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On center-valued states of von Neumann algebras

DENES PETZ

Center-valued states are projections of norm one onto the centre of the algebra.
This concept is the natural extension of the notion of the (scalar-valued) state.
The space of normal states is sequentially complete and the same can be said about
the space of normal center-valued states with respect to the pointwise weak con-
vergence.

We remark that center-valued states are central-linear maps. Central-linear
maps (or module homomorphisms) onto the centre were studied extensively also in
[4] and in [8].

On a von Neumann algebra o/ each normal state ¢ has the representation

o(A)= D (Ax;, x;y where 2 |x;]/?=1. In section2 we prove a similar formula
i=1 i=1

for center-valued states: if f @ £ (z)du(z) is the central decomposition of & in
the Hilbert space 9, then any central-valued state 7 has the form

()= [ 3 U@ %@ (A= [o4()du)

where x;€9 (P€N).

In the last section we use the above representation theorem to obtain an alter-
native proof of a result of H. HALPERN [5] and S. STRATILA—L. ZsID6 [8] concerning
central ranges for elements of von Neumann algebras (here on separable spaces).

0. Preliminaries. We only consider separable Hilbert spaces $. o/ will always
denote a von Neumann algebra on $, and &/, its closed unit ball.

For the reduction theory of von Neumann algebras we refer to [3] and [7].

In this paper Z always means a separable metric space and i a positive Borel

measure on Z. If

$ = [®9(2)du(2)
Z
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(cf. [3], chap. 11, § 1, def. 3) then {x;};=, will be a dense sequence in 9, for which
we may assume that, for all z€ Z, {x,(z)};2, is dense in $(z) and the map zw—|x,(2)|
is bounded.

If #c« is bounded and BcZ then

Vin,m)= {TG.@: K(T—B)x,, x;)| = —’l;, ij= n} (n, mgN)

is a neighbourhood base of B in &, endowed with the weak operator topology
Consequently, «; endowed with the weak operator topology can be metrized with
the metric ¢ defined by

o4, B)= ,- KZN [{(4—B)x;, x;)| - 2711,

1. Center-valued states. In this section we introduce the notion of center-valued
state and establish some properties. (See also [4] and [5].)

1.1. Definition. Let & be a von Neumann algebra with center €. By a cenfer-
valued state we mean a linear mapping t from & into % such that
@) (C-A)=Cr(4) (ded, Cc9)
) «(Hh=1
(i) if A4=0 then t(4) =0 (de).

1.2. Proposition. Let of be a von Neumann algebra with center €. The linear
mapping ©: o ~€ is a center-valued state if and only if the following conditions are
Julfilled:

@ =1 () «(CO)=C (Ceh).

Proof. Let 7 be a center-valued state. If 4=0 then O=t(A)=(j4|-DH=
=[{A4]| -1 so |[t(4)||=]A4|l. For an arbitrary A€/ the Schwarz-inequality gives
that fjz(DIE=lr (A (D =lt (A (D=l (4* D] =] 4* 4] =] 4]*. Hence [I7]| =1,
and (a) and (b) follow.

The converse is a special case of a well-known result of TomtyaMa [10] on projec-
tions of norm one.

1.3. Definition. If o/ is a von Neumann algebra then the set of all center-
valued states on &/ will be denoted by (/) and by 2 if o is fixed. We endow X
with the topology of pointwise weak convergence.

1.4. Proposition. Z(«f) is compact.

Proof. Let X=IT{X,: Acs/} where X, is [|4[|-%, with the compact weak
operator topology. So X is compact. Define e: X—~X by the formula pr_ e(z)=1(A).
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e is a topological embedding and we want to show that the range of e is closed. Set

H,(A,B) = {T€X: pr o pt = prat+prat},
Hy(A,7) = {t€X: pry 1t = iprat},
Hy(C) = {r€X: pret=C}.

These sets are closed for any 4, BesZ/, Cc¥ and A€C. Since | pr,tl|=|A| for
any Ace/ and 1€X, according to point 1.2,

e(X)= () Hi(4,B)N N Hy(4, )N (\ H,(C)
A,Bco Ac Ce¥
AEC
that is the range of e is closed.

1.5. Proposition. For a center-valued state t on the von Neumann algebra sf
the following conditions are equivalent:
(1) t is o-weakly continuous,
(ii) 7 is weakly continuous on the unit ball,
(iii) 7 is strongly continuous on the unit ball,
(iv) ©7Y(0) is o-weakly closed,
(v) 7 is normal.

Proof. We obtain the assertion by applying a theorem of Tomivama [10] for
the case of projections of norm onto the center.

1.6. Example. Assume that the von Neumann algebra o in the Hilbert
space § is expressed as a direct integral of factors, o= f @ #(z)du(z), and let

H= f @ H(2)du(z) be the corresponding decomposmon of 9. If x€$9 such that
||x(z)|]=1 for p-a.e. on Z, then

A [ &(A@x(2), x@Y(2)dp(2) (4= [ DA d)i(2))

is a normal center-valued state. (Here I(z) stands for the identity operator on the
space $(2).)

The center of &/ consists of the diagonal operators and the verifications of (a)
and (b) in 1.2 is easy. By Prop. 1.5 it remains only to prove the strong operator
continuity of 7 on the unit ball of /.

‘Assume that 4,69, ||4,]|=1and 4,—2~0. In order to prove that 7(4,) =20
it suffices to show that ||z(4,)ul| -0 for every u€$ such that |u(z)] is bounded
on Z (cf. [3], chap.II, § 1, prop. 7). But, setting K=sup {|u(z)|: z€Z} .we have
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by the Schwarz inequality
lt(A)ull® = (t(4)* 1(A)u, u) = (t(A5A)u, u) =
= [(A.(2)* 4,(2), x@, x(2)){u(2), u () du(z) =
= K [(4,()*4,(2)x(2), x(2)) dp(2) = K* 4, x]* ~ 0.
1.7. Definition. Z"(&) denotes the set of all normal center-valued states on

the von Neumann algebra & endowed with the topology of pointwise convergence
in the weak operator topology.

1.8. Proposition. Z"(&) is sequentially complete.

Proof. It is sufficient to see that X" is sequentially closed in Z. Suppose that
1,—~1 and T1,€2" 1€2. Let f be a normal linear functional on . Then foz, is
normal linear functional on . fot,(A)—fot(A4) for every A€« and so for
is normal (see [1] Cor. JI1.3): Since fot is normal for every normal f on €, 7 is
also normal.

2. Decomposition of center-valued states. In this section we show that if the
von Neumann algebra & is expressed as a direct integral of von Neumann algebras
then any normal center-valued state of &/ is decomposable concerning the integral.

2.1. Lemma. Assume that of = f€B o (2) du(z). Then there exists a countable
z

family T in of, such that
(1) T is strongly dense in s/,
(i) T(@={T(2): TeT} is strongly dense in (z),, p-ae. on Z.
(Here T= [ T(2)du(2).)
o z

Proof. By the definition of the direct integral of von Neumann algebras there
is a sequence A,= f @ A,(2)du(z) (neN) such that &/(z) is the von Neumann

algebra generated by {4,(z): néN} p-ae. on Z and we may assume that .9/ is
generated by {4,: n¢N}. Let A be the *-algebra over the complex rationals gen-
erated by {4,: ncN}. Take
o 4 if 4l=1,
T={ [eT(du(z): T= [®&T(2)du(z)ex}, = { . .
{zf zf } A-|4]7 if 4] =1

J is countable and by Kaplansky’s density theorem it satisfies (i)}—(ii).

2.2. Theorem. Let o= f ® o (2)du(z) andt be a normal center-valued state

Z -

on f. Then for almost every z€Z there is a normal center-valued state 1, on o4 (2)
such that for every A= f ® A(2)du(z)€L the operator field z—>1,A(z) is p-meas-
Z
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urable and

1(4) = [@r,4(2)dp(2).

Proof. Using the lemma we have two countable families & and & such that
() T(2)cH(2), and {(2)c¥(z) pae. on Z,

(i) 7 (7 (2)) is strongly dense in &/, (in & (2), p-a.e. on Z),

(i) & (£(2)) is strongly dense in %, (in € (2), p-a.e. on Z).

Let

k
R = {2’ a;S;T;: keN; Sic &, T,€, «; is complex rational (i = k)}.. :
S ) .

If 7 is a normal center-valued state then for z€Z we define T, by the formula
k k
1, [ 2> % Si(2) Ti(z)J = 2 «;8:2)1(T)(2)
i=1 i=1
k
where > o;S;7;¢ #. We will show that %, is well-defined p-a.e. on Z.
=1 .

k o
Take Rla R2€-% (R1: ZaiSiTia R2= ZﬁJSJTJ]
i=1 j=1
and put

H(Ry, R,) = {zEZ: R(2) = Rz(zj, .- é o, S;(2)1(T})(2) = ] =2’1 B; sj(g) o(T)) (g)}.
This set is measurable and its characteristic function y belongs to 4. Hence
xt(Ry) = t(xRy) = t(xRo) = yx7(Ry). |
So T(R)(2)=1(R,)(2) for p-a.e. z€ H(R,, R,). Since i;k; @;S;(2) ((T)(2)=1(RY (2)

1 i
and 3 B;S;(2)t(T)(2)=1(Ry)(z) p-a.e., we have obtained that u(H(R,, Ry))=0.
j=1
Since £ is countable, if follows

r( U H(R, R))=0.
R, Rpe2
Let
S = {z€Z: %,|%(2), is not weak operator continuous at 0},

where 2(z),={R(2): REA, |R(2)|=1}.
We claim that p(S)=0. For A, B€s/(z) define

‘ 92(4’ B= i .%'N K(4=B)x;(2), xi(2))| 2.
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So g, is a measurable field of metrics metrizing the unit ball of .o/ (z) endowed with
the weak operator topology (see 0). The set

H(k,1,¢,6) = {z€Z: there is RER such that |R(2)| < I,

Qz(R(Z)’ 0) = 5 and Kfz(R(Z))X,(Z), xk(z)>| > 8}
is measurable and

- f_] [_'J | Hk, 1,51, 6)

provided that ¢\0 and 6;\\0. Hence S is measurable.
Suppose that p(S)=0. Then we have KCS, £=0, and k, /N such that
(iv) u(K)y=0 '
and for z€K and jEN there is an RiIc#® with the properties
V) IRI@N <1,
vi) 0.(Ri(2),0) <9;,
(vii) [K2:(RI(2)x,(2), % (2))| > &
By Lusin’s lemma we may assume that K is compact and the functions
(viii) z—[R()I,
(i) z~0.(R(2),0),
®)  z—={@R)(2)x,(2), x,(2))

are continuous on K for any R€Z. In this case the inequalities (v)—(vii) are ful-
filled on an open set in K. For any jEN a compactness argument gives a meas-
urable partition {H;: i=p(j)} of K and operators Rj€ % (i=p(j)) such that
for z€ H{ R](z) satisfies (v)—(vii). Let y/ be the characteristic function of H/ (jEN,
i=p(j)) and define

uCB
HDS

R@) = 3 dOR@EE) where el(2) = ARG, w0,

and for 0#1€C set Argi=21-|A|7%
Taking R/ = f ® RI(2)du(z) we have Ric.of, and

o(R),0) = [ 0.(Ri(2),0)du(2) = 5 J e:(Ri(2), 0)du(2) = p(K)5;;
Z i=1 Hif

moreover,

GTR)x;, x) =, f (TRI(2)x(2), x,(2)y du(z) =
z

P(j) . .
= > [Kt.Ri@)x(2), x (D) du(2) = p(K)e.
i=1 H'j
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" This contradicts the continuity of r. Hence u(S)=0 so %,|#(z), is weak
operator continuous u-a.e. on Z. It'is then also uniformly continuous with respect
to the uniformity defined by the metric ¢,.

Now extend %,|%#(z); by uniform continuity with respect to the compact
metrizable weak operator topology to &/ (z), and then by the homogeneity to & (z).
So we get a linear 7, such that [z [|=1 and 7,|%(z) is the identity. Hence T,isa
center-valued state u-a.e. on Z.
 We want to check that t(4)= j @t A(Z)du if A= f ® A(z)du(z). We may

assume that || 4] =1. In this case there is a sequence 7,67 (n€N) such that

T,—~A. Then for a subsequence T, we have T,,k(z)—’+A(z) for p-ae. zeZ

(cf. [3] chap.Il. §2. prop.4). According to the weak continuity of 7, now

+T, (2) =1, A(2). Consequently ©(T,)= [ & <,T, (2) du(z) =~ f @ 1. 4(2)du(2),
’ 4

On the other hand ©(7,)—=~1,(4) so t(4)= f® 1, A(2)du(2).
YA

2.3, Theorem. Let & be a von Neumann algebra acting on the Hilbert space

= f @ H(2)du(z) and suppose that of is decomposable as a direct integral of factors

[® A(2)du(z). Then t: o ~% is a normal center-valued state if and only if it
has the form

() = [0 3 A@uE, N @@ (4= [04(3) du(2)

where. u, €9 (i€N) and Z’ lu;(2)lI2=1 p-a.e. on Z.

Proof. If 7: of % has the form described above then 7 is a center-valued
state since ¥ consists of the diagonal operators and it follows from 1.6 that © is
normal.

;~Now assume that 7 is a normal center-valued state. By Theorem 2.2,
T= f@ 1,du(z). Let H,={z€Z: dim $(2)=n} (n=1,2,...,) and put t,=

f @ 7,du(z). So 7=Pt, and it suffices to prove the theorem for T,

(n_l 2, ...,0). Hence we may identify each $(z) with a fixed Hilbert space £,.
Let Y be the unit ball of $,BH,PD... endowed with the weak topology. So Y
1S-a compact metrizable space. :
Let S be a countable family with the properties (i)—(ii) in 2.1. Define

HT) =y, ya, - JEZXY: 2T @ = 3 TGy 3D 1)

H(IT). is a Borel set in ZXY and sois H=N{H(T): Tc¢T}.

15
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We will 'use the principle of measurable choice (see [7] p. 35). H is analytic
and for z€Z there is a normal state.¢@, on & (z) such that 7,=¢,-1(z). Hence,

©.(S)= 3 (Sul, u) IC2)

for every S€/(z) and for some uiéf)o (i€N). Consequently (z, u},u?, .. )eH.
By the principle of measurable choice there exists a u-measurable function ¢:Z—~Y
such that ®(2)€H p-ae. on Z. If &(2)=(uy(2), us(2), ...) then w,€H (i€N). We
have obtained that

©T@)= 3 (TEu@, u) 1)

for any T€J, p-ae. on Z. Sincq J is dense in .szll and 7 is continuous we have

(4) = f@ 2 (A(z)u (2), u;(2)) I(2) du(z)

for every A€«f. Moreover, 2’ Hu (z)llz—l p-ae on Z because 1(1) I This

completes the proof.

3. An appliéation. In this section we use 2.2 in order to give an alternative
proof for an extension, given in [8] and [5], of a result of J. B. Conway.

3.1. We introduce some notations. If 4 belongs to the algebra o/ then let
Co(A) be. the convex hull of the set {UAU*: U is a unitary in &/}. Moreover, let
C(A)= Co(A)‘”ﬂ% and W(A) be the closed numerical range of 4. The followmg
proposition was proved by J. B. CoNway [2].

3.2. Proposition. If o is a type 111 factor and A¢ o then C(A)= W(A)—
=3(A).

'3.3. Proposition. If o= fEB.d(z)dy(z) and A= feBA(z) du(z)  then
C(4)= j @C(A(z)) dp(2).
The latter assertion was proved by S. KomLGs1 [5] and it means that
B= [.® B(z)du(z)€ C(4) if and only if . B(z)€C(4(2)) p-ae. on Z.
z
3.4. Lemma. Let o= féB & (2)du(z) and A= f@ AQ@)du(z)e L. Assume
that U is a weak operator netghbourhood of the dtagonal operator B= f & f(z)I (2)du(2)
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and f(2)EW (A(2)) for z€Z. Then there is a uc$ such that
JO4@u ), u(@)ydp()el,
z

vo@ii) e =L psae. on Z.

Proof. Take a sequence {e,}C$ such that |le, (z)]l—l and '{e (2)} is dense
in {s€9(2); |sl=1} wp-ae. on Z. Suppose that U is determined by >0 and
y,€$3 (zsm) that is :

G gews k- By )l <'e (] = m).
Choosc a compact K cZ with the propertles
(a) :Zq-?_’;,(.’f“,(,.z)‘{‘(,,z)’ e,-(z)_) is continuous on K (i, jeN),
(b) w@Z\K) <5,

© [ Kn(@. yNldu@ <38 Gj=m),
ZNK

(d) f is contmuous on K.

(6 is arbltrary but ﬁxed) We can find x E{e} and an open G, contalnmg z
such that :

) (A @)x. (), x. @) < (v€G,)

for z€K. - Usmg compactness one has a measurable partition {H;: i=k} of K
such that H,CG,, for some z, €K (isk). Let 1 () be the characterlstlc function
of H (Z\K ) and define u by ‘

u(z) - X(z)el(z)+ Z /u(z)xzt(z) (ZEZ)
lu(2)l=1 "isufulﬁ}led‘:ewdently for y-a.e. zeZ. An easy estlmatlon gives -
(o t@u@: u@y 1) duz) - B) i yp| = 8141+ 151 +||y.n Iy 1)-

So if & is. sma]l enough then @) i 1s satisfied.

3.5. Theorem. If & is a type I von Neumann algebra and A€ o then

C(4) =Z"(4)". : : _
Proof. We express s as a direct integral of type III factors: f & o (2) du(z).
z
If B= [® B(z)du(2)€C(A4) then B(2)€C(A(z)) p-a.e. on Z by 3.3. According
z

to 3.2 B(z)€W(A(z)) and we can use 3.4. For every weak neighbourhood U of B

15*
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there is a #€$ such that
JoA@)u(2), u@)Y () dp(2)eU.
z

However, T— [ @ (T(2)u(z), u(2))1(z)du(z) defines a normal center-valued state
z

(cf. 1.6) hence C(4) C Z°(A4)".
Conversely, for any 1€2", 1= f @ 1.du(z) follows from 2.2 and 7,(4(2))€ C(4(2))

z
from 3.2. By 33 we have [@1,(4(2)du(2)¢ [OC(4(2)) du()=C(4). So

7(4)€C(A4) and we have obtained that X"(4)cC(A). Since C(4) is closed, it fol-
lows Z"(4)"c C(A).
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