(h-k*)()dm=0 for n=0,1, ...
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Thus in the case 3€[0, 1) the nonzero vector k is orthogonal to \7 S(6)'h, while
V]
in the case 89€[0, 1), k is orthogonal both to \/ S(©)h ‘and to V S(@Y*"h.
0 o .

Remark. The chains of equations (2.24) and (2.25) cleaﬁy hold, with the
exception of the last members (“=0""), irrespective of any assumption on the set
Sy, and for any A, k€ $ (@). They show that the function 4. k* ¢ L has the Fourier
series ) ¢,e™, with ¢,=(S(O)h, k) and c_,=(S(O)*"h, k)for n=0, 1, .... Note
that this representation frees the definition of the product k-k*.from the model
operator.. For any (CNU) contraction on a Hilbert space $ we can define h.k*
(h,k€H) as the function in L' with the Fourier series > ¢,e™ with ¢, =(T"h, k)
and ¢_,=(T*"h,k) (n=0, 1, ...); and this definition is clearly unitarily invariant. .

3. Invariant subspaces

a) Letus formulate the above consequences of Corollaries A and A’ in tetms of
a contraction operator T.on the Hilbert space §, by using the model oper-
ator S(@;7), where {Dg, Dy, Or(1)} is the characteristic function associated
with 7. As recalled in the Preliminaries of Section 2, S(@y) is unitarily
equivalent to T if T is (CNU); in the general case it is unitarily equivalent
to the (CNU) part of 7. As the unitary part (if any) of T does not effect @
and the argumentations at the end of the first paragraph of section 2, we may
disregard the assumption T¢(CNU).

Set, for 9¢J[0, 1), in analogy to (2.19),

3.1) Ry = {u€D: infa,[(T, T = 9}.

Proposition 3.1. Let T be a contraction acting on $. If Ry is dominant for some
3<1 then T has nontrivial invariant subspaces. Moreover, the set of non-cyclic
vectors for T are dense in 9. .

Proposition 3.2. Let T be a contraction acting on . If Ry is dominant Sfor

1
some .9<7 then the set of vectors h€$ for which

V AT h, TR} = $,
n=0
-is dense in 9.

Remark. The condition that the defect Spacé Dy, be infinite dimensional,
is implicitly contained in the hypothe31s that Ry is dominant for some 9<1, and
hence non-void.
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b) As a further application of Theorem A’ we prove

Proposition 3.3. Under the condition for T that the set R, is dominant for
some 9<1, there exists, for every inner function ¢, a semi-invariant subspace L for
T such that the compression Ty of T to £ be a Cy-class contraction with minimal
function mgy equal to @, and with a cyclic vector; as a consequence Tq has the Jordan
model S(o).

Proof. It sufficies to consider the model operator T=S(0); the assumption
is then that the corresponding set Sy (cf. (2.19)) be dominant for some 9<1.

By Theorem A" this implies that there exist A, kK € §(©) such that

(3.2) @ = h-k*mod Hy.
Consider the cyclic subspaces
Si=V T and $,=V T"e(Dh (= ¢(T)9)"

for T; clearly, $;29.. Hence £=9,09, is semi-invariant for T and the com-
pression To= P,T|® (where P, denotes orthogonal projection from £, onto £)
satisfies :

(3.3) v(To) = Pev(T)[8 for every veH™,

So we have, in particular,

P(T)L = Poop(T)L C Ppop(T)H1 € PpH: = {0}, ¢(Te) = 0. _

Hence, T, is of class C, and its minimal (inner) function mg is a divisor

of ¢: ¢ =gmg, q inner. Thus, by (3.2), g=mpep=my- (h-k*)mod Hf, and hence,,
for every vEH=,

2r

G4 [ v(Eea(@dm = [ v(eYmy(e")(h-k*) () dm = (v(T)me(T)h, k).

0
. Next observe that, for any v€ H=, we have
(T)(h—Peh)€v(T)Ds C Dy, Pov(T)(h—Poh)EPeH, = {0},
and hence, by (3.3),
(3.5) Pov(T)h = Pav(T)Poh = v(Ty) Poh.

For v=m, this yields Pymyo(T)h=0, and this in turn gives that my(T)h€H,.
Therefore, there exists a sequence {p;} of polynomials such that my(T)h=
= lim p;(T)@(T)h. Recalling (3.2) we obtain

F

(o(T)ms(TDh, k) = lim ((op,@)T)k ) = Jim [op, - (h-k*) dm=
= lim [vp;dm =0
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for every v€ Hy. In particular, take v=¢g—g(0). Comparing with (3.4) we conclude
that f (1—¢(0)g)dm= f (9—4(0))gdm=0, |g(0))*=1, and hence g is a constant,
i.e., ¢ coincides with mg.

It only remains to show that T3 has a cyclic vector. Indeed hgo=Poh is such,
because (3.5) implies for v(2)=4" (n=0,1, ...).

\_/nghg - V PgT"h = Pﬁél = 2.

n=0

This concludes the proof.
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