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The hyperbolic M. Riesz theorem

SHINJI YAMASHITA |

1. Introduction. We shall prove the non-Euclidean ‘hyperbolic versions ‘of the
theorems of M. Riesz [7] and of L. Fesfr and F. Riesz [4] (see [8, Theorem VIII.45,
p. 339 and Theorem VIII.46, p. 340], [3, p. 46]) and. show a property of conformal
mappings in terms of the non-Euclidean geometry in the unit disk.

Let D={z|]<1}, T=[0, 27t) and K= {e"lte T}. Let

o(z, w) = tanh~ 1([2 wl/|1 —zw]|)
be the non-Euclidean hyperho]ic distance between z and w in D, and let
0(z) = 0(z,0) = (1/2) log[(1 +[z)/(1 —|2]], z€D.

Let B be the family of functions f, holomorphic and bounded, |f]<1, in D. Then
o(f) for feB, like |f|, has the property that log o(f) is subkarmonic in D, so
that -¢(f)’=exp [plog a(f)] is subharmonic in D for all p=>0; see [10]. Let H?
be the family of f€ B such that

f o(f)P(re"ydt

is bounded for 0=r<1 (0O<p<c).. The class HP is the hyperbolic counterpart
of the (parabolic) Hardy class H? in D [3, p. 2], and is called the hyperbolic Hardy
class. (Recently, it is observed that an “elliptic” analogue of H? (0<p<ee), namely,
a meromorphic Hardy class yields no new: family [11, Théorem 1].) Each f€ B has
the radial limit f *(t)— lim f(re") ‘at ¢ for a.e. t€T, and as will be seen, o(f*)
i$ of c]ass L*(T) for all fEH" (0<p<oo) The hyperbolic M. Rlesz theorem 1s

Theorem 1. Let. C be a recttﬁable curve with the initial pomt a and the termmal
pomt b. ( possibly, a= b, in the complex plane. Suppose that. -
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Set for 1€T, with e'¢ CNK,
V)= [ldarg(e*~w)| (weC).

C

Then, for each fEeH? (O<p<<o),
Sory@idzl =71 [a(fHP@)V (@)t
(o T

If C is the diameter {xe*|—~1=x=1} (s€T), then V(t)=n/2, so that the
hyperbolic Fejér and F. Riesz theorem is

Theorem 2. .Foreach fe H? (0<p<eo) and each s¢T,

) .
J o yreedx =112 [o(f*y@ar
-1 T

The Fejér and F. Riesz theorem has the obvious application to conformal
mappings from D onto a Jordan domain with the rectifiable boundary [4, Satz IV];
see [8, Corollary, p. 341] and [3, Corollary, p. 47]. The hyperbolic version is not so
apparent as in the cited case; namely, the following theorem does not appear to

be a direct consequence of Theorem 2. There is no relation between o¢(f) and
[£/I/(1—=]f]» like that between |} f| and |f”].

Theorem 3. Let y be a Jordan curve in D with finite non-Euclidean length L.
Let f be a one-to-one conformal mapping from D onto the interior of y. Then the non-
Euclidean length of the image of each diameter by f is not greater than LJ2. ' The
constant 2 in L[2 cannot be replaced by any larger constant.

For the proofs of Theorems 1 and 3, the principal idea is to obtain the M. Riesz
theorem for subharmonic functions of class PL in the sense of E. F. BECKENBACH
and T. RaD6 [2] (see also [6, p. 9]); see Theorem 4 in Section 2.

2. Subharmonic functions of class PL. A function u defined in D is called of. class
PL in D if u=0 (possibly, u=0) and logu is subharmonic in D; we regard. —oo
as a subharmonic function. The family of all functions of class PL in D is denoted
by PL again. All members of PL are subharmonic in D, and if u€PL, then u’¢PL
for each p=0. If fis holomorphic in D, then |f|€PL, and further, if f¢ B, then
a(f)ePL. Let PL? be the family of all u€ PL such that 4” has a harmonic majorant
in D (0<p<e). Here, a function v subharmonic in D is said to have a harmonic
majorant 4 in D if h is harmonic and v=h in D. The class H? is the family of f
holomorphic in D such that |f|€¢ PL?, while H? is the family of fEB such that
o(f)EPL? (O<p<ee).
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. Theorem4. Let C and V be as in Theorem 1. Then,-each u€PL? (0<p<co)
has the radial limit u*(t) at " for a.e. t€T, and

Juw@ldzl =77t [V @) de.
" C T

Earlier, a special case of Theorem 4, where p=1, C is an arbitrary diameter,
u is continuous on DUK, and u€PL, was established by BECKENBACH [1, Theo-
rem 2]. It is now an easy exercise to extend a geometric theorem of BECKENBACH
[1, Theorem 3] with the aid of Theorem 4. -

Theorem 1 (and consequently, Theorem 2) now follows from Theorem 4,
applied to o(f)€PL?; note that o(f)*=0(f*). The theory of subharmonic func-
tions of class PL thus serves for the differential geometry, as originated by Becken-
bach and Rado, as well as for the hyperbolic Hardy classes.

For the proof of Theorem 4 we shall make use of

Lemma 1 [5, Theorem]. Let ¢=0 be a function convex and mcreasmg on
(—oo, +o0), and suppose that
e@)ft >+ as -+ oo
Set (p(-—oo):rlir_nw @(t), and let v be a subharmonic function in D such that ¢(v),

again subharmonic, has a harmonic majorant in D. Then the radial limit v*(t) exists
at e for a.e. €T, and is of Li(T), such ihat '

u(z) = (2n) 1 f] v ()t
Furthermore, ¢ (v*)€ L*(T).

In effect, v admits a positive harmonic majorant in D (see [9, p. 65]), so that
v=v"—gq, where ¢g=0 is a Green’s potential and v" is the least harmonic majorant
of v in D, expressed by the Poisson integral of a signed measure

du(t) = v*(Odt+dusg(t) on T,

where dug is singular with respect to dt. Now, [5 Theorem] asserts that dps(t)<0
on T and (p(v*)éLl(T)

Proof of Theorem 4. Since «P€ PL* with (uP)*=(u*)", it sufﬁces to. prove
the theorem in the case p=1. Set ¢(t)=¢ and v=logu and consider Lemma 1,
Since @(v) has a harmonic majorant, v has the harmonic majorant

h(z) = 2n)~2 f - *(t)dt (z€D).

Furthermore, h*=v*=logu*. Since u*=¢@@®*)€L(T) by Lemmal, it follows
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from Jensen’s inequality that e*=g, where g is the Poisson integral of ¢ (v*)=u*.
Thus,
f=etikcHL,

where k is a harmonic conjugate of 4 in D. Therefore |f*|=|fl*=€"=u* and
u=e"=ée"=|f| in D.

We now apply M. Riesz’s cited theorem to fof Hardy class H! to obtain the follow-
ing chain of estimates:

Ju@ldzl = [If@)Ildz =t [If*@IV@yde =
C : C T

=gt fu*(t)V(t) dt,
T
whence follows Theorem 4.

3. Conformal mappings. We remember that if f is holomorphic in D and if
f’€eHY, then f is continuous on DUK and f(e*) is absolutely continuous as a
function of ?€T with

G.1) . %f(e"‘) = ie"(f)*(1) . for ae. t€T,

where (f*)*(¢) is again the radial limit of f / at e ; see [3, Theorem 3.11; p. 42]. For
f€B we denote
f*@ = @I -1/,

and for the proof of Theorem 3 we shall make use of

Lemma 2. Let f€B and f’'€¢ H', and assume that |f(e*)|<l fof all cT.
Then f*€PL' and

[(1=1fE")) -

d . .
(Y0 = |t
for ae. t€T. )
Proof. A calculation yields that Alogf*=4(f¥)*>0 except for the zeros
of f/, so that f*cPL. Since |f] is bounded by a constant c<1-in D, it follows

from f*=|f’|/(1—c? in D with f’¢ H! that f*€PL*. Since (f#)*-—[(f )*]/(l-|f|2)
a.e.on T, the second assertion follows from (3. 1)

Proof of Theorem 3. Since y.is rectifiable (in the Euclidean sense), 1t fol-
lows from [3, Theorem 3.12, p. 44] that f’€¢ H'. By Lemma2, f*cPLl. Since

|4 it
I |df(ei‘)| _ f ‘E’f(e ) i
=L Teer T e @
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it further follows from Lemma 2 that
L= [(** @) ar
T

The first assertion in Theorem 3 now follows from Theorem 4 applied: to each
diameter C and f*¢cPL. '

It remains to prove the sharpness of 2 in L/2. For simplicity we consider the
half-plane R={w|Re w=>0} with the non-Euclidean metric |dw|/[2 Re w] in the
differential form. The non-Euclidean length of a curve I" in R is denoted by A(I).
et =0 and let O0<a<b. Consider the Euclidean rectangle Q with the vertices
Zy=a+¢ei, zy=a—¢i, zg=b—e¢i, and z,=b+¢i. Let f, be a one-to-one conformal
mapping from D onto Q such that f, maps the diameter [—1, 1} onto the segment
ab on the real axis. If we show that

(3.2) A(f(K))/A(ab) =2 as -0,

then the function (f,—1)/(f.+1) serves as an example for the sharpness. Let
2,%,, 2523, 2324, and z,z; be the four sides of f,(K). A calculation yields that

M(z42)) = A(z,25) = (1/2) log (b/a) = A(ab),

A(z12) =¢la -0 and A(zzz) = /b —O.

and as -0,

Therefore (3.2) holds.

Appendix. Tsuji’s proof of M. Riesz’s theorem contains an obscure point.
There is a gap between (5) and (6) in [8, p. 341]; the meanings of 9/dx in (5) and
(6) are different. Since M. Riesz did not raise his result explicitly as in [8, Theorem
VIIL.46, p. 340], we must avoid this difficulty. The principal point is to prove that,
for f holomorphic on DUK,

(A) S ldw] = ==t [1fEIV()at,
(o} T

where C and ¥V are the same as in Theorem 1. Choose points wy=a, Wy, ..., W,_,
w,=b on C in this order. Then

V(t) =lim Z”’ larg (e* —w,) —arg (e —w,_))|
k=1

as max [wy—Wi_1|—0, where arg(e*—w) is a fixed branch in D; V(¢) is Lebesgue
measurable on T. Now it follows from [7, (3), p. 54] (a careful reading shows that
the cited point istrueeven if A or B lies on K) that the following estimate of the integral

10
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on the rectilinear segment w;_,w; holds:

[ 1wt ldw] =772 [ |£(e)] larg (" — wy) —arg (e — w, )| dt,
T

Vi=-1Wx
l1=k=n. Summing up both sides from k=1 to n, and letting max [Wie — W 1|0,
we obtain (A).

Remark. It might be more appropriate to call [8, Theprem VI11.46] the F. Carl-
‘'son and M. Rigsz theorem. ' ’
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