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Some propositions on analytic matrix functions related to 
the theory of operators in the space nx 

M. G. KREIN and H. LANGER 

It is well known that certain classes of analytic functions play a useful role in 
the theory of hermitian and selfadjoint operators in Hilbert space. On the other 
hand, sometimes, general propositions from the spectral theory of operators yield 
simple solutions of problems in complex function theory. This is especially true 
for the theory of selfadjoint and unitary operators in spaces with indefinite metric. 

In this note we prove some consequences of the theory of £?-functions and 
characteristic functions of hermitian and isometric operators in the space 17x, as 
developed in [1] and [2], for scalar and matrix valued analytic functions of a com-
plex variable. It seems rather unexpected to us that in this way we get new results 
also for the so-called Nevanlinna or /{-functions (mappings of the upper half-plane 
into itself) so well studied in different contexts during the last 50 years. 

There are now several papers (see, e.g., [5]) which generalize the well known 
theorem of Rouché to matrix or operator functions. In these papers, however, it 
is assumed that the boundary of the domain considered consists of regular points 
only. Here we show that our methods permit a generalization of Rouché's theorem 
to the case of matrix functions of the class S>nyn (see § 4 below) over the unit disc. 
Instead of the unit disc more general domains with sufficiently smooth Jordan bound-
aries may be considered. For the case of scalar functions this generalization was 
proved2) by V. M. A D A M J A N , D. Z. A R O V and M. G. K R E I N in [6] and has found 
essential applications in the theory of Hankel operators with scalar kernel. Theo-
rem 4.2 below can be used in the investigation of Hankel operators with matrix 
kernel. 

The authors express their thanks to ' J. Bognár for a careful reading of the 
manustcript and valuable suggestions. 

Received October 15, 1979. 
** Some of the results were proved by a different method in [3] (cf. also [4]). 

However in a less complete form, without counting the generalized poles of negative type 
(see the remark after Theorem 4.2). 
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§ 1. Basic propositions 

1. An (nXn)-matrix function K, defined on a nonempty set Z x Z , is said 
to have x negative squares (on Z ) if it has the following two properties: 
1) K(z,Q = m,z)* (z,cez), 
2) for any positive integer k, any zx, ..., zk£Z and w-vectors ..., *) the 
matrix : • ! : : ! . ' ! , : ; 

(^(ZV5 Z/i)£v> £fl)v, >1 = 1.2,..., k 1 

has at most x negative eigenvalues and for at least one choice of k, z±, ..., zk, 
and . . . , it has exactly x negative eigenvalues. 

In this note the following three classes of analytic (nx«)-matrix functions will 
play an important role. 

a) N"x" is the set of all («X«)-matrix functions Q which are meromorphic 
on •£+ and such that the kernel NQ: 

has x negative squares (X) e cG + denotes the domain of holomorphy of Q). 
b) C£Xn is the set of all (/?X«)_matr>x functions F which are meromorphic on 

D and such that the kernel CF: 

F(z) + F(Q* . rcT. . 

has x negative squares. : 
c) is the set of all (nXn)-matrix functions 9 which are meromorphic on 

I) and such that the kernel Sa: 

7-f l(Q*fl(z) 
1-zC* 

has x negative squares. 
In the special case /7 = 1 these classes (of scalar valued functions) were studied 

in [7]. In the more general case where the values of the functions Q and 6 are bounded 
linear operators on a Hilbert space, the corresponding classes were introduced iri 
[1] and [2]. 

(£ is the set of all complex numbers, the open upper (lower) half-plane, <E+ the 
closure of d + in Furthermore, X) (35) denotes the open (closed) unit disc and BX>. the boundary 
of X). The usual scalar product and norm in C" are denoted by (. , .) and IMI- I f / l i s an nXn matrix, 

denotes the norm of the operator induced by A on G". If then z*-.denotesthe complex con-
jugate of z. ... , , /; • ; ... • .... •••. • 
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We mention that these classes can be defined in a different way (cf. [1] and [2]). 
For instance, an (nX«)-matrix function Q0 which is defined and continuous on 
some open set X>'cO[+ and for which the kernel A ^ has x negative squares on $5' 
can be extrapolated in a unique way to a function {2€N£Xn. Further, a function 
QdNn

x
Xn can be extrapolated to a function Q locally meromorphic on UG_ 

by the formula 
- ifiC^), 

[Q(z*)*, Z * € ® Q . 

Then the kernel Nq has x negative squares on ®eUX>g. In a similar way, F£C"X" 
can be extrapolated to the complement of the closed unit disc by setting F(z_1):= 
— F(z*)* ( Z * € D F ) . 

The classes N"x" and C"x" are very closely related. Namely, if cp is a linear 
fractional mapping of D onto (£+, then the formula F=iQo<p (2€N"X") establishes 
a one-to-one correspondence between N"x" and C"Xn. Hence the statements about 
the class Cn

x
x" given below can easily be transferred to the class N"Xn. 

P r o p o s i t i o n 1.1. Let F£C"x" and a£(E, R e a > 0 . Then the function 0 
defined by 

(1.1) 9(z) := ( F ^ - a * / ) ^ ) - * - « / ) - 1 

belongs to the class S"x". 

P r o o f . First we show that for each a, Re a > 0 , we can find a z 0 € $ F such 
that ( F ( z 0 ) + a / ) - 1 exists. Otherwise for some fixed a, Re a=>0, and each z££>F 

there would exist an «-vector £ ( z )^0 such that F(z)£(z) = —a£(z). It follows 

(i2)\i-zcri№znm*)m,m)=-2Reoc(i-zo-i(az),m = 
in . ' 

= - R e «(2TT)-1 / (elS — z )~ 1 ( e~—£ * ) d S (£(z), £ (0) , . , 
o . ... 

If z1 ; z2, ..., z t 6 $ , then the kxk matrix 

( / (ei*-zy)-He-,'-zZridd{S(zv),!;(zM)))y,fl=lt2 
o 

has k positive eigenvalues. This follows from the fact that for arbitrary 
<*!, a2, ..., a t£(£, not all equal to zero, we have 

f J i i g ^ L ^ o . 
0 v=l c 

If we choose k^x, from (1.2) we get a contradiction to the assumption F£C"Xn4 
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Thus det ( F ( z ) + a l ) ^ 0 . Hence the meromorphic function det (F(z)+al) can 
vanish only on a set oa of isolated points of X>. For z, \ $ <rx it . follows that 
I-9(0*6(z)=2(Re a ) ( F ( 0 * + a * l ) ^ ( F ( z ) + F ( Q * ) ( F ( z ) + a l ) ~ \ Therefore the kerr 
nel Se has x negative squares on oa. 

2. Let IJX be a nx-space with indefinite scalar product [., J.1) A bounded linear 
operator T in II x is called contractive if t(T)=IIx and [Tx, Tx] ^ [x, x] ( x 6 / 7 J , 
isometric if [Tx,Tx] = [x,x] (x£ D(7)), and unitary if it is isometric and X)(T) = 
= 9{(T)=nx. An isometric operator T with D(T)=J7X or 9? ( r )=J7 x is called 
maximal isometric. 

P r o p o s i t i o n 1.2. A contractive operator T in a nx-space IIX has a x-dimen-
sional nonpositive invariant subspace <£ such that \o(T\S£)\^\. If is not uniquely 
determined, the points of o(T\SC) and their algebraic multiplicities do not depend 
on the choice of 

We shall write o0(T):=o(T\&) if T and <£ are as in Proposition 1.2. For 
A£cr0(r) the algebraic multiplicity of I with respect to 7"|if will be called the 
index of X with respect to T and denoted by xx(T). Evidently, it is the dimension 
of the intersection ^ f f l ^ ( r ) , where ¿f.(T):={x: (T—/.l)k x=0 f o r s o m e 
fc=l,2,...}. If U c {z: |z|&l}, the index xu(T) of U is defined by 

xu(T):= 2 *x(T). 
/.6<T0(Dnu 

The first statement of Proposition 1.2, and the second statement for points 
k£o(T\£C), |A|>1, follow from [9, Theorem 11.2]. For a unitary operator T the 
second statement was completely proved in [10]; this result is also an immediate 
consequence of the spectral theorem [11]. In the following only these conclusions 
of Proposition 1.2 will be used. 

However, for the sake of completeness, we prove the second statement for an 
abirtrary contractive operator T in IIx. To this end, observe first that T has a unitary 
dilation 0 in some larger wx-space HX^>IIX, that is 

(1.3) T"x = P0nx (x£llx, n = 0,1, 2, ...), 

where P denotes the ^-orthogonal projector of nx onto IIx (see [12]), A relation 
between certain invariant subspaces of T and 0 is established by the following lemma. 

L e m m a 1.3. If T and 0 are as above and :S?0 is a nonpositive subspace of I1X 

such that T3?0<z£t?0 and |<7(T|JSF0)| = 1, then Ox=Tx (x£^C0). 

') Here we use the notation of [8]. For the properties of 7r„-spaces and their bounded linear 
operators see [9]. " 
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P r o o f . The operator T has the property 

(1.4) [Tx,Ty] = lx,y] (x,y€%¡0. 

Indeed, consider F:=(r |J2P0) - 1 . Then |<r(F)| = l. On the other hand, if is 
equipped with the nonnegative scalar product — [x, y] (x, yd £C0), then V induces a 
contraction P in the factor space £?.= .S?0/:S?00, where i f 0 0 := : [x, x]=0}. 
Since < 7 ( ^ ) C C T ( F ) , we have \(t(V)\ — 1, and by a well known result on contractive 
operators in a unitary space, V is unitary. Therefore [Vx, Vy]—[x,y] (x, yd ¿f0) 
and (1.4) follows. Using (1.4) and (1.3), for x£:S?0

 w e find 

[x, x] = [Tx, Tx] = [POx, POX] [tfx, t7x] = [x, x]; 

hence Tx—POx=Ox. 
Now we continue the proof of Proposition 1.2. The Lemma 1.3 implies that 

every Xdo(T\&), \X\ — 1 belongs to o0{U). As the subspace i ? 0 of Lemma 1.3 can 
always be extended to a ^-dimensional nonpositive invariant subspace of U (see 
[16, Theorem VIII. 2.1]) we have for these X 

(1.5) xx(T\£?) ^ xx(U), 

where y.){T\S£) denotes the dimension of The same inequality (1.5) holds 
if ;.€<7(r|JSf), |A|>1. Indeed, (1.3) implies that 

{T—zI)~x = P(0— zT)*1 (\z\ > 1, z<to(T)f\a(Vj), 

and it follows that the dimension of the Riesz projector corresponding to X and T 
is not greater than the dimension of the Riesz projector corresponding to X and 0. 
Now (1.5) yields 

2 2 xx(0) = x, 
•L€<R(7"|IF) A6<R0(0) 

that is, in (1.5) the s ign=must hold. But the right hand side of (1.5) is independent 
of and the statement follows. 

The following proposition can be proved in the same way as Satz 1.2 in [1]. 

P r o p o s i t i o n 1.4. Let (T„) be a sequence of contractive operators in II „, 
\\Tn-T0\\ —0 (/!-<»), and A06<r0(r0). Then for each sufficiently small neighbourhood 
U of X0 there exists an n ( U ) > 0 such that for n^nQX) we have xu(T„) = xXo(T0). 

Because of the relation 

2 y-AT0) = 2 *x(TJ = x, 

under the conditions of Proposition 1.9 the points of er0(7"0) are the only "accumula-
tion points" of <r0(T„), / I=1, 2, ... . 

3. A close connection between functions F£C"X" and isometric operators in 
a nx -space IJX is given by the following proposition ([2, Satz 2.2]): 
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a) Let V be a maximal isometric (<R(V) = nx) operator in a nx-space IIx, S 
a hermitian nXn matrix and F a linear mapping from G" into II x. Then the func-
tion F: 

(.1.6) F(z) = iS + r*<y+zI)(V-zI)-lr ( z - ^ f f i F - 1 ) , |z| < 1) 

belongs to the class C f for some y.', Os/^x. If the operators V and T are closely 
¡-connected then x' = x. 

b) If F£C"x
Xn and 0€X>f, then there exist a nx-space IIx, a maximal isometric 

(9l(V) = nx) operator V in IIx and a linear mapping T from G" into IIX, closely i-con-
nected with V, so that the representation (1.6) holds with S = I m F(O). 

We remind the reader that an operator T from (£" into IIX is said to be closely 
i-connected with the maximal isometric (9i(K) = /7„) operator Kin II x if IJX is the 
closed linear span of all elements (V—zI^Tq, z£q(V), |z |<1. Here, of 
course, (V—z/)_1 is always to be understood as V~1(I—zV~1)~1 with the iso-
metric operator V~1=V+ defined on all of IIX, z~1ee(y~1)-

The function F£C"x
Xn, 0£T>F, admits also a representation (1.6) with a unitary 

operator V in IIX. Consider this operator V, and let i f be a x-dimensional non-
positive invariant subspace of V such that |< r (K | i f ) | s l . Denote the characteristic 
polynomial of V\<£, which does not depend on the choice of i f , by p and put 
g{z)=p*(z~l)p(z). Then we have [g(V)x, (x£llx) and it follows that 

R e r * g ( F ) ( K + z / ) ( F - z / ) - 1 r (zgD). 

Hence there exists a nondecreasing bounded («Xn)-matrix function I on [0, In), 
such that 

2rt 
(1.7) n g i V W + z l W - z I ) - ^ = f ( e " + z ) ( e ' a - z ) - 1 i / 2 : ( 3 ) . 

0 

Introducing the («Xn)-matrix function G: 

G(z) := r*(g(z)I-g(V))(V+zI)(V-zI)-ir 

we get from (1.6) and (1.7) 

1 2* 1 
(1.8) F(z) = i S + - ^ f (eis + z ) ( e

i 9 - z ) - i r f Z ( 3 ) + — G(z) (z€D). 

As a consequence of b) we prove the following 

P r o p o s i t i o n 1.5. The function OdSx
Xn, 0(El>6, admits the representation 

(1.9) 0(z) = U22 +zU21(I—zT)~l Ul2 (z£®e), 
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where T is a contractive operator in a space II x, which has no eigenvalues on the unit 
circle, and U12, U21, U22 are such mappings that the matrix 
: (T U12\ 

defines an isometric operator in the space The space Itx and the operator 
U can be chosen so that 

n x = c.l.s. {(/—zr) - 1C/1 2^: z - ^ Q ( T ) \ , 

then they are uniquely determined up to unitary equivalence. 

Here, if u,v£llx and t]£<£", the scalar product of {«, {v, rj}enx®(in 

is defined by 
[{«,«},>>/}] = [« ,» ]+« , i?). 

The operator U12 maps into IIx, U21 maps IIx into (£", and U22 maps (£" into 
itself. 

P roo f . We may suppose that det (/— 0(0))^0. Indeed, if this relation 
does not hold we consider 9y: 9y(z):=y0(z) instead of 6 for some y: |y| = 1, 
det ( /—9 y (0))^0. Having found the representation of 6y with some operator Uy, 
the representation of 9 follows with an operator U, which is obtained from Uy by 
multiplication of the second row by 

Consider for oc£(£, R e a > 0 , the function F: 

(1.11) f ( z ) : = ( a * / + a 0 ( z ) ) ( / - 0 ( z ) ) - 1 . 

Then 
F(z) + F(0* = 2 ( R e « ) ( / - f l ( O * ) - 1 ( / - 0 ( O , ' f l W ) ( / - 0 ( z ) ) - 1 , 

and it follows that F£(Zn
x
Xa. From the relations (1.11), F(0)=iS+r*T and (1.6) 

we find 

0(z) = 7—2 Rea(F(z) + a / ) _ 1 = / - 2 R e a ( F ( 0 ) + a / + 2 z F * F - 1 ( / - z r - 1 ) - 1 F ) - 1 = 

= 7 - 2 (Re a) (F (0 ) - t -a7)~ 1 +4(Rea)z(F(0)+a7) _ 1 r*J / _ 1 x 

• X ( / - z F - 1 + 2zr(F(0) + a / ) - 1 r + F - 1 ) " 1 r ( F ( 0 ) + a / ) - 1 = 

= ( F ^ - a / X F i O H a / ) - ^ 

+ 4fRea)z(F(0)+a7) _ 1 F* V~l(I— zWa F_1)F(F(0)+oc7) 

with Wa.= I—2r(F{fS) + cil)-xr*. Setting 

T:=WxV-\ U12:— 2 ] /RFa(F(0)+a / ) - 1 , 

U2l := 2}/Rea(F(0)+a7)~1r*K_ 1 , U22 :=-(F(0)-a*7)(F(0) + «/)~1, 
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and using the relation r*r=2~1(F(0)+F(0)*), it is not hard to verify that the 
matrix U satisfies U*U=I. 

The operator T is contractive in 77x. Indeed, we have for M£J7x, v:=V~1u: 

[Tu, Tu] = [v,v]-2[r(F(0) + al)-1r*v,v~]-2[r(F(0)* + a*l)-ir*v, »] + 

(1.12) +4(r*r(F(Q) + aI)-1r*v,(F(0)+oiI)-1r*v) = 

= [y ,u ] -4Rea | j ( J F(0 )+a7 ) - 1 r*y | | 2 [u,u]. 

Assume that Tu0=X0u0, |A0| = 1. Then, by (1.12), r * F _ 1 M 0 = 0 and 
tVaV~1u0=V~1u0 = /.0u0. Hence F*u0 = 0, (F _ 1 )* M o= and f ° r arbi-
trary £€C", z - ^ e i P - 1 ) . M<1> we get 

[ F - H Z - z F - 1 ) - 1 ^ , u0] = ^ ^ ( l o - z ) " 1 = 0. 

As r and F a r e closely /-connected, this implies w0 = 0. The proof of the uniqueness 
of U is left to the reader. 

R e m a r k . The function FtCn
x
x" in the proof of Proposition 1.5 admits also 

a representation (1.6). with a unitary operator V in a nx-space TIX. This implies a 
representation (1.9) of the function 9, where the operator (1.10) is unitary in the 
space IIx®<in. Then 9 is the characteristic function of the operator T*, see (1.10) 
(the case n = 1 was considered in [7]). 

We mention that Proposition 1.5 is an immediate generalization of [7, Satz 6.5]. 
It can be reversed and generalized to functions 6 with values in [§], the Banach 
algebra of all bounded linear operators mapping the Hilbert space $ into itself. 

4. In [2, Satz 3.2] it was shown that a function 96S"X" admits also the rep-
resentation 

(1.13) 9(z) = B0(z)-*e0(z) ( Z € D 8 ) 

with a Blaschke—Potapov product B0, 

O £ 

(1.14) B0(z) =U0 ]J Bj(z), Bj(z) = I ] [ J U S L P + Q k | , 
j=1 k = l \ i — Z<Xj J 

and a function 0o€SJJx". Here a ^ a , - . , for j ^ j ' ; PJk and Qjk are idempotent 
hermitian matrices with PJk + Qjk — I for k= 1, 2, ..., kj and j—\,2,...,l; U0 

is a unitary matrix and 0o€SJx". 
The Blaschke—Potapov product B0 is called regular if 

Pjl — Pj2 — •' — Pjkj , j = U 2, ..., 1. 

The representation (1.13) is called regular if B0 is regular and 

(1.15) « ( ' / m M ^ ' M W J — 1,2, ..., I 
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holds; here 
O 

(1.16) Y ^ ^ i j j B X z y A u ^ e ^ z ) , J = 1 , 2 , . . . , / , y I + 1 ( z ) := C/o-l0o(z). 
\v = j / 

The order of the Blaschke—Potapov product B0 in (1.14) is defined as 

2 2dimPjk'> j=lk=l 

according to [2, Satz 3.2] it is equal to x, if the representation (1.13) is regular. 

§ 2. Zeros and poles in ® 

= 1. The multiplicity of zeros and poles of a meromorphic matrix or operator 
function was defined e.g. in [5]. Here we use the following characterization of the 
pole multiplicity (see [1, Lemma 4.1]): If A(z) is a meromorphic function whose 
values are bounded linear operators in a Banach space 93 and which has a pole a 
with Laurent expansion 

(2.1) A(z) = (z — cc)~kA„k + ...+(z—a)~1A^1+A0 + ... 

for z near a, z ^ a, then the pole multiplicity of a with respect to A(z) is the dimension 
of the range of the operator 

A-k 0 . 0 0 

A-k+I A-k> . 0 0 

A-2 A-3 . ..A_k 0 

A —2 • A-ic+i A-J 

in the space The matrix A will be called associated to the singular part of the 
expansion (2.1). 

In the following we need two simple properties of the pole multiplicity, which 
are easy consequences of the characterization given above. 

a) If A(z) is as above, is a bounded linear mapping from a Banach space 
2?! into S , and T2 is a bounded linear mapping from © into 8 l 5 then the pole multi-
plicity of a with respect to T2 A(z)Tl is not greater than the pole multiplicity of a 
with respect to A(z). 

b) If a is an isolated eigenvalue of the operator Tin S and a pole of the resolvent 
of T, then its pole multiplicity with respect to this resolvent is equal to the algebraic 
multiplicity of the eigenvalue a. 

L e m m a 2.1. Let A(z) be a meromorphic (nXn)-matrix function with a pole a 
of multiplicity x and Laurent expansion (2.1), and let Y(z) be an (nXn)-matrix func-
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ti on, holomorphic at Z = OL. If there exists a subspace Jzf c$R(y(a)) such that 

(2.2) A.jXtzZ, A-jX± = {0}, j = l,2,...,k, 

then A (z) Y(z) has at z = a a pole of multiplicity x. 

P r o o f . The singular part of the Laurent expansion of A(z)Y(z) at z=ac has 

the associated matrix 319), where $ = = l j 2 k, Y i j - = J f Z J y Y ( i- J\oc) if 

i ^ j , Yu:= 0 if / < / , i,j= 1, 2, ..., k. Put 7=1,2 where P 0 is the 
orthogonal projector onto i f . According to (2.2), the range of 219) coincides with 
the range of 919)0, and the range of ?)0 is & k = £ e + ... +JSf. On the other 
hand, the full range of is obtained if 91 is applied to £fk . The lemma is proved. 

2. Consider now a function 0£S"X". If is a pole of 0, we denote its 
multiplicity by 7r(a). For some j, 1 =/=/, a coincides with ocj in a regular representa-
tion (1.13). We denote by x(a) the order of the corresponding factor Bj of the 
Blaschke—Potapov product in (1.13), that is 

«J 
x(a) = 2 dim PJk. 

k= 1 

According to [2, § 3.4], x(a) coincides with the number of negative squares of the 
kernel SB , and the number of negative squares of SYj is x(ci) plus the number of 
negative squares of where Yj is given by (1.16) and the representation (1.13) 
is again supposed to be regular. 

If 0£D f l , then we denote by v(a) the dimension of the algebraic eigenspace, 
corresponding to a - 1 , of a contractive operator T in IIx in a representation (1.9) 
of 9. This notation is correct because of [9, Theorem 11.2] and the following theorem. 

T h e o r e m 2.2. If 0€S£X" and o^X) is a pole of 0, then 7t(a) = x(a). I f , 
additionally, 0£X)9, then 7i(a) = x(a) = v(a). 

P r o o f . First we show that the multiplicity of the pole otj of BJ1 in (1.14) is equal 
"J 

to 2 dim Pjk • As the pole multiplicity is invariant under a fractional linear trans-
t=1 

formation of the independent variable, we may here suppose a ; = 0 . Instead of Pjk 

we shal 1 briefly write Pk, k = 1, 2, ..., k}. Then the matrix associated with the singular 
part of the expansion of Bj1 at z = 0 is 

Pk. 0 ... 0 . 0 
P k t - i - P k j P k j ... 0 0 

P2-P3 Ps-P, .- Pkj 0 
Pl~P"2, Pi~Pz ••• Pkj-l~Pkj Pkj 
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Evidently, its range is ft(/>
lij) + 9 i ( / ' k j _ 1 )4- . . .+ 5R(.Pi); therefore the dimension of "j 

this range is 2 dim Pk. Thus the pole multiplicity of <Xj coincides with the order 
*=i 

of Bj. 

Furthermore, we have 

9(z) = Bi (z)~1B2(z)~1... Bj-i (z) (z) Yj+j (z). 

From (1.15) it follows that Lemma 2.1 can be applied to A—By\ Y=YJ+1 and kj 
= (Pn), Hence Bj (z) Y}+x (z) has at z = a ; a pole of multiplicity 2" dim Pjk. 

k=l 
Finally 

B1(z)-iB2(z)-K..Bj_1(z)-i 

is holomorphic and boundedly invertible at z=a j . Therefore the pole multiplicity kj 
of 9(z) at z=cr.j is ^ dim Pjk, that is n(<xj)=x(ctj). 

(t=i 
To prove the second statement, consider a representation (1.9) of 9. According 

to the statements a) and b) in §2.1, we have x(a J)^v(a J) . On the other hand, the 
spectrum of T outside the unit disc consists of eigenvalues of total multiplicity x 
(Propositions 1.2 and 1.5). Hence 

i i 
x = 2 *(<*;) = 2 Ha,) = *> 

• f = l 7 = 1 

and x(a.j) = v(aij), j=l, 2, . . . , / , follows. The theorem is proved. 
z — B 

We mention that for a fractional linear transformation z—£(z):=- -=, 
1 — zp 

| j? |<l, P^o of ® onto D the function 91(C):=9(z) always has the property 
O6D0i. Also, it is easy to check that 0^Sn

x
Xn implies 91£Sn X n . 

C o r o l l a r y 1. 9aSn
x
Xn has poles in T) of total multiplicity x. 

Let now F£C"X n be given. Choose a, R e a > 0 . Then by Proposition 1.1 
the function 9: 

9(z) = / - 2 R e a ( F ( z ) + a / ) ~ 1 

belongs to S"x", and (see [5]) the poles of 6 coincide, including multiplicities, with 
the zeros of F(z)+txl. 

C o r o l l a r y 2. If C£Xn and R e a > 0 , then the function F(z)+al has in £> 
zeros of total multiplicity x. 

The corresponding conclusion for a function <2€N£X" reads as follows. 
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C o r o l l a r y 3. If g€N£ x " and Im £ > 0 , then the function Q(z) + pl has in 
G+ zeros of total multiplicity x. 

As an application, consider the function Q: 

Q(z) = Q0(z)+ Z 2((z-^)kBjk + (z-cc*)kB]k), j=lk=1 
where (20£N{|Xn, Bjk are arbitrary (nXn)-matrices and k = l,2, ..., kj; 

i 
j= 1, 2, . . . , / . It follows as in [1, Satz 4.5] that 0€N£X n , where x= 2 *j> 

'BjkJ 0 ... 0 • 

*; = dim ^ BJ3 0 • 
.Bji Bj2 • •• Bjkj, 

Hence Corollary 3 implies that for each j8, Im ^ > 0 , the function Q (z)+pi has 
zeros of total multiplicity x in 

§ 3. Generalized zeros and poles of negative type on the boundary 

1. D e f i n i t i o n . Let F^Cx
Xn. The point z0ddT) is called a generalized pole 

(or zero) of negative type and multiplicity n (z0) for F, if for each sufficiently small 
neighbourhood U of z0 there exists an n(U)>0 such that for oc>w(U) (or 0 < a < 
<«( l l ) , resp.) the function F ( z ) + a / has zeros of total multiplicity 7r(z0) in UHT). 

To explain this definition e.g. in the case of a generalized pole, let us take a 
scalar function F. Instead of F we consider its continuation F to {z: |z| ^ 1} (see 
§1.1) and assume that it has been continued analytically also to arcs of the unit 
circle |z| = 1 if possible, that is if the boundary values of F at the points of this 
arc exist and are purely imaginary. Suppose this continuation F h a s a pole at z0£dT>. 

If x=0, that is F^Co1), then R e F ( z ) s O for all z(£D f. What is more, 
for each 9, 0<9<7r/2, there exists a 9lt 0<31<Tr/2, such that the relations z„€l>, 
— 9 < a r g (z„—z0)<9 and z„-*z0 imply that F(z„) tends to infinity and 
<a rg F i z ^ ^ . 

On the other hand, if x > 0 , there may be poles z0 on dT) with the property 
that there exists a sequence (z„)c5>, zn—z0, such that F(z„) tends to infinity along 
the negative real half-axis. Moreover, it turns out that there may be a finite number 
of points z0 on c>T) which are no poles but which also do have the property F(z„) — 
for some sequence (z„) c D , zn-*z0. These two kinds of points z0 are the generalized poles 

We write Cx etc. instead of C* x 1 . 
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of negative type. We mention already here that, for each point z€ dl) which is not a gene-
ralized pole of negative type, there exists a neighbourhood U of i and a ? > 0 such that 
Re F ( z ) ^ — f for all zGUHD (see the Corollary subsequent to Theorem 3.5). 

We show that the poles in D of F£ C"x" have the same property as generalized 
poles on dD. 

P r o p o s i t i o n 3.1. Let FeC"x
xn. If z0£X> is a pole of multiplicity 7t(z0) of F, 

then for each sufficiently small neighbourhood U of z0 there exists an «(U)=-0 such 
that a>«(U) implies that the function F(z) + a/ has zeros of total multiplicity 
7t(z0) in 11. 

P r o o f . Forall a » 0 , the point z0 is also a pole of multiplicity 7t(z0) of F (z )+a / . 
We choose a disc (£0cX) with centre z0 such that z0 is the only pole of F in (£0. 
Then F is holomorphic on £ 0 \ { z 0 } and we consider, for sufficiently large a=»0, 
the logarithmic residuum (see [5]) 

—i-rtrace /*F ' (z)(F(z)+a/)~ 1 dz = trace f F'(z)(a~1F(z) + l)-1dz. 
2711 ac0

 2 7 t , a daQ 

If a is large, this value is zero; hence for these a the total multiplicity of the zeros 
of F(z) + a / in £ 0 is equal to n (z0). 

For the zeros of F€C"Xn another simple application of the logarithmic residuum 
theorem gives the following result, the proof of which is left to the reader. 

P r o p o s i t i o n 3.2. Let FeC"x
Xn, det F(z) ^ 0 . If z0 is a zero of multiplicity 

n(z0) of F, then for each sufficiently small neighbourhood U of z0 there exists an n(U) > 0 
such that 0<a< /7 (U) implies that the function F ( z ) + a / has zeros of total multi-
plicity ju(z0) in U. 

P r o p o s i t i o n 3.3. Let F£Cn
x
Xn, det F(z) ^0. Then the following statements 

are true: 
a) F - W / " (F- 1 (z ) :=F(z ) - 1 ) ; 
b) the zeros (poles) of F in X) coincide, multiplicities counted, with the poles (zeros) 

of F-1 in S>; 
c) the generalized zeros (poles) of F of negative type on dT) coincide, multiplicities 

counted, with the generalized poles (zeros) of F-1 of negative type. 

The proof of a) follows immediately from the definition of the class C^x", 
while b) is a general property of zeros and poles of matrix functions. To prove c), 
consider e.g. a generalized zero z0£dT> of F of negative type and choose a neigh-
bourhood U of z0 such that UPlD does not contain any zero or pole of F. Then 
the statement follows easily from the identity 

a F i z ^ F i z r i + a - " 1 / ) = F(z) + a / ( z g l i n » ) . 

13 
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2. Proposition 3.1 and Corollary 2 of Theorem 2.2 imply that the total multi-
plicity of poles in 2) and. generalized poles of negative type on dT> of a function 

C"x
Xn is at most x. We shall show that this multiplicity is exactly * (Theorem 3.5). 

To this end, we consider the operator V of (1.6) which is maximal isometric in i l x . 

P r o p o s i t i o n 3.4. Let F6C"X", 0£35 f. The point z0635 is a pole in D, or a 
generalized pole of negative type on 9X>, of F if and only if z^1 belongs to o0(V~l); 
in this case 7i(z0)=xz-i (V-1). 

P r o o f . Let z0 be, say, a generalized pole of negative type and multiplicity 
7i (z0) of F. Then for each sufficiently small neighbourhood U of z0 there exists ah 
n (U) =>0 such that for a=-«(U) the function F(z) + al has zeros of total multi-
plicity n(z0) in HDD. 

The function 6 given by (1.1) and its contractive operator T i n representation 
(1.9) will now be denoted by 6a and Ta, respectively. Then, by (1.1), 0X has poles 
of total multiplicity n(z0) in lif]£>. Theorem 2.2 implies that Tx\£Ca has eigen-
values of total multiplicity 7r(z0) in (XiflU) - 1 , where jS?a denotes a x-dimensional 
nonpositive invariant subspace of Tx with \o(Txl-S^Sl. If at<~ then | | T x - F_ 1[ | - 0 
(see the proof of Proposition 1.5) and Proposition 1.4 implies that z " 1 is an eigen-
value of algebraic multiplicity n(z0) of This reasoning can be reversed, 
and the statement follows. 

We can now state the main result of this section. 

T h e o r e m 3.5. Let F^C"*". Then F has poles in T) and generalized poles of 
negative type on dT> of total multiplicity x. I f , moreover, det F(z) ^ 0, then F has 
zeros in £) and generalized zeros of negative type on dT) of total multiplicity x. 

This follows immediately from Propositions 3.4 and 3.3 if we only observe 
that the condition 0€® F can always be fulfilled at the expense of a fractional linear 
transformation of 35 onto itself. 

By Proposition 3.4 and the definition of g appearing in the representation (1.8), 
the generalized poles of negative type of F are the zeros on 3D of the function g. 
Suppose the point z£dT> is not a generalized pole of negative type of F€Cx

Xn, 
and choose an open arc AcdT> which contains z and has a positive distance from 
all generalized poles of negative type of F. Consider the decomposition 

Ilx — n@Il'x, fl := E(A)n„, 

where IIX is the space that plays a role in the representation (1.6) of F by a unitary 
operator V, and E denotes the spectral function of V (see [11]). Let the corresponding 
decomposition of V be V= V® V'. Then 

F(z) = F(z) + F'(z), 
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where F(z):=T*E(A)(V+ zl)(V-ziyiE(A)r. As /7 is a Hilbert space (see [11]), 
we have CXn. Moreover, F' (see the beginning of § 3) is holomorphic on A. 
This implies the following 

C o r o l l a r y . Let Ff__C"x
x". Then for each point zfr)T> which is not a generalized 

pole of negative type of F, there exists a neighbourhood U of z and a number y such 
that Re F ( z ) i - yl for all, z ^ U n i ) . 

: § 4. A generalization of Rouche's theorem 

1. We denote by Qi"'n the set of all (n X w)-matrix functions F which are defined 
and holomorphic in and admit a representation F=y~1 Y with a bounded outer 
function y and a bounded holomorphic («X«)-matrix function Y in I) (equivalent 
definitions are given e.g. in [13]). Then the function 

det F(z) = y(z)~" det Y(z) 

belongs to the class 3 ' ( = 3 1 X 1 ) , hence it has, almost everywhere on finite 
nontangential limits which are, almost everywhere, different from zero. Therefore 
the nontangential boundary values F(Q of F, which exist almost everywhere on dT>, 
have an inverse F ( ( ) _ 1 almost everywhere. 

The function F()dS>nX" is called outer if det F0(z) is an outer function. In 
this case we have det F„(z)^0 (z£T>), hence F 0 (z) _ 1 exists for all zgD and the 
function Fq1 belongs again to $)nyn . 

The function is said to have an inner factor of order x if it admits a 
representation 

O 

(4-1) F(z) = C / 0 ( ^ 5 , ( z ) ) F 0 ( z ) , 

O 
i 

where Fad&"x" is an outer function and U0 JJ Bj(z) is a regular Blaschke— 
Potapov product of order x (see § 1). J = 1 

Le m m a 4.1. Let f be a complex function which is holomorphic in X) and has 
no zeros there, and denote by A r g / a continuous branch of the function a rg / . If 
y:=sup {|Arg/(z) | : zgD}<«>, then f is an outer function. 

2y P r o o f . Choose an integer n such that n>—. Then the function 
, • . n 

f i - - f i ( z ) H f ( z ) y i n = \ f ( z ) \ l l n ™ p [ ± A r g f ( z ) } has the property R e / 1 ( z ) > 0 (z€D). 

By [14, p. 51, Exercise 1 ] , / j is an outer function; t h u s / i s an outer function. 
13* 
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2. Now we prove the following generalization of Rouche's theorem. 

T h e o r e m 4.2 Suppose F,Gi®nXn, d e t ( F ( z ) - G ( z ) ) ^ 0 in 35 and 

(4.2) 11(71.0^(0_1II 35 1 a.e. on dT>. 

If F has an inner factor of order xF(<oo), then F—G has an inner factor of order 
xF_G^xF. If additionally, F(F-G)-1\a^L"1

xn(d'B),1) then xF_G = xF. 

R e m a r k . From the proof it will follow that the difference xP—xF_G is the 
total multiplicity of generalized poles of negative type on dT> of the function 
(F+G)(F-G)-1(=-I+2F(F-G)~1), which belongs to C^Xn for some x ' ^ x F . 

P r o o f of T h e o r e m 3. We write the representation (4.1) of F in the form 
F= BF0. Then F— G = (i? — GFQ-1) F0 , GF 0

- 1 6^ n X " , F(F-G)~1=B(B-GFo1)-1 

and 
IIGCOnO"1« = I I G i O F o © - 1 ^ - 1 » ^ 1 a.e. on dT>. 

As F0 is outer, the order of the inner factor of F—G coincides with the order of 
the inner factor of B—GF~l. Therefore, in the proof of the theorem we may sup-
pose that F—B. 

The matrix B(Q, |C| = 1, is unitary, hence (4.2) implies ||G(OI|s=l a.e. on a®. 
Applying [13, Lemma 1.1] it follows that | |G(z) | |^ l for all z£35. This is e q u i -
valent (see [2, Lemma 3.1]) to G6SJX" and G*€SJ*", where G* is the (nXn)-
matrix function G*(z):=G(z*)* (z€3>). 

Consider now the function B*~1G*. According to [2, Lemma 3.5] it belongs 
to some class S"x", where x' = xF. Then the same is true for GB [2, Folgerung 3.3], 
and both functions have poles in X) of total multiplicity x' (Corollary 1 of Theo-
rem 2.2). 

The condition det ( 5 ( z ) - G ( z ) ) ^ 0 implies that ( . T - G B - 1 ) - 1 exists. More-
over, it is easy to check that the function C: 

(4.3) C(z) = ' ( / + G ( z ) B ( z ) - 1 ) ( i r — G ( z ) 5 ( z ) - 1 ) - 1 = — 7+2(7—GCz)5(z ) - 1 ) - 1 

belongs to C",x". According to Theorem 3.5 it has poles of total multiplicity x"(=x') 
in 35, and the difference x' — x" is the total multiplicity of its generalized poles of 
negative type on dD. In view of (4.3), the function I—G(z)B(z)~i has zeros of 
total multiplicity x" in 35. By [5, (1.3)], for a meromorphic (/IX«)-matrix function 
the difference of the total zero and total pole multiplicities in 35 coincides with 

') denotes the class of (nXn)-matrix functions defined a.e. on dT> with entries in 
XjO©). 
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the corresponding difference for its determinant function. Therefore, using the 
relation 

d e t ( 5 ( z ) - G ( z ) ) = det ( / — G(z)£(z) - 1 ) det 5(z) 
we find that 

xm = xF + x"-x', 

where x'" denotes the total zero multiplicity of B — G in D. Observing that x"^x', 
the inequality x " ' ^ x F follows. 

Therefore, the difference B—G admits a regular representation B—G—B0H 
with a Blaschke—Potapov product B0 of order x"' and an («X«)-matrix function 
H which is holomorphic in X) and does not have any zeros there (cf. the proof of 
[2, Satz 3.2]). The first statement of the theorem follows if we show that H is an 
outer function. But this is true if and only if det i / ( z ) - 1 is an outer function. 

We have H=2B~1(I+Cr1B (see (4.3)). According to (1.8), C admits an 
integral representation 

1 271
 _I_ 1 

(4.4) C(z) = / S + — / - ¿ I d m + j ^ B i z ) , 

where S, I , D and g have the properties mentioned in § 1.3. It follows that 

H{z)~i = -y B(z) ((/+ iS)g (z) +X> (z) + C0(z)) B0 (z)g (z) 

where C0 denotes the integral in (4.4). As Re C„(z)sO (z£®) and g, D are poly-
nomials of z and z - 1 , for each entry of the matrix H(z)~1 the argument is bounded 
on 35. Then the same is true for det H(z)~1. Hence Lemma 4.1 implies that 
det H(z)~1 is an outer function. 

Let now i ( 0 ( - B ( 0 - G ( 0 ) _ 1 6 l i x " ( № ) . Then according to (4.3) C€LiXn(e>£), 
and it remains to show that C does not have generalized poles of negative type 
on dT>. ' ' 

The function C€C£,X" can be written as the sum of a rational function Q€C£*" 
with poles in X> and a function C2dCx*n, which is holomorphic in D, x'=x1+x2. 
The function C2(0> also belongs to L\xn(d'S), and it is sufficient to show 
that x2=0. This will be accomplished if we prove the following two statements1): 

a) C 2 € / / i x " ; 
b) If for some we have Hlxnf)C"xV0, then x=Q. 
To prove a) we first observe that EiCnxn implies EeH%xn for ¿ < ( l + 2 x ) _ 1 . 

Indeed, as 
\\E(z)\\> =§ (l/nrnax|e ; (z)|)5, 

*) For the definition of the Hardy classes H^X B see e.g. [13]. 
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it is sufficient to show that the entries eu of E belong to Hs. According to (1.8), 
every etJ is of the form g1(z)~1h(z), where h£Ht for all ¿ < 1 (see [15, II. 4.5]) 
and is a polynomial of degree ^ 2 x with zeros on dT>. If ¿<(1+2j<) _ 1 , we 
choose S ^ d x ) - 1 and <52<1 so that Setting 
and q = 8 i 1 (d l + Sz) we obtain 

Zn 2x 2n • 
f |g1(re i 3)-1 / i(re i 9) | i i /9 s ( / | g l ( r e i s ) | - * ' d S i f p ( f \h(rJ*)l«dB)v* = 
0 0 0 

2ti 2* 
= ( / \gi(re")\-sid9flp(f \h(rei3)\s*d9)llq^ ~ 

0 0 

for all 0 < r < l . Thus E£H^xn. In particular, C ^ H ™ " . As C 2 ( C ) € ^ x n 0 D ) , 
by a theorem of V. I. Smirnov (cf. [15, II. 6]) we have C 2 6 / / ; x " . 

To prove b), we use the representation 

1 271 

E(z) = i Im £(0) + — f (e'9 + z ) ( e i 9 - z ) - 1 Re £(e'9) d9 (z<EX>), 
2n 0 

which holds for arbitrary functions E£H"xn, and the representation (1.8): 

1 2* 1 
E(z) = i S + j ^ j f ( e i ' + z ) ( C

i ' - z ) - i i / I ( 9 ) + — C ( z ) , ; 

valid for E£C"Xn, 0£ I)£ . Making the right-hand sides equal, multiplying by g(z) 
and using Stieltjes—Livsic inversion formula it follows that ' 

f g(eia)ReE(ei9)d9 = f dZ (9) S 0 

whenever 0 s 9 ^ 8 2 ^ 2 1 1 . Therefore Re £ ( e i 9 ) s 0 almost everywhere on [0, 2n\. 
Hence R e £ ( z ) > 0 (z€D), and x=0. 

The theorem is proved. 

§ 5. Further examples 

1. In this section we consider two examples of functions of the class N x
x " . 

By the connection between the classes N" x " and C£x n mentioned in § 1.1, the notions 
of generalized zeros and poles of negative type carry over to functions <2€N"xn 

in the following way. Let (p be a linear fractional mapping f rom D onto (£+. The 
point U J, t0=(p(C0) (ICol = l), is said to be a generalized pole (zero) of 
negative type and multiplicity n(t0) of Q if Co is a generalized pole (or zero, resp.) 
of negative type and multiplicity 7t(i0) of F=iQo(p, or equivalently, if for each 
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sufficiently small neighbourhood U of ?0 (we admit .the case /0=<=•=>) in the closed 
complex plane there exists an w(U)>0 such that .for a>« ( l t ) ,(or 0<a< / i (U) , 
resp.) the function Q(z) + ial has zeros of total multiplicity 7t(/0) in UHCE+. 

Let g0£NgX". Then Q0 has a representation ; 

oo 

6o(z) = A0 + zB0+ f ( ( / - z ) " 1 - / ( l + z 2 ) - 1 ) i / I ( / ) 

with hermitian («X«)-matrices A0, B0; 2?0=0, and a nondecreasing («Xn)-matrix 

function I on Rx, f (1 +t2)~1d£(t)«>=. Now let Bx be a hermitian (/iXn)-matrix 

and let us consider the function Qx : 

(5.1) Qi(z):=Qo(z)~zBi. 
Then 

oo 

Nq(Z,Q= J (t-.z)-1^-^)'1 dZ(t)+B0-Bx, 
— oo 

and, considering NQ (z, z) for |z| sufficiently large, it follows that Q^N"*", where 
x dénotes the number of negative eigenvalues of the matrix B0—B1. It is easy to 
see that Qx has a generalized pole of negative type and multiplicity x a t » . More-
over, Theorem 3.5 implies: 

P r o p o s i t i o n 5.1. If det Qx(z)^0, then the function Qx in (5.1) has zeros 
in (£+ and generalized zeros of negative type in JRIU{°°} of total multiplicity x, 
where x denotes the number of negative eigenvalues of the matrix B0—Bx. 

In special cases this result can be given a more explicit formulation. Here we 
consider the case where n = 1 and 

(5.2) Qt(z)= f (t — z)-1do(t) + a — z 

with a a real number and a a nondecreasing function on Rx such that 

: . / ( l - H i D - i ^ o U « ; : 

— oo -

without loss of generality, the coefficient of z has been chosen — 1. . - 11 

P r o p o s i t i o n 5.2. The function Qx in (5.2) has either exactly one zero in or one generalized zero of negative type in: Rx(J {oo}. This (possibly, generalizedj 
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zero za is ~7-~ °° and of multiplicity 1. It can be characterized among the points of 
C + by the following two properties: 

CO 

a) / \t-zjT*da(t)*l, 
— 0 0 

b) / {t-zj~1da(t)+a-z, = 0. 

P r o o f . The first statement including the claim about the multiplicity follows 
from Proposition 5.1. 

Next we show that a zero or generalized zero z a £ £ + of (2i has the properties 
a) and b). If za is a zero (zaC(£+), this is obvious if we observe that 

Let now za6i?!- Then there exists a sequence ( z n ) c ( t + , z„—za, Im z„\0 (w— 00) 
00 

such that Qi(zn)—0, Im {2i(z„)<0. It follows that (Im z„) ( / \t-zn\~2do(t) - l ) < 0 , 
— 00 

or 
00 

f \t-zn\-*do(t)^i, n = 1,2,.... 
— 00 

00 

Applying Fatou's lemma we get j ( / — a n d Lebesgue's theo-
rem gives 

00 

0 = lim Qx(z„) = f (r-zJ-MaiO + a-z,. 
/|-*-oo v 

— 00 

It remains to show that a) and b) have at most one solution za in (£+. To this 
end we introduce the n1 -space n1:—(i@Li{&) of all pairs {£, x}, x^L^o) 
with indefinite scalar product 

00 

[{{, x}, {ri, y}] = -&*+ f x(t)y(t)* da(t) ({, I,€C; j?€L,(a)). 
— 00 

It is easy to check that the operator A: 

(5.3) A{£, x} := {«£- / x(t)da(t), *(/)+«}, 
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which is defined for every {£, x}£FI1 such that the function t—tx(t)+^ belongs 
to L2(<t), is selfadjoint in ni. In order to find its eigenvalues X we have to solve 
the equation 

(5.4) (A-XI){Z,x} = 0. 

From (5.3) and (5.4) it follows that x(t)= -{(t-A^Cir-a.e). In particular, 

f \t — X\~2 Moreover, the first component in (5.4) gives 

(5.5) a - A + / (t-X)~1da(t) = 0. 

Conversely, it is easy to see that any solution X of (5.5) with j \t—X\~2do(t)<°° 

is an eigenvalue of A with corresponding eigenelement {£, — £(/—A)-1} (£^0) . 
Since A is a selfadjoint operator in TIX, it has exactly one eigenvalue A0£(£+ 

such that the corresponding eigenvector is nonpositive: 

-1+ / \t — X0\~2do(t) S 0. 
— OO 

Therefore, zx=X0 is the only solution of the system a)—b) in £ + . The proposition 
is proved. 

R e m a r k 1. The zeros of the function Qx are the fixed points of the function 
oo 

Qo- Qo(z)'-= f ( t—z)~1do(t)+ai , and by a fractional linear transformation of (£+ 

onto X) the equation Q0(z)=z is transformed into G0(()=C, where G0 maps ® 
holomorphically into itself (G0€S0). However, the usual fixed point argument 
does not seem to be applicable in this case, as the boundary values of G0 on dX> are, 
in general, discontinuous. 

R e m a r k 2. Suppose that the function a in (5.2) satisfies the additional con-
dition 

/ (t-x)~2do(t)= - for all 

where denotes the set of all points of increase of a. Then for every real a the 
oo 

function Qx in (5.2) has one and only one zero z a 6£ + \ (E f f and f \t—za\~2do(t)^\. 
— oo 

R e m a r k 3. Besides the zero za, the function Qx can have an arbitrary number 
of real zeros which do not satisfy condition a). 
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To see this, we suppose tha t the funct ion a in (5.2) is cons tant on s o m e interval 
(a, b) which is special in the sense tha t 

a oo 
lim f ( t - x ^ d a i t ) - - ^ , lim f {t-x)-1 da(t) = ~. 

X \ a J x t b J 
— oo b 

Then Qx is ho lomorph ic in (a, b) a n d Q1(a-(-0)=—oo; Qx(b —0)=«>. The re fo r e 
it has a t least one zero in (a, b), more exactly, it has an o d d n u m b e r of ze ros in 
(a, b), counted with multiplicities. Deno te these zeros by I t is 
easy to see tha t Q i ( x 2 j ) s 0 , 1, 2, . . . , tha t is x2j=za, j= 1, 2, . . . , k. H e n c e 
the funct ion Qx has in (a, b) either one simple zero, either zeros of total mult ipl ici ty 
three ; in the second case the zero x2 coincides with za. 

Consequent ly , if a has special intervals (a,-, bj), 1, 2, . . . , N, then 
the corresponding func t ion Qx has in n o more t h a n one of these intervals ze ros 
of total multiplicity three, in each of the remaining intervals it ha s exactly one (s imple) 
zero. The case N=°° occurs, fo r example, if Q1 is a me romorph i c func t ion wi th a n 
infinite n u m b e r of poles. 

We mention that any simple selfadjoint operator A in a -space is unitarily equivalent 
to the operator A appearing in the proof of Proposition 5.2. Here A is called simple if there exists 
an ei T>(A), [e,e]*^0, such that 

tf^c.l.s.K/r-C/J-^iCeG.neOi)}. 

Indeed, suppose [e, e]= — 1 and consider the decomposition 

(5.6) n x = s e 0 + & l y £ e 0 = i.s. m , s e ^ l 

Then is a Hilbert space with scalar product [., .], and j£?0 can be identified with (£ by writing 
e={l ,0} with respect to the decomposition (5.6). 

If Ae={a, h), a€<£, then the matrix representation of A is 

with some selfadjoint operator An in the Hilbert space .2V Now an easy calculation gives 

(A-Cly^e = ({1, -(All-CI)-1h), Z=i<x-t+KAli-Urlh,h])-1. 

It follows that jSf,=c.l.s. {(/4n — ±C€C+}. Hence AIX is unitarily equivalent to the operator 
of multiplication by the independent variable 

in the space ¿¡(tr), (r(i);=[£' tA, h], where Et is the 
spectral function of An and h corresponds to the function / i ( / )=l belonging to L2(a). With this 
realization of and An, the matrix in (5.7) defines the operator A in (5.3). 

This model of an" arbitrary simple selfadjoint operator in a rc, -space (or, more generally, in 
a 7tm-space) and the characterization of its eigenvalues" by conditions a) and b) were first given in 
[4; i n , §6]. 1 
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2. In this section we consider an («Xn)-matrix function 0 o €NJ x " of the form 

&,(*) =" ¿ 7 ^ + fit-z)-*dZ(t), 
j=ltj + Z J 

where Bj are nonnegative hermitian matrices, 0~=zt 1 ct 2 ^. . . < / , , and I is a non-
decreasing (nX/t)-matrix function on [0,°°) with the properties £(0 + ) = I ( 0 ) = 0 , 

/ + Then the function Q: Q(z)=zQ0(z2) has the representation 
0 

2 ji 
l I ( s 2 ) s ^ 0, 
^ ( s 2 ) s si 0. 

f 2 - 1 J 

/ 
According to the example at the end of § 2.2 we have 0 € Nx

x where 2 dim Bj = x 
j=i 

Evidently, Q is antisymmetric with respect to the imaginary axis: Q(—z*) = 

P r o p o s i t i o n 5.3. The function Q(z) + il has zeros of total multiplicity x in 
(£+. These zeros Zj, j=l, 2, ..., m (=x), are on the imaginary axis and 0< |z J |< i 1

2 . 

P r o o f . The first statement follows immediately from Corollary 3 of Theorem 
2.2. To prove the second statement, we first consider the case n=1. To find the 
solutions of the equation Q0(z2)= —iz-1, l m z > 0 , we put z=is. Then it takes 
the form Q0(—s2) = — s - 1 , and a simple consideration of the graphs of Q0(—s2) 
and — s h o w s that this equation has x zeros in (0, and that these zeros are 
smaller than t1. By the first statement of the proposition, these x zeros give the 
only zeros of Q(z)+il in G + . 

Let now n be arbitrary and consider a zero z0£(£+ of Q(z) + il. If z0 is outside 
the interval (0, i'i2) of the imaginary axis, then Q is holomorphic at z0. Hence 
there exists a vector such that 

But we have shown (case « = 1) that this is impossible. 
As an application of Proposition 5.3 we consider the Schrodinger equation 

(5.8) ^ p - - V ( r ) i K r ) + k2t(r) = 0, <K0) = 0, 
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with a short range potential V: V(r)=0 if for some K^Z^. То 
find the nonreal resonances к of the problem (5.8) we observe that for r > a the solu-
tion ф of (5.8) is ф(г-, к2) = Ceikr and, considering r = a, we get ф'(а; к2)ф(a; k2)~1 = ik. 
This equation can be written as кф(а; к2)ф'(а\ k2)~1 + i=0. But ф(а; г)ф'(а: z ) - 1 

is a function of class N„. Indeed, ф(г\ z) satisfies the equation 

ф"(г;г)-У(г)ф(г;г) + гф(г;2) = 0, <A(0;z) = 0, 

and it follows that 
ф(г; 2)ф\г• 1)-х-ф'(г-2*Гхф(г-z*) = 

= (г-г*)ф'(г; z*)-1 J \ф(s; z*)\2ds^'(r-z)-\ 
о 

Evidently, the number of negative poles of ф(а\г)ф'(а;г)-1 is equal to the 
number of negative zeros of ф'(а; z), that is the number of negative eigenvalues X 
of the boundary problem 

(5.9) ф"(г)-У(г)ф(г)+Хф(г) = 0, ф( 0) = 0, ф'(а) = 0. 

Proposition 5.3 now implies the following statement: 

The number of nonreal resonances of (5.8) in is equal to the number of nega-
tive eigenvalues X of the boundary problem (5.9). 

Without going into details we mention that Proposition 5.3 can be used to 
prove a similar statement in the case of a vector equation (5.8). 

Note. We use this opportunity to mention that in our paper [7] the statement of Satz 3.4 is 
incorrect. To make it correct, in formula (3.10) one has to replace e0 (R0) by ûo (Л0, resp.) and to 
define 

е 0 :=ЁО-1.ЛО(г) :=Л 0 (г) -2(1-г 2 ) г о / д I L ± £ ^ ! I 
Uoj-Ht-CCj^J 
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