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Some propositions on analytic matrix functions related to
the theory of operators in the space 17,

M. G. KREIN and H. LANGER

It is well known that certain classes of analytic functions play a useful role in
the theory of hermitian and selfadjoint operators in Hilbert space.. On the other
hand, sometimes, general propositions from the spectral theory of operators yield
simple solutions of problems in complex function theory. This is especially true
for the theory of selfadjoint and unitary operators in spaces with indefinite metric.

In this note we prove some consequences of the theory of Q-functions and
characteristic functions of hermitian and isometric operators in the space II,,
developed in [1] and [2], for scalar and matrix valued analytic functions of a com-
plex variable. It seems rather unexpected to us that in this way we get new results?)
also for the so-called Nevanlinna or R-functions (mappings of the upper half-plane
into itself) so well studied in different contexts during the last 50 years.

There are now several papers (see, e.g., [5]) which generalize the well known
theorem of Rouché to matrix or operator functions. In these papers, however, it
is assumed that: the boundary of the domain considered consists of regular points
only. Here we show that our methods permit a generalization of Rouché’s theorem
to the case of matrix functions of the class 2"%" (see § 4 below) over the unit disc.
Instead of the unit disc more general domains with sufficiently smooth Jordan bound-
aries may be considered. For the case of scalar functions this generalization was
proved 2) by V. M. ADAMIAN, D. Z. Arov and M. G. KReN in [6] and has found
essential applications in the theory of Hankel operators with scalar kernel. Theo-
rem 4.2 _below can be used in the investigation of Hankel operators with matrix
kernel. ' .

The authors express their thanks to ' J. Bognér for a careful reading of the
manustcript and valuable suggestions.

Received October 15, 1979. : :

1} Some of the results were proved by a different method in [3] (cf. also [4]).

2} However in-aless complete form, without counting the generalized poles of negatlve type
(see the remark after Theorem 4.2). .
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§ 1. Basic propositions

1. An (nXn)-matrix function K, defined on a nonempty set ZXZ, is said
to have s negative squares (on Z) if it has the following two properties:
) K(z,)=K(, 2)" (z,(€2Z),
2) for any positive integer k, any z,, ..., z€Z and n-vectors &, ..., c‘fke(f?’ 1) the
matrix . : SRR

bt

(K(zv’é“)é“’éﬂ)\'.u=l.2,,,,,k ST e

has at most x negative eigenvalues and for at least one choice of &, zy, ..., z,
and &, ..., &, it has exactly » negative eigenvalues.

In this note the following three classes of analytic (n Xn)—matrlx functnons will
play an important role. . fe-

.a) NZX"'is the set of all (nXn)-matrix functions Q: Wthh are meromorphlc
on €, and such that the kernel Ny: : : .

2000
=&

NQ(Z, )= (z, {€Dy)
has x negative squares (D,C€, denotes the domain of h'olomorphy of Q).

b) C2%"is the set of all (nXn)-matrix functions F whlch arc meromorphlc on
D and such that the kernel Cj:

Crte, )= RO renyy -

1—2z(*. ( i

has » negative squares. i :
¢) Si*" is the set of all (nXn)-matrix functions 6 Wthh -are meromorphxc on

D-and such that the kernel S,: : :

1- 9(6)*9 )

ZC* (,CE_D()): R

- Sp(z, O =

has negatlve squares

“In the ‘special case n=1 these classes (of scalar valued functlons) were studied
in [7]. In the more general case where the values of the functions Q and 0 are bounded
linear operators on a Hilbert space, the corresponding classes were mtroduced m
[l] and {2]

D O O

1 € is the set of all complex numbers, €, (€_) the open upper (lower) half-plane, @,, the
closure of €, in €. Furthermore, D (D) denotes the open (closed) unit disc and- 9D _the boundary
of D. The usual scalar product and norm in €" are denoted by (., .) and |j+{l. .If 4is an n )X n matrix,
HA il denotes the norm of the operator induced by 4 on €"..If zE(i then z*; denotm the complex con-
Jugate of z.
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We mention that these classes can be defined in a different way (cf. [1] and [2}]).
For instance, an (nXn)-matrix function ‘Q, which is defined and continuous on
some open set D’C®, and for which the kernel N, has'x negative squares on D’
can be extrapolated in a unique way to a function Q€NZ*". Further, a function
QENIX" can be extrapolated to a function 0 locally meromorphic on €, UGE_
by the formula ' '

o 2), z€D,,

0(2):= {38)* NS
s Q-

Then the kernel N has » negative squares on D,UDg. In a similar way, FeCx»
can be extrapolated to the complement of the closed umt disc by setting F(z“l) =
— F(2*)* (z*€Dp).

The classes N2*X" and C"X" are very closely related. Namely, if ¢ is a linear
fractional mapping of ® onto €, then the formula F=iQo¢ (QENIX") establishes
a one-to-one correspondence between N*%" and C?%", Hence the statements about
the class C*" given below can easily be transferred to the class N'?X". .

Proposition 1.1. Let FeCI*" and aEG Rea>0 Then the functzon 0
defined by

(l.l) 0(z):= (F(z)—a*I)(F(z)+azI)‘1
belongs to the class S}*".

Proof. First we show that for each a, Re =0, “we can find a z,Dp such
that (F(zo)-i-otl) 1 exists. Otherwise for some fixed a Re >0, ‘and each ZEDF
there would exist an n-vector &(z)#0 such that F(z)é(z)——af(z) It follows

(12) (1= H((F@)+FQIEE), €Q) ——2Rea(1—zc*) 1(é(z),f(C)) =
=—Rea(2m)™? f (e"“—z)‘l(e"“’—C*)'ldS(é(z),é(C))

If z,,2s, ..., €D, then the kXk matrix

(f (60 =2) (e =) dB(E (=), £Gz )))v,,. ™

has k posmve e1genvalues Th1s follows from the fact that for arbltrary
o, %3, ..., % €CE, not all equal to zero, we have

2r

d90

=2"1 E(z)ay |

i9 -2z,

0

J

If we choose k>x, from (1. 2) we get a contramctlon to the assumptlon FEC’X"
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Thus det (F(z)+al)0. Hence the'meromorphic function det (F(z)+al) can
vanish only on a set g, of isolated points of D. For z,{4o, it follows that
I-0()*0(z)=2(Re a)(F (C)*-f-a*l) YF(2)+F (C)*)(F (2)+al)~1. Therefore the ker-
nel S, has » negative squares on 6,.

2. Let I, be a &, -space with mdeﬁmte scalar product {., .].1) A bounded linear
operator T in IT, is called contractive if D(T)=1I1, and [Tx, Tx]=[x,x} (xeI,),
isometric if [Tx, Tx]=[x,x] (xe D(T)), and unitary if it is isometric and D(T)=
=R(T)=II,. An isometric operator T with D(T)=I, or R(T)=II, is called
maximal isometric.

Proposition 1.2. A contractive operator T in a =n,-space II, has a x-dimen-
sional nonpositive invariant subspace ¥ such that |o(T|L)|=1. If & is not uniquely
determined, the points of o(T|¥) and their algebraic multiplicities do not depend
on the choice of £ .

" 'We shall write o,(7):=0(T|¥) if T and % are as in Proposition 1.2. For
A€oo(T) the algebraic multiplicity of 4 with respect to T|¥ will be called the
index of 4 with respect to T and denoted by »,(T). Evidently, it is the dimension
of the intersection LNFK(T), where F(T):={x: (T—A1)* x=0 for some
k=1,2,...}. If Uc{z: |z|=1]}, the index x,(T) of W is defined by

1y(T):= 2 (D).
A€a,(TNU

The first statement of Proposition 1.2, and the second statement for points
A€o (T|&), |A|=1, follow from [9, Theorem 11.2]. For a unitary operator T" the
second statement was completely proved in [10]; this result is also an immediate
consequence of the spectral theorem [11]. In the following only these conclusions
of Proposition 1.2 will be used.

However, for the sake of completeness, we prove the second statement for an
abirtrary contractive operator T in IT,. To this end, observe first that T has a unitary
dilation U in some larger m,-space II,>1II,, that is

(1.3) T'x = PO"x (xel,, n=0,1,2,..),

where P denotes the n-orthogonal projector of T, onto I, (see [12]), A relation
between certain invariant subspaces of T and U is established by the following lemma.

Lemma 1.3. If T and U are as above and %, is a nonpositive subspace of IT,
such that TY,c ¥, and |6(T|.?o)|=1, then Ux=Tx (x€%,).

1) Here we use the notation of [8] For the properties of n.-spaces and their bounded linear
operators see [9].~ ; . :



Analytic matrix functions related to operators in the space 7T, 185

Proof. The operator T has the property
(i4) ‘ (Tx, Tyl =[x, y] (x, y€ L)

Indeed, consider V:=(T|%)~l Then |o(F)|=1. On the other hand, if %, is
equipped with the nonnegative scalar product —[x, y] (x, y€ %,), then V induces a
contraction ¥ in the factor space P= Lol Loy, Where ZLyp:={xc%,: [x, x]=0}.
Since o(P)ca(V), we have lo(®)|=1, and by d well known result on contractive
operators in a unitary space, V is unitary. Therefore [Vx, Vy]=[x, y] (x, y€ZL,)
and (1.4) follows. Using (1.4) and (1.3), for x€.%, we find
[x, x] = [Tx, Tx] = [POx, PUx] = [Ox, Ux] = [x, x];

hence Tx=PUx=0Ux. : :

Now we continue the proof of Proposition 1.2. The Lemma 1.3 implies that
every A€a(T)%#), |A]=1 belongs to 6,(0). As the subspace #, of Lemma 1.3 can
always be extended to a x-dimensional nonpositive invariant subspace of U (see
[16, Theorem VII. 2.1]) we have for these A

(1.5) #,(T1L) = #,(0),

where x,(T'|.%¢) denotes the dimension of £ NY,. The same inequality (1.5) holds
if 2€0(T|¥), |A|=>1. Indeed, (1.3) implies that

(T—z)t=B(0-:zT)"1 (2| = 1, z4 6(T)Na(D)),

and it follows that the dimension of the Riesz projector corresponding to A and T

is not greater than the dimension of the Riesz projector corresponding to A and U.

Now (1.5) yields

. = > w(TIL)= 3 #(0)=2,
A€ag(D)

1€0(T|2)
that is, in (1.5) the sign=must hold. But the right hand side of (1.5) is independent
of &, and the statement follows.
The following proposition can be proved in the same way as Satz 1.2 in [1].

Proposition 1.4, Let (T,) be a sequence of contractive operators in II,,
T, — Tyl -0 (n—<<), and Ay€a4(T,). Then for each sufficiently small neighbourhood
U of 2, there exists an n(W)=0 such that for n=nl) we have xu(T,,)=xlo(T0).

Because of the relation _
2 @)= 2 n(T)=rx,
A€ag(Ty A€0y(T,)
under the conditions of Proposition 1.9 the points of ¢,(T,) are the only “accumula-
tion points” of a,(7}), n=1,2, ....
3. A close connection between functions FECJ*" and isometric operators in
a m,-space IT, is given by the following proposition ([2, Satz 2.2]):
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a) Let V be a maximal isometric (R(V)=I1,) operator in a n,-space II,,, S
a hermitian nXn matrix and I' a linear mapping from C" into II,. Then the func-
tion F:

‘(,1.6). O F@=iS+*V+zD(V—z)7'C (z7%e(VTY, |2l < 1)

belongs to the class C*" for some %', 0=3"=3. If the operators V and I are closely
i-connected then » =x.

b) If FECX" and Q€D then there exist a m,-space I1,,, a maximal isometric
(R(V)=11,) operator V in I1,, and a linear mapping I from €" into I1,, closely i-con-
nected with V, so that the representation (1.6) holds with S=Im F(0).

We remind the reader that an operator I' from €" into IT,, is said to be closely
i-connected with the maximal isometric (R(V)=II,) operator V in IT, if II, is the
closed linear 'span of all elements (V—zI)™1I'¢, £€@", z€g(V), |z]<1. Here, of
course, (V—zI)~! is always to be understood as V" 1(/—zV 1)~ with the iso-
metric operator ¥ 1=Vt defined on all of IT,, z7€o(V™Y).

The function FECJ*", 0¢ D, admits also a representation (1.6) with a unitary
operator V in H,,'. Consider this operator V, and let % be a x-dimensional non-
positivé invariant subspace of ¥ such that |a(V|5f’)|§l. Denote the characteristic
polynomial of V|, which does not depend on the choice of %, by p and put
g(@)=p*(z Y p(z). Then we have [g(V)x, x]=0 (x€I1,) and it follows that

ReMg(VY(WV+z)(V—z)' T =0 (z€D).

Hence there exists a nondecreasing bounded (nX#n)-matrix function X on'[O, 27),
such that

(1.7) [*g(V)V+ 2DV —zI)'T = S/ " (€® +2)(e® — 2) 1 dE(9).

Introducing the (nXn)-matrix function G:
G(z):= F*(g(z)[—g(V))(V+zI)(V zh™ir
we get from (1. 6) and (1. 7) )

(1.8) F(2) = 1S+— f (€®+2)(€®—2)1dZ(9)+——G(2) (z€D).

( z)
As a consequence of b) we prove the' follqwing"
Proposition 1.5. The function 8€S}*", 0¢D,y, admits ‘the representation

(1.9) 0(2) = Up+2Uy(I—2zT)™! U12- (z€Dy),
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where T is a contractive operator in a space I1,,, which has no eigenvalues on the unit
circle, and Uys, Uy, Uy, are such mappings that the matrix

21 ioﬁ | U (T U‘z)
' WU, Uy

defines an isometric operator in the space I1,®C". The space II, and the operator
U can be chosen so that

I, =cls. {(I—zT)" U, ¢: E€@n, z7cp(T)};
then they are uniquely determined up to unitary equivalence.

Here, if u,v¢Il, and &, n€@", the scalar product of {u, &}, {v, n}cI, &E"
is defined by
[{u, g}, {o.n)] = [u, 0]+, ).
The operator U, maps €" into II,, U, maps II, into €", and U,, maps €" into
itself.

Proof. We may suppose that det(I—6(0))>=0. Indeed, if this relation
does not” hold we consider 8,: 0,(z):=y0(z) instead of @ for some y: [y|=1,
det (/—6,(0))>0. Having found the representation of 8, with some operator U,,
the representation of 0 follows with an operator U, which is obtained from U, by
multiplication of the second row by y~!

. -Consider for a€@®, Re «>0, the function F:

@in F(2) = (a* I+a8(2))(I-0(2)) %
Then ” |
F(z2)+ F()* = 2(Re )(1-0(0)*) (I-0(0)*0(2))(1-0(2)) %,
and it follows that Fc@2*". From the relations (1.11), F(0)=iS+I'*I' and (1.6)
we find
0(z) = -2 Rea(F(2)+al)* = I—2 Rea(F(0)+al +2z2I*V=1(I — zV-)~1)~* =
=J- 2(Rea)(F(0)+al) 1+4(Rea) z( F(O)+al) 1 I*V-1X
. ‘ X (I—zV~ 220 (FQ)+o)” DY) (EQ) ) =
= (F(O)—ol)(F(0)+al) 1+
+4(Re @) 2(F(O)+al) L * V1 (I~ W, V-3 (F©)+al) -t
with Wa:=1—2I‘(F;(O)+aI)‘1F*. Setting .
S T=W Y, Uy:i= 2@(F(0)+a1)‘1,
Uy :=2VRe a(FO)+al) 1 *V1, Uy, := (F(0)—a*I)(F(0)+al) ™,
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and using the relation I'*I'=2"1(F(0)+ F(0)*), it is not hard to verify that the
matrix U satisfies U*U=1I.
The operator T is contractive in IT,. Indeed, we have for wclIl,, v:=V "1y

[Tu, Tu] = [v, 0] —2[T (F(0)+al)**v,v] =2 [ (FO)*+«*I) ' T*v, v]+
(12 - +4(r*r(FO)+al)~1Ir*v, (F(0)+al)'[*v) =
= [v,v]—4 Re oz”(F(O)+ozI)‘1F’"v||2 = [u, u].

Assume that Tu,=2Xou,, |i|=1. Then, by (1.12), I'*V'uy;=0 and
W,V -luy=V tuy=igiy. Hence I'*uy=0, (V") u,=Vu,=2;"u,, and for arbi-
trary ¢eC”, z7€o(V'7Y), lz[<1, we get

[V‘I(I—ZV'I)"IFE ugl = (&, I ug)(lg—2)"1=0

As I' and V are closely i-connected, this implies u,=0. The proof of the umqueness
of U is left to the reader.

Remark. The function FEC™" in the proof of Proposition 1.5 admits also
a representation (1.6). with a unitary operator V in a n,-space IT,. This implies a
representation (1.9) of the function 0, where the operator (1.10) is unitary in the
space I1,®€". Then 0 is:the characteristic function of the operator T*, see (1.10)
(the case n=1 -was considered in [7]).

We mention that Proposition 1.5is an immediate generalization of [7, Satz 6.5].
It can be reversed and generalized to functions 6 with values in [$], the Banach
algebra of all bounded linear operators mapping the Hilbert space $ into itself.

4. In [2, Satz 3.2] it was shown that a function 0¢€S!*" admits also the rep-
resentation

(RE) N 0= Bo(2)H0o() (6 D)
with a Blaschke—Potapov product B,,

)
Ly B@=U B, B0 = [ [k Put0a),

and a function 6,€S*". Here ajED, a;j#a;, for j#j'; Py and Q; are idempotent
hermitian matrices with P;+Q;=1I for k=1,2,...,k; and j=1,2,...,1; U,
is a unitary matrix and 6,€ Sg*".

The ‘Blaschke—Potapov product B, is called regular if

Pyz=Py=..= P

Jkjo

j=1,2,..,1

The representation (1.13) is called regular if B, is regular and

(115) = < R(PLY (@) =RP, j=1,2,...,1
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holds; here
Y

!
(1.16) Y;(z):= (ng(z)“l) Ugt0y(2z), j=1,2,...,1, Y 1(2):= Us'0y(2).

The order of the Blaschke—Potapov product B, in (1.14) is defined as

1 &

> 2 dimPy;

J=1k=1

according to [2, Satz 3.2] it is equal to x, if the representation (1.13) ié regular.

§ 2. Zeros and poles in D

1. The multiplicity of zeros and poles of a meromorphic matrix or operator
function was defined e.g. in [5]. Here we use the following characterization of the
pole multiplicity (see [l, Lemma 4.1]): If A(z) is a meromorphic function whose
values are bounded linear operators in a Banach space B and which has a pole o
with Laurent expansion

Q2.0 A@ =(z—) " 4_ +...+(z—) T A_;+ 4, +...

for z near «, z#a, then the pole mulitiplicity of a with respect to 4(z) is the dimension
of the range of the operator
A, 0 ..0 0 l

A—k+1 A -k 0 0
A= : : :
A_2 . A o« O
A_, A —g e A-—k+1 A_;
in the space B*. The matrix 4 will be called associated to the singular part of the
expansion (2.1).

-In the following we need two simple properties of the pole multiplicity, which
are easy consequences of the characterization given above.

a) If A(z) is as above, I'; is a bounded linear mapping from a Banach space
B, into B, and I', is a bounded linear mapping from B into B,, then the pole multi-
plicity of e with respect to I'y A(z)I; is not greater than the pole multiplicity of «
with respect to A(z). '

b) If & is an isolated eigenvalue of the operator Tin B and a pole of the resolvent
of T, then its pole multiplicity w1th respect to this resolvent is equal to the algebraic
multiplicity of the elgenvalue o.

Lemma 2.1. Let A(z) be a meromorphic (nXn)-matrix function with a pole «
of multiplicity » and Laurent expansion (2.1), and let Y(z) be an (nXn)-matrix func-
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tion, holomorphic at z=a. If there exists a subspace ¥ CR(Y(«)) such that
(2.2) A_; ¥ ¥, A_;2+={0}, j=12,..,k
then A(2)Y(2) has at z=a a pole of multiplicity x.
Proof. The singular part of the Laurent expansion of A(z)Y(z) at z=a has
1 .

— YU D@ if
-
i=zj, Y;:=0 if i<j, i,j=1,2, ..., k. Put 9o:=(PyY;)); j=1,2,...x» Where P, is the
orthogonal projector onto .#. According to (2.2), the range of UAUY coincides with
the range of AY,, and the range of P, is L*=L+ L+ ...+ %. On the other
hand, the full range of ¥ is obtained if U is applied to #*. The lemma is proved.

2. Consider now a function 0¢S.*". If a€D is a pole of 8, we denote its
multiplicity by 7(«). For some j, 1=j=/, « coincides with a; in a regular representa-
tion (1.13). We denote by x(a) the order of the corresponding factor B; of the
Blaschke—Potapov product in (1.13), that is

the associated matrix Y, where D=(¥,)); j=1,2,.. 50 Yij'=

k;
x(@) = 2 dim Py,
k=1

According to [2, § 3.4], x(a) coincides with the number of negative squares of the
kernel S, , and the number of negative squares of S, is %(x) plus the number of
negative slquares of S,,j“, where Y; is given by (1.16) and the representation (1.13)
1s again supposed to be regular.

If 0€D,, then we denote by v(¢) the dimension of the algebraic eigenspace,
corresponding to a~!, of a contractive operator T in II, in a representation (1.9)
of 8. This notation is correct because of [9, Theorem 11.2] and the following theorem.

Theorem 2.2. If 0¢S}*" and a€D is a pole of 0, then w(x)=3x(x). If,
additionally, 0€D,, then n(x)=x(x)=v(x).

Proof. First we show that the multiplicity of the pole a; of BJ.‘1 in (1.14) is equal
k
to j dim Pj,. As the pole multiplicity is invariant under a fractional linear trans-
k=1
formation of the independent variable, we may here suppose «;=0. Instead of P,
we shall briefly write P,, k=1, 2, ..., k;. Then the matrix associated with the singular

part of the expansion of B! at z=0 is

P, 0 .. 0 .0
ij—l_ij ij e 0 0
lPZ—Pa Py—P,.. P, 0’

PI—P2 PZ—PS"'ij-l_ijij
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Evidently, its range is R(P, j)-i—‘.R(P,‘ j_,)—i~ ... + R(P)); therefore the dimension of
this range is % dim P,. Thus the pole multiplicity of «; coincides with the order
of B;. -
Furthermore, we have .
0(2) = B(2) 7 Bo(2) ... B; 1 (D) ' Bj(2) 'Y 41 (2).
From (1.15) it follows that Lemma 2.1 can be applied to A=B;',Y=Y;,, and
Z=R(P;), Hence B;(z)™* Y;,,(z) has at z=a; a pole of multiplicity kg; dim Py,.

Finally
By(2) 7' By(2) 7t By (2) 7!

is holomorphic and boundedly invertible at z=a;. Therefore the pole multiplicity
k
of 0(z) at z=a, is > dim Py, thatis m(a)=sx(x,).
k=1

To prove the second statement, consider a representation (1.9) of 6. According
to the statements a) and b) in §2.1, we have x%(x;)=v(x;). On the other hand, the
spectrum of T outside the unit disc consists of eigenvalues of total multiplicity s
(Propositions 1.2 and 1.5). Hence

1 !
® = J_gl' x(a) = jgl' v(e) = x,

and x(x)=v(x;), j=1,2, ..., I, follows. The theorem is proved.

z—f
1-2zp’
IBl<1, BED, of D onto D the function 6,: 6,({):=6(z) always has the property
0€D,,. Also, it is easy to check that 6¢ SpX" implies 0,€ ™%,

We mention that for a fractional linear transformation z-{(2):=

Corollary 1. 0€S** has poles in D of total multiplicity x.

Let now FeCiX" be given. Choose @, Rea=0. Then by Proposition 1.1

the function 0:
0(z) = I-2Rea(F(z)+al)™?

belongs to S7**, and (see [S]) the poles of 8 coincide, including multiplicities, with
the zeros of F(z)+al.

Corollary 2. If FECIX" and Re a>0, then the function F(z)+al has in D
zeros of total multiplicity x.

The corresponding conclusion for a function Q€NIX" reads as follows.
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Corollary 3. If QeNI*" and Im B>0, then the function Q(z)+BI has in
€, zeros of total multiplicity x.

As an application, consider the function Q:

0(2) = Os(2)+ 2 2((2 o) By +(z— )" B}),
where Q,cNg*", B are arbxtrary (nXn)-matrices and «;€C€,, k=1,2, .., k;;
{
j=1,2,...,1 It follows as in [1, Satz 4.5] that QEN3*", where x= 3 x;,

=1
Bjkj 0 aae 0

%; = dim B, Bj3 0
B;y Bj,...Bj

Jkj.
Hence Corollary 3 implies that for each f, Im =0, the function Q(z)+ BI has
zeros of total multiplicity » in €.

§ 3. Generalized zeros and poles of negative type on the boundary

1. Definition. Let FEC*". The point z,€8D is called a generalized pole
(or zero) of negative type and multiplicity n(z,) for F, if for each sufficiently small
neighbourhood U of z, there exists an n(W)>0 such that for a>n() (or O<a<
<n(¥), resp.) the function F(z)+al has zeros of total multiplicity n(z) in UND.

To explain this definition e.g. in the case of a generalized pole, let us take a
scalar function F. Instead of F we consider its continuation F to {z: |z|#1} (see
§1.1) and assume that it has been continued analytically also to arcs of the unit
circle |z}=1 if possible, that is if the boundary values of F at the points of this
arc exist and are purely imaginary. Suppose this continuation F has a pole at z,cD.

If %=0, that is FEC,'), then Re F(z2)=0 for all z€D,. What is more,
for each 3, 0<8<mr/2, there exists a 3,, 0<3;<n/2, such that the relations z,€D,
—3=<arg(z,—zy)<9 and z,—~z, imply that F(z,) tends to infinity and -9,<
<arg F(z,)<$%.

On the other hand, if x>0, there may be poles z;, on 0D with the property
that there exists a sequence (z,)C D, z,~z,, such that F(z,) tends to infinity along
the negative real half-axis. Moreover, it turns out that there may be a finite number
of points z, on 9D which are no poles but which also do have the property F(z,)—> —e
for some sequence (z,) C D, 7, z,. These two kinds of points z, are the generalized poles

1) We wrrite C,, etc. instead of CL*,



Analytic matrix functions related to operators in the space I7,, 193

of negative type. We mention already here that, for each point £€9D which is not a gene-
ralized pole of negative type, there exists a neighbourhood W of £ anda 9>0 such that
Re F(z)= —4% for all zeIND (see the Corollary subsequent to Theorem 3.5).

We show that the poles in D of FeC*" have the same property as generalized.
poles on 9D.

Proposition 3.1. Let FEC*" If z,€®D is a pole of multiplicity n(zo) of F,
then for each sufficiently small neighbourhood W of z, there exists an n(U)=0 such
that a=n(X) implies that the function F(z)+al has zeros of total multiplicity
n(zy) in WU.

Proof. Forall =0, the point z, is also a pole of multiplicity n(z,) of F(z)+al.
We choose a disc €,cD with centre z, such that z, is the only pole of F in §,.
Then F is holomorphic on €4\ {z,} and we consider, for sufficiently large a>-0,
the logarithmic residuum (see [5])

o trace fF'(2)(!7(2)-!-0(1)"1 dz=
ok,

’ -1 -1
3 trace a&/o.F (2) (@™ F(2)+ 1) dz.

2mic
If o is large, this value is zero; hence for these « the total multiplicity of the zeros
of F(z)+al in €, is equal to n(zy).

For the zeros of FEC}*" another simple application of the logarithmic residuum
theorem gives the following result, the proof of which is left to the reader.

Proposition 3.2. Let FecC*", det F(2)0. If z, is a zero of multiplicity
u{z,) of F, then for each sufficiently small neighbourhood 1 of z,, there exists an n(U)=0
such that O<a<n(0) implies that the function F(z)+al has zeros of total multi-
plicity u(zy) in WU.

Proposition 3.3. Let FcCIX", det F(z)#0. Then the following statements

are true:

a) FeC™" (F7'(2):=F(2)™);

b) the zeros (poles) of F in D coincide, multiplicities counted, with the poles (zeros)
of F~tin ®;

C) the generalized zeros (poles) of F of negative type on D coincide, multiplicities
counted, with the generalized poles (zeros) of F~ of negative type.

The proof of a) follows immediately from the definition of the class C}*",
while b) is a general property of zeros and poles of matrix functions. To prove c),
consider e.g. a generalized zero z,€0D of F of negative type and choose a neigh-
bourhood U of z, such that 2AND does not contain any zero or pole of F. Then
the statement follows easily from the identity

aF(z)(F(2)7'+a™ ) = F(z)+al (z€UND).

13
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.2. Proposition 3.1 and Corollary 2 of Theorem 2.2 imply that the total multi-
plicity of poles in D and. generalized poles of negative type on dD of a function
FeCI%" is at most x. We shall show that this multiplicity is exactly x (Theorem 3.5).
To this end, we consider the operator ¥ of (1.6) which is maximal isometric in IT,.

Proposition 3.4. Let FEC*" 0¢Dy. The point zocD is a pole in D, or a
generalized pole of negdtive type on 8D, of F if and only if 25! belongs to aO(V 1,
in this casé n(zg)=x.;1 (V7).

Proof. Let z, be, say, a generalized pole of negative type and multiplicity
7(z,) of F. Then for each sufficiently small neighbourhood U of z, there exists an
n() =0 such -that for a=n(W) the function F (2)+al has zeros of total multi-
plicity n(zp) in UND. ,

The function 6 given by-(1.1) and its contractive operator T in representatlon
(1.9) will now be denoted by 6, and T,, respectively. Then, by (1.1), 8, has poles
of total multiplicity n(z,) in UND. Theorem 2.2 implies that 7T,|.¥, has eigen-
values of total multiplicity 7(z,) in (DNW)~Y, where &, denotes a »-dimensional
nonpositive invariant subspace of T, with [o(T,|Z)|=1. If ateo then [|T,— V71 —~0
(see the proof of Proposition 1.5) and Proposition 1.4 implies that z; ! is an eigen-
value of algebraic multiplicity n(z,) of V' ~1.%. This reasoning can be reversed,
and the statement follows.

We can now state the main result of this section.

- Theorem 3.5. Let F¢ Ci*". Then F has po?es in © and generalized poles of
negative type on 9D of total multiplicity x. If, moreover, det F(z)z0, then F has
zeros in D and generalized zeros of negative type on 0D of total multiplicity x.

This follows immediately from Propositions 3.4 and 3.3 if we only observe
that the condition 0€ Dy can always be fulfilled at the expense of a fractional linear
transformation of D onto itself.

By Proposition 3.4 and the definition of g appearing in the representation (1.8),
the generalized poles of negative type of F are the zeros on 9D of the function g.
Suppose the point 2€9D is not a generalized pole of negative type of FeCLx",
and choose an open arc 4c9® which contains 7 and has a positive distance from
all seneralized poles of negative type of F. Consider the decomposition

n,=nemn, M:=EWM)N,,

where I1, is the space that plays a role in the representation (1.6) of F by a unitafy
operator V, and E denotes the spectral function of ¥ (see [1 1]) Let the corresponding
decomposition of ¥ be V=V@V’. Then

F(z) = F(2)+ F'(2),
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where F(2):=I*E(A)(V+zI)(V—z[)"1E(A)I'. As I is a Hilbert space (see [11]),
we have Fe C.':c,x"'-- Moreover, F (see the beginning of § 3) is holomorphic on 4.
This implies the following

Corollary. Let FEC*". Then for each point 2€¢0D which is not a generalized

pole of negative type of F, there exists a neighbourhood u of £ and a number % such
that Re F(z)>—')‘)I for all zeIND. .

¢ . §4. A generalization of Rouché’s theorem

1. We denote by 2"*" the set of all (7 Xn)-matrix functions F which are defined

and holomorphic in D and admit a representation F=p~1'Y with a bounded outer

_function y and a bounded holomorphic (nXn)-matrix function Y in D (equ1valent
definitions are g1ven e.g. in [13]). Then the function

det F(z) = y(z)~"detY(2)

belongs to the class 2(=2" "), hence it has, almost everywhere on 99D, finite
nontangential limits which are, almost everywhere, different from zero. Therefore
the nontangential boundary values F({) of F, which exist almost everywhere on 9D,
have an inverse ‘F({)~! almost everywhere.

The function Fye2"*" is called outer if det Fy(z) is an outer function. In
this case we have det Fy(2)#0 (z€D), hence F,(z)~! exists for all z€®D and the
function F; ! belongs again to ™",

The function " FEP"*" is said to have an inner factor of order x if it admits a
representation

A~
1
4.1 . S F(z) = U, [,I=I1 Bj(z)) Fy(2),
f\

where Fo€ 2™" is an outer function and U, ]] B;(z) is a regular Blaschke—
Potapov product of order x (see § 1). =t

Lemma 4.1. Let f-be a complex function which is holomorphic in ® and has
no zeros there, and denote by Argf a continuous branch of the function argf. If
y:=sup {|Argf(2)|: z€ D}<oo, then f is an outer function.

Proof. Choose an integer n such that n> ﬁ)— Then the functien
fii i@ ::(f(_z))ll"= |'f(z)|’/" exp (-;;— Argf(z)) has the property Re f,(z)=0 (z€D).

By {14, p. 51, Exercise 1], f; is an outer function; thus fis an outer function.

13+
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2. Now we prove the following generalization of Rouché’s theorem.
Theorem 4.2 Suppose F, G€ ™", det(F(2)—G(2)#0 in D and
“.2) IGOFQO Y =1 ae on ddD.

If F has an inner factor of order xgp(<oo), then F—G has an inner Jfactor of order
#p_g =g If, additionally, F(F—G) Y€ L}*"(0D), ) then up_¢ = xg.

Remark. From the proof it will follow that the difference xp—xp_g is the
total multiplicity of generalized poles of negative type on 9D of the function
(F+G)(F—G)™Y(=—1+2F(F—G)™'), which belongs to C.X" for some ' =xp.

Proof of Theorem 3. We write the representation (4.1) of F in the form
F=BF,. Then F—G=(B-GF;yY)F,, GF;¥9"%", F(F—G)"'=B(B—GF;H) !
and

IGOFO M =1GQFRO™BO =1 ae on ID.

As Fj is outer, the order of the inner factor of F—G coincides with the order of
the inner factor of B—GF;*. Therefore, in the proof of the theorem we may sup-
pose that F=B.

The matrix B({), |(|=1, is unitary, hence (4.2) implies [|G()[|=1 a.e. on §D.
Applying [13, Lemma 1.1] it follows that ||G(z)|=1 for all z€®. This is equiv-
valent (see [2, Lemma 3.1]) to G€S}*" and G*€S§*", where G* is the (nXn)-
matrix function G*(2):=G(*)* (z¢D).

Consider now the function B*~*G*. According to [2, Lemma 3.5] it belongs
to some class SI*", where »”=xy. Then the same is true for GB 1 {2, Folgerung 3.3],
and both functions have poles in D of total multiplicity »x” (Corollary 1 of Theo-
rem 2.2).

The condition det (B(z)—G(z))20 implies that (I—GB~Y)~1 exists. More-
over, it is easy to check that the function C:

4.3) C2) =(I+G(2)B(z) ") G(2) B(z) ") = — I4+2(]—G(z) B(z)~1) !

belongs to C*". According to Theorem 3.5 it has poles of total multiplicity »”(=3")
in ®, and the difference »"—x” is the total multiplicity of its generalized poles of
negative type on 0. In view of (4.3), the function I—G(z)B(z)™! has zeros of
total multiplicity »” in ®. By [5, (1.3)], for a meromorphic (nXn)-matrix function
the difference of the total zero and total pole multiplicities in D coincides with

1) L7*"(9D) denotes the class of (nXn)-matrix functions defined a.e. on D with entries in
L,(0D).
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the corresponding difference for its determinant function. Therefore, using the
relation

det (B(z) — G(2)) = det (I —G(2) B(2)™Y) det B(2)
we find that

" = xp+n"—u,

”

where x” denotes the total zero multiplicity of B—G in D. Observing that »” =3,
the inequality ™ =3, follows.

Therefore, the difference B—G admits a regllar representation B—G=B,H
with a Blaschke—Potapov product B, of order »” and an (nXn)-matrix function
H which is holomorphic in © and does not have any zeros there (cf. the proof of
[2, Satz 3.2]). The first statement of the theorem follows if we show that H is an
outer function. But this is true if and only if det H(z)™! is an outer function.

We have H=2B;'(I+C)™'B (see (4.3)). According to (1.8), C admits an
integral representation

(4.4) C(2) = iS+—— f '9+de(9)+ D(2),
( 2) 4

g(2)

where S, X, D and g have the properties mentioned in § 1.3. It follows that

H(z)" = %B(z)'l((u i8)g(2)+D(2)+ Co(2)) Bo(2)8(2) ™,

where C, denotes the integral in (4.4). As Re Cy(2)=0 (z¢D) and g, D are poly-
nomials of z and z~3, for each entry of the matrix H(z)~! the argument is bounded
on D. Then the same is true for det H(z)™*. Hence Lemma 4.1 implies that
det H(z)~! is an outer function.

Let now B()(B())—G({))~ '€ L*"(D). Then according to (4.3) C€L*"(9D),
and it remains to show that C does not have generalized poles of negatlve type
on 0.

The function C€C*" can be written as the sum of a rational function C,€C*"
with poles in ® and a function C,¢ Con which is holomorphic in D, 3 =3+ ;.
The function Cy({), (€D, also belongs to L}*"(D), and it is sufficient to show
that x%,=0. This will be accomplished if we prove the following two statements ):

a) C2€ ann

b) If for some x<e we have Hp*"NC.*"# @, then »=0.

To prove a) we first observe that E€CL*" implies E€ Hj: X for 6<(1 +2x)“
Indeed, as

IE@I? = (VYnmaxle; ()]},

1) For the definition of the Hardy classes Hj*" see e.g. {13].



198 M. G. Krein and H. Langer

it is sufficient to show that the entries e;; of E belong to H;. According to (1.8),
every e;; is of the form g,(z)h(z), where h€H, for all d<1 (see [15, IL 4.5])
and g, 1s a polynomial of degree =2 with zeros on 9D. If d<(14+2x)7%, we
choose 6 <(2x) 1 and J,<1 so that 6=4 52(51+52) 1. Setting p=6;"(6,+5,)
and ¢=06;"(5;+5,) we obtain

[ ey -hremioas = ([ latre®)-s2 s ([ Increyids)e =
0 3 5 A

= (f”lgl(rei.t))l_aI ds)llp(fzﬂlh(reis)la’d'g)llq =K< oo
] ’ S

for all O<r<1. Thus E€H}*". In particular C,eH3 " As Co(D)ELY*"(9D),
by a theorem of V. I. Smirnov (cf. [15, II. 6])) we have C EH’”‘" '
To prove b), we use the representation B

. 2n :
E(2) = iIm E(0) +2—17t f (e +2)(e®—2)"1Re E(e®)d3 (z¢D),
s .
which holds for arbitrary functions E€H}*", and the representation (1.8):

E(z) = 1S+-1— j (€®+2)(e® —2) "1 dZ(9) +—— G(2),-

( z)
valid for E€CJ*", 0€ D;. Making the right-hand sides equal, multiplying by g(z)
and using Stieltjes—Liv§ic inversion formula it follows that

R 3,
[ g@)Re E(e®)d9 = [ dZ(9)=0
9 L 9% v
whenever 0=9,<9,=2n. Therefore Re E(¢’®)=0 almost everywhere on [0, 27].
Hence Re E(z)=0 (2¢7D), and x*O

The theorem is proved.

§ 5. Further examples

1. In this section we consider two examples of functions of the class "Nj*".
BY the connectlon between the classes N**" and C**" mentioned in § 1.1, the notions
of generahzed zeros and poles of negative type carry over to functions QeNL*"
in the following way. Let ¢ be a linear fractional mapping from D onto €, . The
point 1,€ R,U {o}, to=0 (o) (L|=1), is said to be a generalized pole (zero) of
negative type and multiplicity n(ty) of Q if {, is a generalized pole (or zero, resp.)
of negative type and multiplicity n{t(',) of F=iQogp, or -equivalently, if for each
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sufficiently small neighbourhood U of 7, (we admit.the case f,=<) in the closed
complex plane there exists an n()=>0 such that for a=n() (or O<a<n(W),
resp.) the function Q(z)+ia/ has zeros of total multiplicity n(z,) in UNGE,.

Let QoeNg*". Then Q, has a representation ;

O(z) = Ag+ 2By + f((t—z)‘l—t'(l+z2)‘1)d2(t)

with hermitian (nXn)-matrices A,, By; B,=0, and a nondecreasing (7 X n)-matrix

function X on R, f (1413)71dX(t) <. Now let Bl be a hermitian l(n X n)-matrix

and let us consider the function Q,:

(5.1 01(2) := Qo(2) —zB,.
Then o

No(z, )= [ (t=2)7(¢~{)dZ()+B,— By,
and, considering NQl(z';__.z) for |z| sufficiently large, it follows that 0,EN;*", where
x dénotes the number of negative eigenvalues of the matrix -B,— B,. It is easy to
see that Q, has a generalized pole of negative type and multiplicity » at . More-
over, Theorem 3.5 implies: o

Proposition 5.1. If det Qy(2)#0, then the function Q, in (5.1) has zeros
in €, and generalized zeros of negative type in R,U{} of total multiplicity x,
where » denotes the number of negative eigenvalues of the matrix B,—By. - -

In special cases this result can be given a more explicit formulation. Here we
consider the case where n=1 and

6y 0.@= [ -9 do()+a-z

with @ a real number and ¢ a nondecreasing function on R, such-that - - ° @ "
J (A 4t)do(t) <eo; -

without loss of generality, the coefficient of z-has been chosen —1. G i

Proposition 5.2.. The fqnction Ql,i'r':, (5.2 i'taisv‘either exactly one zero in. €,
or one generalized zero of negative type in: RyU{eo). This (possibly, generaliééif}
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zero z, is #oo and of multiplicity 1. It can be characterized among the points of
C. by the following two properties:

a) f l[t=2z,)"2de(t) =1,
b) f (t=z) rdo(t)+a—z,=0.

Proof. The first statement including the claim about the multiplicity follows
from Proposition 5.1.

Next we show that a zero or generalized zero z, €€, of Q, has the properties
a) and b). If z, is a zero (z,€C€,), this is obvious if we observe that

do (1) _1).

|t—za|2

0=ImQ,(z)=1Im z,( f

Let now z,€R,. Then there exists a sequence (z,)c€,, z,+z,, Im 2,|0 (n—+oo)
such that Q,(z,) -0, Im 0, (z,)<0. It follows that (Im z,)( [ |t—z,|"2da(t)— 1)'<,o,

or

oo

[ lt=z)|2do() <1, n=1,2,...

—oo

Applying Fatou’s lemma we get f (t—z,)"%do(t)=1, and Lebesgue’s theo-
rem gives e

0= '!1_’12 0.(z) = f (t1—z)'do()+a—z,.

It remains to show that a) and b) have at most one solution z, in €. To this
end we introduce the m,-space II,:=C@L,(c) of all pairs {f, x}, £€€, x€ L, (o)
with indefinite scalar product :

{E x} iyl ==+ [ x(y©*dot) (& 1€C; x, yeLy(o)).

It is easy to check that the operator 4:

63 g x} = {ut~ [ x(0)do(r), x(®)+¢},
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which is defined for every {¢, x}€II, such that the function ¢—¢x(¢)+¢ belongs
to L,(0), is selfadjoint in II;. In order to find its eigenvalues A we have to solve
the equation

5.4 A-AD{E x}=0.
From (5.3) and (5.4) it follows that x(#)= — &(¢ —4)~! (0 — a.e). In particular,

f lt—A"2do(t)<e-. Moreover, the first component in (5.4) gives

)

(5.9 a—A+ f(t—l)*lda(t)=0.

Conversely, it is easy to see that any solution 4 of (5.5) with [ |t—A|"2do(t)<eo

— oo

is an eigenvalue of A4 with corresponding eigenelement {&, —&(t—A)~1} (¢0).
Since 4 is a selfadjoint operator in IT,, it has exactly one eigenvalue 1,€C.
such that the corresponding eigenvector is nonpositive:

—1+ [ lt—=2|2de() = 0.

—c0

Therefore, z,=4, is the only solution of the system a)—b) in €,. The proposition
is proved.

Remark 1. The zeros of the function @, are the fixed points of the function

Qo Qo(2):= f (t—2)"'do(t)+«, and by a fractional linear transformation of €,

onto D the equation Qy(z)=z is transformed into Gy({)={, where G, maps D
holomorphically into itself (G,€S,). However, the usual fixed point argument
does not seem to be applicable in this case, as the boundary values of G, on 9D are,
in general, discontinuous.

Remark 2. Suppose that the function ¢ in (5.2) satisfies the additional con-
dition

[ ¢t=x)"2do(t) = = for all x€G,,

where €, denotes the set of all points of increase of ¢. Then for every real a the

function Q, in (5.2) has one and only one zero z,6 €, \ &, and f |t—z,|~%da (t) =1.

Remark 3. Besides the zero z,, the function @, can have an arbitrary number
(=) of real zeros which do not satisfy condition a).
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To see this, we suppose that the function ¢ in (5.2) is constant on some interval
(a, b) which is special in the sense that

y}x},_{ (t—x)"1do(f) = — oo, Liprbf (t—x)"1do (1) = <.

Then @, is holomorphic in (a, b) and Q,(e+0)= —c, Q,(b—0)=<. Therefore
it has at least one zero in (a, b), more exactly, it has an odd number of zeros in
(a, b), counted with multiplicities. Denote these zeros by x;=x,=...=xy4,. It is
easy to see that Qj(x)=0, j=1,2, ..k, that is X3;=2,, j=1,2, ..., k. Hence
‘the function Q, has in (g, b) either one simple zero, either zeros of total multiplicity
three; in the second case the zero x, coincides with z,.

Consequently, if ¢ has N (=<) special intervals (a;, b)), j=1,2, ..., N, then
the corresponding function @, has in no more than one of these intervals zeros
of total multiplicity three, in each of the remaining intervals it has exactly one (simple)
zero. The case N=o- occurs, for example, if Q, is a meromorphic function with an
infinite number of poles.

We mention that any simple selfadjoint operator A in a =,-space /T, is unitarily equivalent
to the operator A appearing in the proof of Proposition 5.2. Here A is called simple if there exists
an e€D(A), [e, el<0, such that

M =cls. {(A-¢{D)e: +LeC, No(A))-

. Indeed, suppose [e, e]=—1 and consider the decomposition
5.6) 0= %+ L, Lo =15.{e), &= LIV

Then %, is a Hilbert space with scalar product [., .], and Z, can be identified with € by writing
e={1,0} with respect to the decomposition (5.6). '
If Ae={a, h}, x€C, h€P,, then the matrix representation of 4 is

T_|* "['7 h]
6.7 N L A—[h ik ]
with some selfadjoint operator A,, in the Hilbert space .%,. Now an easy calculation gives. '
(A-thte=¢{1, —(An—tDh), {=@—(+[(An={D "k AD 1.

1t follows that &, =c.Ls. {(4,— {I)~2h: + €€, ). Hence 4;, is unitarily equivalent to the operator
of multiplication by the independent variable in the space Ly(0), o(¢):=[E,h, h}, where E, is the
spectral function of 4y, and h corresponds to the function A(1)=1 belonging to Ly(0). With this
realization of .? and Ay, the matrix in (5.7) defines the operator 4 in (5.3).

This_model of an’arbitrary simple selfadjoint operator in a ,-space (or, more generally, in
a n,.-space) and' the characterization of its elgenvalues by conditions a) and b) were ﬁrst given m

{4; IH, § 6].
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. 2. In this section we consider an (nXn)-matrix function QyENJ*" of the form

Qo(z) =- 2

Jj= 1t+Z

+ f (t—z)"1dE (o),

where B; are nonnegative hermitian matrices, 0 <#, <f,<... <f;, and X is a non-
decreasing (nXn)-matrix function on [0, ) with the properties XZ(0+)=Z(0)=0,

f (1+1)7*dZ(t)<eo. Then the function Q: Q(z)=zQ,(z?) has the representation
0

0@ =5 2B {iV5=7 =@+ )+ [ -971d36)
- . 2713(s?) s=0,
Z(s)::{;z-lzw) s=0,

According to the example at the end of § 2.2 we have QEN.*", where Z d1m Bj=x

Evidently, Q is antisymmetric with respect to the imaginary axxs o(—zH=

= -0

. Proposition 5.3. The function Q(z)+il has zeros of total multiplicity x in
C.. These zeros z;, j=1,2,...,m(=x), are on the imaginary axis and 0<|z;|<t}.

Proof. The first statement follows immediately from Corollary 3 of Theorem
2.2. To prove the second statement, we first consider the case n=1. To find the
solutions of the equation Qy(z*)=—iz™%, Imz>0, we put z=is. Then it takes
the form Q,(—s*)=—s"1, and a simple consideration of the graphs of Q,(—s%)
and —s~1 shows that this equation has x zeros in (0, =) and that these zeros are
smaller than #,. By the first statement of the proposition, these » zeros give the
only zeros of Q(z)+11 in €,.

Let now n be arbitrary and consider a zero z,c€, of Q(z)+il. If z, is outside
the interval (0, itf) of the imaginary axis, then Q is holomorphic at z,. Hence
there exists a vector £0 such that-

2(Qo (2D E, E)+i(E,8) =0

But we have shown (case n=1) that this is impossible.
"+ As an application of: Proposition 5.3 we consider the Schrodinger equation

68 VO _voyo+eve =0, ¥ =0,
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with a short range potential V: V(r)=0 if r=>a for some a<e, VEL,. To
find the nonreal resonances k of the problem (5.8) we observe that for r>a the solu-
tion Y of (5.8) is Y (r; k%) = Ce'*" and, considering r=a, we get y'(a; k® Y (a; kD) 1=ik.
This equation can be written as kY (a; k)yY'(a; k®)~14+i=0. But ¥(a; 2)yY'(a; z)1
is a function of class N,. Indeed, Y (r; z) satisfies the equation

s =V (O (r; D+ 2y (r; 2) =0, ¥(0;2) =0,

and it follows that

V(s W T =Y (s )T (s ) =
=G=2W (s 297 [ 2)eds -y (s )7

Evidently, the number of negative poles of Y (a;z) y'(a;z)~! is equal to the
number of negative zeros of ¥’(a; z), that is the number of negative eigenvalues A
of the boundary problem

(5.9) Y@=V @+ () =0, ¢(0)=0 y'(a)=0.
Proposition 5.3 now implies the following statement:

The number of nonreal resonances of (5.8) in €, is equal to the number of nega-
tive eigenvalues A of the boundary problem (5.9).

Without going into details we mention that Proposition 5.3 can be used to
prove a similar statement in the case of a vector equation (5.8).

Note. We use this opportunity to mention that in our paper [7] the statement of Satz 3.4 is
incorrect. To make it correct, in formula (3.10) one has to replace g, (R,) by & (R, resp.) and to
define

- r 2e 7
0= 8= 1, Re(@) = Ko@) —z(1 -2 [ g LT

do(t).
i, j=1(—a)®
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