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Compact and Hilbert—Schmidt composition operators
o on weighted sequence spaces

R. K. SINGH, D. K. GUPTA and A. KUMAR

1. Preliminaries. If (X, &, %) is a o-finite measure space, then every non-singular
measurable transformation T from X into itself induces the composition transforma-
tion Cy from LP(4) into the linear space of all complex valued functions on X defined
by Cyf=foT for every feL?(2). If C; turns out to be a continuous linear trans-
formation from L?(1) into itself, then we designate it as a composition operator
on L?(}).

If w={w,} is a sequence of strictly positive real numbers, then we define the
measure A on the measurable space (N, 2(N)) as

ME)= >w, forevery ECP(N),
neE
the power set of the set N of positive integers. Thus (N, 2(N), 1) becomes a o-finite
measure space. The LP-space of this measure space is known as a weighted sequence
space and w is called the sequence of weights. We denote this weighted sequence
space by /2. It is a well established fact that /? (more generally L?(2)) is a Banach
space. If p=2, then I is a Hilbert space under pointwise addition and scalar multi-
plication with the inner product defined as

o

7 (fg)= [redi= 3w, f(n)gn)
N 1

for every fand g in /2. It is also interesting to note that the space /2 is a functional
Hilbert _spacé,By B(12) we denote the Banach algebra of all bounded operators
on /2.

The main purpose of this note is to characterise compact, finite rank and Hil-
bert—Schmidt composition operators on /7.
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2. Compact composition operators. If (X, &, 1) is a non-atomic measure space,
then it has been shown in [6] that no composition operator on L%(1) is compact. .
If the sequence w of weights is a constant sequence, then it can be easily established
that /2 does not admit any compact composition operator. Thus in particular no
composition operator on /2 is compact, though it is an L%space of an atomic measure
space. But if the sequence w is a non-constant suitably chosen sequence, then there
are compact composition operators on /2. This fact makes this study a little inter-
esting. Before the characterisation of compact composition operators on /? we shall
need the following easy lemma.

Lemma 2.1. Every weakly convergent sequence in 12 is pointwise convergent.

Proof. Let {f,} be a sequence in /; converging to zero weakly. Then, since
{w; fu(N}y={{fs, e;)} converges to zero, where e;(i)=4;; (the Kronecker delta),
it follows that {f,} is pointwise convergent.

. Remark. The above lemma is true in any functional Hilbert space.
Let T: N—~N be a mapping and let ¢=>0. Then the set M, is defined as

= {n: n€ N and AT({n}) > eA({n})}.

The following theorem characterises compact composition operators on /2 in terms- _
of the cardinality of M. o

Theorem 2.2. Let Cr€B(l2). Then Cy is compact zfand only zf Me, Jor every
e=>0, contains finitely many elements.

Proof. Let £>0 be given and let {f,} be a sequence in /2 converging weakly
to zero. Suppose M, contains k elements. Then, since AT 1({n})=eA({n}) for
every ne N\M, and AT-({n})=M/)({n}) for every n€N and for some finite
M=0 [7], ' o
ICr A1z = f |fol2dAT1 = f \flPdAT— 4+ [ |flPdAT1 =

N/M,
= M- k| f,(m)P2({mD) + el £,1%

where | f,(m,)|=max {|f,(m)|: meM,} and ({m})=max {).'({m,})-: m€ M,}. Since
by the above lemma {f,} converges to zero pointwise, we can find m€e€N such' that
for every n=>m,

T ICrfll? = & MkAt{m ) +ell foll®.

Since every weakly convergent sequence is norm bounded {1, p. 145] and ¢, and ¢
are arbitrary, we conclude that the sequence {||C;f,||} converges to zero. Hence
C; is compact.
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.. Conversely, suppose M, contains infinitely' many elements for some &¢>0. Let
M be the closure of span {e,: n€ M,}. Then for feEM:,

ICzfl2= [IfPdiT-t> [|flrdd=e)f|s.
N M,

Thus C, is bounded away from zero on M¢. This shows that the range of C {M¢,
the restriotion of C, to the subspace M, is a closed infinite dimensional subspace
contained in the range of C,. Hence by problem 141 of [3] Cr is not compact.

- Corollary L. Let C € B(l?). Then C,is compact if and only tf).(T‘l({n}))/l({n})
tends to zero as n tends to .

‘Corollary 2. No composition operator on I* is compact.

Proof. If Cr€B(l?, then the range of T contains infinitely many elements
[8]. Hence M,=T(N) whenever ¢~<1. Thus C; is not compact.

Let a be a strictly positive real number and let w={w,} "be the sequence defined
as w,=a" for ncN. Then the corresponding /2 is denoted by /Z. In the light of
the following two theorems it is comparatively easier to locate compact composi-
tion operators on /2.

' Theorem 2.3. Let C,€B(l}), where O0<a<1. Then C; is compact lfand onIy if
the sequence {n—T(n)} tends to = as n tends to .

~Proof. Suppose the sequence {n—T'(n)} tends to « as n tends to o. Let m
be in the range of T and let T~*({m})={m,, my, ms, ...} be the arrangement of
T~1({m}) in the ascending order. Then

WTmY) o = gmem gmeTe
Sy = 2= Zam= -1

i i=0 l"_a
- 1
Since a<1, we can conclude from the hypothesis that lim M 0.

I A}

Hence by the Corollary 1 of Theorem 2.2 C; is compact.

Conversely, suppose the sequence {n—T(n)} does not tend to « as n tends
to o, By Theorem 1 of [7] the sequence is bounded from below. Hence the sequence
{n— T(n)} has bounded subsequences. Let {m,—7(m)} be a bounded subsequence
with a bound M. Then - : :

AT {T@IY)
)-({ T (”k)})

Hence again by the Corollary 1 of Theorem 2.2 Cy is not compact. This completes
the proof of the theorem.

> a"%— Tt > gM > (),
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Example. Let T: N—-N be defined as T(m)=n/3 if n—2=m=n, where
n is a multiple of 3. Then C, is a composition operator on /2, 0<a<1. Since
AT 1({n))/A({n}) (=a"(1+a~*+a™?)) tends to zero as n tends to e, we can con-
clude that C; is compact. ‘

~ Theorem 2.4. Let C,€B(I?), where a>1. Then Cy is compact if and only if
{T(n)—n}- tends to < as n tends to . .

Proof. The proof is dual to the proof of Theorem 2.3.

Example. Let 7: N—-N be the mapping defined by T(m)=n® if n—2=
=m=n, where nis a multiple of 3. Then, since 2T ~({n})/A({n})=0 for n€e N\ T(N)
and (a~2+a~'+1)/aVn(r~1) for nc T(N), Cris a compact composition operator.

We now give several sufficient conditions for non-compactness of composition
operators on /2.

Theorem 2.5. Let T: N—~N be an injection and CrEB(1D), ‘where O<a=<]1.
Then Cy. is not compact. )

Proof. Suppose Cy is compact. We infer from Theorem 2.3 that {n—T(n)}—+c.
Therefore there exists a number ny,€ N such that for every n=n,, we have T(n)<n.
Let nj=max {T()|1=i=n,}, ny=max {n},n}, M\={1,2,...,n} and N,=N,U
U{n+1}. Since T(n)<n for n>n, and T is injective, T(N,)=N,=T(N,) which
contradicts the injectivity of T.

The following is an example of a function T which is not an injection, but it
induces a compact composition operator.

Example. Let E,={2""'(2k—1)|keéN}. Then |JE,=N. Let T: N—N be

defined as T(m)=n for every m€E,. Then Cr is a composition operator on /7,
0<a<1. Since
AT ({np)/2({n}) = a*7[a"(1 —a®),

Cy is compact. : o
Theorem 2.6. Let T: N—~N be a surjection and CpE€B(I}), where a=1.
Then Cy.is not a compact composition operator.

Proof. Suppose Cy is compact. We infer from Theorem 2.4 that {T(n)—n}
tends to . Therefore there exists a number 17,6 N such that for every n>n, we
have T(n)>n. Let nj=max{T(i)|1=i=n,}, nm=max{nj+1,n,+1} and N,=
={1,2,...,m}. Then T(N\NPCN\QN, and so T(N)NN,=T(N)NN;. Since
T(n)>n,, we get Card (T(NYNN,)=Card (T(N,)(\N,)<Card N,. This means T
is not surjective. This proves the Theorem.

The following is an example’ of a compact composition operator induced by a
non-surjective mapping. : .
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‘Example. Let T: N-N be defined as T(n)=2n. Then C; is a composition

operator on /2, a>1. Since
) ; 0, if n is odd
AT ({nPiA({n}) = 1/a™%, if n is even,
Cy is compact.
The following Theorem characterises finite rank composition operators on /2,

where Iw;<co.
Theorem 2.7. Let Cr€B(I%), where Ew,<co. Then Cyp is a finite rank
operator if and only if the range of T contains finitely many elements.

Proof. Since the range of Cy is dense in [2(N, T"Y(P(N)), 1), 2(E)= 3 w,

nEE
{10, Lemma 2.4}, the proof follows trivially.

3. Hilbert—Schmidt composition operators

Definition. A bounded linear operator 4 on an infinite dimensional separable
Hilbert space H is said to be a Hilbert—Schmidt operator if there exists an ortho-
normal basis {e,: n€ N} in H such that X ||de,|?<e. It is well known that the
definition is independent of the choice of the orthonormal basis.

Let T: N—N be a mapping and let y={y(m)} be the sequence defined by
y(m)=||Ky )l for every meN, where K, is the kernel function for I defined by
K,=e,/w,. Then we prove the following Theorem.

Theorem 3.1, Let Cr€B(l%). Then Cy is a Hilbert—Schmidt operator if and
only if y€lZ.

Proof. Since the family {f,} defined by f,= /Yw, forms an orthonormal
basis for /2, Cr is a Hilbert—Schmidt operator if and only if

4
R T ] 1 .
SUCH T = 3 3w | xTEE Wprme= 3 Wpewp—g =
n n m w, n mcT-Y{n)) w, n m¢€T-1({n})) Wa
ermm [* erem@) |°
= 22 Wt [T T 2w 2 | ) = Kl = I <
n m T (m) m

This finishes the proof of the Theorem.

Example. Let the sequence {w,} of weights be the sequence {n} and let
T: N—N be defined as T(n)=n®. Then C; is a composition operator on /2. Since

"y"2 = 2 wn/wT(n) et 2 n/n3 = Z I/n2 < oo,
Cr is Hilbert—Schmidt.
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.The following exampale shows that the set of Hilbert—Schmidt composition
operators is properly contained in the set of all compact composition operators
on I

Example. Let {w,}={n} and let C; be the composition operator on /2 induced
by the mapping T(n)=n®. Then Cy is compact but is not Hilbert—Schmidt.
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