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On the convergence of solutions of 
functional differential equations 

T. KRISZTIN 

1. Introduction 

The application of Ljapunov functions and funct ional has proved to be useful 
in the study of the stability of solutions of functional differential equations. Such 
i n v e s t i g a t i o n s w e r e i n i t i a t e d b y N . N . KRASOVSKII [9] a n d B. S . RAZUMIKHIN [10]. 

The Ljapunov functions and functionals are usable for studying other properties, 
t o o . F o r i n s t a n c e , S. R . BERNFELD a n d J . R . HADDOCK ([1], [2], [4]) e x a m i n e d t h e 

existence of the limit of solutions as t— °° by the aid of Ljapunov functions. But 
their method was not applicable when the right-hand side of the equation is the sum 
of an ordinary and a functional part of the same order. But such equations have 
occurred in the applications, for example in the investigation of biological popula-
tions [3]. In this case the problem was solved for certain autonomous and periodic 
equations only [5], [6]. In this paper we give a sufficient condition for the existence 
of the limit of solutions in case of non-periodic equations. Our main result guarantees 
the existence of the limit of a Ljapunov function along the solutions as /-•«>. We 
present several applications in which we show that the solutions or their norm tend 
to a constant as / — <*>. Among these, we study a stability example of N. N. KRA-
SOVSKII proving that his assumptions imply the existence of the limit of solutions 
in addition to the stability of the zero solution. 

The main theorems are valid results for functional differential equations in 
any Banach space X. But they also yield new results for the special case X=R 
(Section 4). 
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2. Notations and definitions 

Let R be the set of real numbers and R+ the set of nonnegative real numbers . 
Let X be a Banach space with norm | • | and let C—C([—r, 0], X) denote the space 
of continuous functions which map the interval [—r, 0] into X, where r > 0 . For 
(p€C define | M | = max^ |q»(s)|. If x: [/„—r, X is a continuous function 
(t0£R+, 0<A^<=°), then for t£[t0,t0+A) the function x,£C is defined by x,(s) = 
=x(t+s), -rSiS0. 

We consider the nonlinear, non-autonomous functional differential equation 

(2.1) x(t) = F(t,x,l 
where F: R+xCr-~X, C f c C . 

Let t0£R+ and (p0£CF be given. A function x(-)=x(t0, cp0)(•) is said to 
be a solution of (2.1) (with the initial function (p0 at t0) if there exists a number A 
(0</4^«>) such that * ( • ) is defined and continuous on [t0—r, t^+A), absolutely 
continuous on the bounded intervals of ft0 , t0+A), x,o=(p0, x,£CF for t0 + A) 
and x(t)=F(t, xt) almost everywhere on [?0, t0+A). In this paper we suppose 
A = ° i . e . the solutions of (2.1) exist for t=ta (see, for example, [7], [8]). 

By a Ljapunov function we mean a continuous function V: [—r, °°)xX-~R. 
The upper right-hand derivative Z)(+ 1}V of a Ljapunov function V with respect to 
system (2.1) is defined by 

£(+2.I> V(t, <p) = „Em j \V(t + h, <p(0) + hF(t, <p))- V(t, <p(0))] ((/, cp^R+X CF). 

If V is a Ljapunov function and ( t , c p ) £ R + x C F , then let 

V(t,(p)= sup V(t + s, <p(s)), V(t,(p)= inf V(t+s, <p(s)). 
- rgsso —rssao 

Finally, for a Ljapunov function V and given numbers O o / ^ e define 

n, £) = {(/, <p)dR+xCF: V(t, <p(0)) £ £, V ( f , <p) ^ 2s, V ( f , <p)-V(t, <p{0)) < f/}, 

S(V, n, e) = {(i, <p)£R+XCF: V(t, <p(0)) ss -£, 
V(t, <p) is - 2 e , V(t,<p(0))-V(t, <p) < r,}. 

3. The main result 

The main result guarantees the existence of the limit of a Ljapunov function 
along the solutions of (2.1) as t—<*=. 

T h e o r e m 3.1. Suppose that for a nonnegative Ljapunov function V there exists 
a functional W\ R+XCF—R with the following property: for every e > 0 there exist 
r\ = t){e)>0 and c = i ( e ) > 0 such that 
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(i) if (t,<p)€S(V,ti,e), then 

(3.1) Wit, cp) ^ C [V(t, q>) - V(t, <p (0))], 

(ii) if x(-) is a solution of (2.1) and (t, x,)aS(V, t], e) for every f€[/i, /2] 
(ta^tl^t2), then 

fs 
(3.2) V{ts,x(t^)-V(tltx(t^)^ f W(t,x,)dt. 

'i 

Then for each solution x(-) of (2.1) Hm V(t, x(t)) exists. 

We first prove the following lemma. 

L e m m a . If the conditions of Theorem 3.1 are satisfied, then for each solution 
x( •) of (2.1) the function V( -, x.) is non-increasing. 

P r o o f . Assume that (2.1) has a solution x ( - ) such that F ( - , x . ) is not a 
non-increasing function. Then there exists a and in any right-hand side 
neighbourhood of tY there exists a t such that V(t, x, ) = V{tx, x(f !))>(). 
Let e be chosen such that 0 < £ < r ( ( 1 , x ( / J ) < 2 £ and choose rj=i](e), <̂  = £(e) 
according to assumptions of the lemma. Obviously there exist t2, t3 such that 

> i 2 S i I , t 3 - t 2 ^ j , V(t2, x ( i 2 ) )=F( i 1 ; x ( i 1 ) )<F( / 3 , x ( i 3 ) )g2£ , K ( f 3 , x ( f 3 ) ) -

-V(t2,x(t2))^ri and if te[t2,ts\, then V(t2j x(r2))== V(t, x(t)) and F(t, *,)== 
s V(t3, x(t3)). For such t2, t3 we have (t, x,)€S(V, tj, e) provided f£[/2, f3]. Also 

(3.3) V(t,xt)-V(t,x(t))^V(t3,x(t3))-V(t2,x(t2)) mt2,t3]). 

It follows from (3.1), (3.2) and (3.3) that 
> 

V(t3,x(t3))-V(t2,x(toJ)^ f W(t, x,)dt == 
h 

fz[V(t,x,)-V(t,x(t)y]dt^ f Z[V(t3,x(t3))-V(t2,x(t,))-] dt = 
>i h 

= ( h { t 3 , x(t3j) - V(t2, X ( A ) ) ] . 

Hence r3 —¿2=4-- This is a contradiction. The lemma is proved. 

P r o o f of Theorem 3.1. Suppose that (2.1) has a solution x ( - ) such that the 
limit \imV(t, x(i)) does not exist. Then Hm V(t, x , ) = a > 0 (this limit exists 
by Lemma). Let £ be chosen so that 0 < £ < a < 2 £ and choose r]=ri(e) and £ = ( e ) 
according to the assumptions of the theorem. Then we can find a constant ft 
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^0</?<min j-|-, numbers f l s f2 such that 

(3.4) < , > i i S i „ U - t ^ r , 

(3.5) V{t2,x(tJ)-V(tl,x(tj) = 

(3.6) V(h, xtl)-a < \z-V(tt, ^ J-, 

0 S V(U, x(Q) - V(t, x(t)) ^ p ф, 

(3.7) V ( / l f 3 V ( t 1 , x , l ) ^ 2e, 

(3.8) V i t ^ x J - V ^ x i t ^ ^ y , 
where y > 0 and 

, iil , 

From (3.8) and the monotonicity of F( •, x.) it follows that 

(3.10) F(f, x,)-V(t2, xiQ) ^ у (tati, /J)-

Since by (3.6) we have 

(3.11) V(t,x,)-V{t,x(tj) Ш V(t, х,)-а + \а-У(12,х(и))\ + У(1,,х(12))-У(1, x(t)) < 

From (3.5), (3.6), (3.7) and (3.11) we obtain (/, x,)€S(K, t], e) for t£[tlttj. Thus, 
(3.1) and (3.2) hold for (t, xt) as f€[f l 5 i j - Let f2] be the greatest number 
for which 

(3.12) V(t%, x(i2))-V(rk, x(zk)) = ky (fc = 1, 2, .. . , 

From (3.10) and the choice of тк it follows that 

(3.13) V(t, xt)-V(t, x(t)) ^ ( fc+l)y ( I € [ T T , / J ; к = 1, 2 , . . . , [ A ] ) . 

By (3.1), (3.2), (3.12) and (3.13) we have 

у = V(xk_1, xix^-Vix,, x(rk)) =s / V(i, x,) dt ^ 

S J"<i[V(t, x,)-V(t, x(t))-]dt ^ J'\(k+l)ydt = 
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Hence T t . i - T t ë y ^ j - , Thus , by (3.9) 

1 ft 1 

which contradicts (3.4). This completes the proof. 

R e m a r k 3.1. If the Ljapunov function F i n Theorem 3.1 is locally Lipschitzian 
and W=D^1)V, then for each solution x ( •) of (2.1) the assumption (3.2) is 
satisfied and even 

I? 
V{k, x i t ^ - V ^ x i t J ) = J D(2.i)V(t, x,) dt (t0 ^ ix s Q. 

h 

This can be shown as follows. If x(t) = F(t, xt), then x(t+h)=x(t)+hF(t, x t ) + 
-t-o(A) (h— 0 + ) . From the Lipschitz condition for F we obtain 

V(t+h, x(t+h))-V(t, x(0) S V(t+h, x(t) + hF(t, x,j)+L|o(/i)| — V(t, x(t)) 

( f t - 0+), 
where L is the Lipschitz constant for F on a neighbourhood of (t, x(f))- Hence 
D+ V(t, x W j s ^ . , ) ^ / , xt), where D+V(t,x(t)) is the upper right-hand deriva-
tive of F along the solution x(t) of (2.1), that is 

D+V(t, x(0) = ^Bm j[V(t+h, x(t+h))-V(t, x(t))l 

Likewise we can prove D+V(t, x(t))^D^21)V(t, x^ and we obtain 

(3.14) D+V{t,x(t))=D&1)V(t,xl). 

(3.14) was proved by T. YOSHIZAWA [11] for ordinary differential equations in the 
case X—Rm. Since F is locally Lipschitzian, F ( • , * ( • ) ) is absolutely continuous 
on every bounded interval of [i„, =») and thus 

(3.15) V(ti,x(Q)-V{t1,x(t^)= ¡D+V(t,x(t))dt (t0 s ^ S t j . 
h 

From (3.14) and (3.15) it follows that our statement holds. 

C o r o l l a r y 3.1. If for every e=»0 there exists an Tf=t](e)>-0 such that 
(t, ç>)ÇS(|<j!)(0)|, tj, e) implies .D^ J ^ I ^ O , then for each solution x ( •) of (2.1) 
l im |x(f)| exists. t-~ oo 

P r o o f . We apply Theorem 3.1. Let V(t,x)=\x\ and W(t, (p)=Df21)\<p\. Since 
the condition of Corollary .3.1 is stronger than condition (i) of Theorem 3.1 and thé 
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function V is locally Lipschitzian, from Remark 3.1 it is obvious that the limit 
exists. 

Corol lary 3.1 is due t o J. R . HADDOCK [4]. 
In the next corollary of Theorem 3.1 we do not assume that the Ljapunov func-

tion is nonnegative. 

C o r o l l a r y 3.2. Suppose that for a Ljapunov function V there exist functionals 
Wit W2: i i + X C F — R with the following property: for every e > 0 there exist 
f /=r/(e)>0 and such that 

(i) (t>(pXS(V,t,,e) implies W^t, q>) s £ [F(i, cp) - V(t, <p(0))], 

(ii) (t,<pXS(V,t],e) implies JV2(t, <p) =s <p(0))- V(t, 9)], 

(iii) if (t, x,)£ S(V, rj, e) (/<E , i j , to - h = t j , then 

V(t»x(tJ)-V(tltx(tJ)*- f'w^t.x.) dt, 
'1 

. (iv). if (t,x,)£S(V,Tl,£) f j . '0 — '1 — '2), then 

V{h, x(tj)-V(t2, x{tj) s f'w2(t, x,) dt, 
h 

where *(•) is a solution of (2.1). 
Then for each solution x(-) of (2.1) lim V(t, x(t)) exists. t-+ CO 

P r o o f . Let F 1 ( i , x )=max {F(i,x),0}, V2(t, x)= - m i n {V(t, x), 0}. From 
conditions (i), (ii), (iii), (iv) of Corollary 3.2 it follows that Vx, W1 and V2, W2 sat-
isfy conditions (i), (ii) of Theorem 3.1. This implies that for every solution x(>) 
of (2.1) the limits Hm x(/)) and \imV2(t, x(/)) exist. Thus the corollary 
is proved. 

4. Applications and examples 

I. Consider the equation 

(4.1) x(t)=f{t,x(t))+g(t,x,), 

where / : R+XXf-~X, XfczX, g: R+xCg-X, Cg<zC. (4.1) is the special case of 
the equation (2.1), when 

F(t,(p)=.f(t,(p(p))+g(t,(p). 

T h e o r e m 4.1. Suppose that for a nonnegative, locally Lipschitzian Ljapunov 
function V there exist functions a,p: R+—R+ with the following properties: . 
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(i) a(f)i is bounded for " 
(ii) the function p is locally Lipschitzian on (0, <=>), 

(iii) V(t, x+y)^ V(t, x)+ V(t, y) for all (t, x), (/, y)eR + XX, 

(iv) Em j [F ( i + h,x + hf(t, x)) - F(i , x)] S - a(t)p(V(t, x)) 

for all (t,x)£R+XXf, 

(v) for every e > 0 there exists an rj— j /(e)>0 such that (t, (p)dS(V, r\, e) 

implies ïïm \ V(t+h, hg(t, <p))^a(t)p(V(t, <pj). h—0+ H 
Then for each solution x ( - ) of (4.1) Iim V(t, x(t)) exists. 

P r o o f . We apply Theorem 3.1. Let W=D^UjV. By Remark 3.1 it is sufficient 
to prove that condition (i) of Theorem 3.1 is satisfied. Let £ > 0 be given and choose 
Ti=ri(e) according to assumption (v). If (t, q>)£S(V, r\, e), then from conditions 
(i)—(v) we obtain 

: A l l ) - K < f , » - Hm J [r(t+h, <p(0) + hf(t, <p(0))+hg(t, cp))-v(t, <p(0))]' 3= 

S Em 1 [V(t+h, <p(0) + hf(t, <p(0)))—V(t, ç(0))]+ M±V(t+h, hg(t, cp)) 

«-»•0+ rl ft 

3= a(t)[p{V(t, <p))-p(V(t, <p(0)))] ë KL[V(t, q>)-V(t, ç>(0))] -

— V(U <P) — V(t, q>(0))], 
where L is the Lipschitz constant of p on [£, 2e] and K is an upper bound for a on 
[/0, oo). This completes the proof. 

II. We now apply Theorem 4.1 to obtain a result for equation (4.1) in the 
case X=R. 

T h e o r e m 4.2. LetX=R.Iff(t, 0 )=0 , xf(t, x ) s -a(t)x2forall(t, x)£R+ X X f , 
ç>)|ëà(0IM for all (t, <p)£R+XCg and a(t) is bounded for tst0, then for each 

solution x ( - ) of (4.1) lim x(t) exists. 

P r o o f . In Theorem 4.1 let F(f, x )= |x | , a ( t ) = a ( t ) , p(u)=1, »j(e)=e. Thus, 
F i s a Lipschitzian function and conditions (i), (ii), (iii) and in the case x = 0 con-
dition (iv) in Theorem 4.1 are obviously satisfied. We have 

S . V f c *)l - M) ^ Em { | x | ( l + h 1] * - a ( f ) |x|, 

if x=^0 and 

9»)l = lg(', <P)I S a ( f ) M l , : 

4» 
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that assures also conditions (iv), (v) in Theorem 4.1 to be satisfied. This completes 
the proof. 

E x a m p l e 4.1. Let us consider the scalar equation 

(4.2) *(/) = -ax(t) + b{t)x{t-x(t)), 

where a > 0 , 6(f) and x(t) are continuous for t^t0, \b(t)\^a, 0^x(t)^r. 
For equation (4.2) in this case N. N. K R A S O V S K I I [9] proved that the zero solu-

tion is uniformly stable. Applying Theorem 4.2 we obtain that x(t) tends to a con-
stant as t—"=>, where * ( • ) is a solution of (4.2). 

III. Let us consider the following special form of equation (4.1): 

(4.3) ¿ ( 0 = -a(t)x(t)+ 2 bk(t)x(t-xk(t)), 
*=i 

where a, bk,xk: R+-*R are continuous functions and 0^xk(t)'^r (k—l, 2, . . . ,«) . 

T h e o r e m 4.3. Let k: [—r, °°)->-(0, be a continuous and locally Lipschitzian 
function. If there exists a K£R+ such that 

then for each solution x(-) of (4.3) Um |/c(i)x(0[ exists. 

P r o o f . Apply Theorem 4.1 setting V(t, x) = \k(t)x\, a(t)=a(t)-D+^\ 
k(0 

p(u) = 1, »/(e)=6. It is clear that conditions (i), (ii), (iii) in Theorem 4.1 are satisfied. 
Using (4.4) we can check conditions (iv), (v) in Theorem 4.1 as follows 

m \ ( m + h ) i x - h a m \ - m H = i*(O*i e e I M l i M l ^ M z M i ) = 

= \k(t)x\ ( ^ p - ^ o ) = -*(t)V{t, X), 

Em i k(t + h)h 2bk(t)x(t~xk(t))\ = k(t)\j;bk(t)x(t-xk(t)) s 

^ fc(0 I J ^ y n t , *> S ( « ( 0 - ^ ) V ( t , * , ) = A ( 0 F ( * , X,). 

This completes the proof. 
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R e m a r k 4.1. If for equation (4.3) the inequality j? \bk(t)\^a{t)^K holds, 
*=i 

then k(t)= 1 satisfies (4.4) and by Theorem 4.3 lim |x(f)l exists. But Theorem 4.3 t—+ oo 

can be used even if this inequality does not hold, as the following example shows. 

E x a m p l e 4.2. Let us consider the equation 

(4.5) x ( 0 = -a(t)x(t) + b(t)x(t-x(t)), 
where a(t), b(t) and r ( f ) are continuous for t^t0, O g z ( 0 = r and there exists a 

K£R+ such that a(t)^\b(t)\^K for t^t0. Let * ( / ) = e x p ( / (a ( i ) - |6 ( s ) | ) i fe ) . 
o 

We have 

cxp(f{a(s)-\b(s)\)ds) , - J H t ) l ^ IMOI ^ K. 
exp ( / (a(s)-\b(s)\)ds) 

o 

Thus, from Theorem 4.3 it follows that for each solution x( • ) of (4.5) 

\im\x(t)cxp{f{a(s)-\b(s)\)ds)\ 
o 

exists. 
IV. Let us consider the equation 

(4.6) S(f) = -h(x(t)) + h(x(t-x(t))), 

where z(t) is continuous for t^t0, O ^ T ( t ) = r and h(s) is continuous for s£R. 

T h e o r e m 4.4. Jf the function h is increasing and locally Lipschitzian on ( — 0 ) 
and (0, oo), then for each solution x(<) of (4.6) lim x(t) exists. 

t - . <X> 

P r o o f . Apply Corollary 3.2 setting V(t,x)=x, fV^t, <p)= - W2(t, <p) = 
= D(+6)F(i, <p). Let £=-0 be given, tj(s)=e and £(e)=max {Lj, L2}, where Z^, 
L2 are the Lipschitz constants of h on [e, 2s], [—2e, — e], respectively. Since 
Wi(t, x,)= — W2(t, x,)=x(t) it is obvious that conditions (iii), (iv) in Corollary 3.2 
are satisfied. If (t, x,)£S(x(t), t], e) then 

m = -h{x(t))+h(x(t-x(t))) ^-h{x(t))+h(x,) s £(*,-*(/)). 

If (t, xt)£S(x(t), ti, e), then 

-HO = h ( x ( t ) ) - h ( x ( t - z ( t ) ) ) == h (x ( t ) ) -h (x , ) s 

Thus conditions (i), (ii) in Corollary 3.2 are satisfied and the theorem is proved. 
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. R e m a r k 4.2. Applying T h e o r e m 4.4 to case h(u)=ul1*, t(t)=r We get a new 
proof fo r the following conjecture of S. R . BERNFELD a n d J. R . HADDOCK [1], which 
was solved by C.'JEHU [5]: each solution of the scalar équát ibh x(t)= — Зс 1 ' 3^)-^ 
+xll*(t—r) tends to a constant as /— . : •••••..•'•.., .•• 
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