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On the convergence of solutions of
functional differential equations

T. KRISZTIN

1. Introduction

The application of Ljapunov functions and functionals has proved to be useful
in the study of the stability of solutions of functional differential equations. Such
investigations were initiated by N. N. Krasovskil [9] and B. S. RAzZUMIKRIN [10].
The Ljapunov functions and functionals are usable for studying other properties,
too. For instance, S. R. BERNFELD and J. R. Happock ([1], [2], [4]) examined the
existence of the limit of solutions as z—c> by the aid of Ljapunov functions. But
their method was not applicable when the right-hand side of the equation is the sum
of an ordinary and a functional part of the same order. But such equations have
occurred in the applications, for example in the investigation of biological popula-
tions [3]. In this case the problem was solved for certain autonomous and periodic
equations only [5], [6]. In this paper we give a sufficient condition for the existence
of the limit of solutions in case of non-periodic equations. Qur main result guarantees
the existence of the limit of a Ljapunov function along the solutions as f—o. We
present several applications in which we show that the solutions or their norm tend
to.a constant as ¢—~o. Among these, we study a stability example of N. N. Kra-
sovskif proving that his assumptions imply the existence of the limit of solutions
in addition to the stability of the zero solution.

The main theorems are valid results for functional differential equations in
any Banach space X. But they also yield new results for the special case X=R
(Section 4).
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2. Notations and definitions

Let R be the set of real numbers and R* the set of nonnegative real num bers.
Let X be a Banach space with norm |- | and let C=C([—r, 0], X) denote the space
of continuous functions which map the interval [—r, 0] into X, where r>0. For
@€C define |of|= _max lp(s)]. If x: [t,—r, t,+A)—+X is a continuous function
(1€ R, 0<A=co), then for 1€[t,, 1o+ A) the function x,£C is defined by x,(s)=
=x(t+s), —r=s=0.

We consider the nonlinear, non-autonomous functional differential equation

.1 x@) = F(t, x,),
where F: R*XCry—X, CprCC.

Let t,¢R* and @, €Cr be given. A function x(-)=x(ty, @o)(+) is said to
be a solution of (2.1) (with the initial function ¢, at #,) if there exists a number 4
(0<A=o) such that x(.) is defined and continuous on [t,—r, t,+ A4), absolutely
continuous on the bounded intervals of [ty, f,+4), X, =, x,€Cr for 1€lty, 15+ 4)
and x(t)=F(t, x) almost everywhere on [t,, t,+A4). In this paper we suppose
A=, 1.e. the solutions of (2.1) exist for t=t, (see, for example, [7], [8)).

By a Ljapunov function we mean a continuous function V: [—r, o)X X —R,
The upper right-hand derivative D,V of a Ljapunov function ¥ with respect to
system (2.1) is defined by -

DVt ¢) = lnn —[V(t+h e +hF(, 0)=V(t, 0@)] ((, <p)€R+xCF)

If V is a Ljapunov function and (¢, 9)€R* X Cf, then let
V(t, @)= sup V(t+s, ¢(s)), V(@ ¢)= inf V(t+s, ¢(s)).
—r=s=0

—r=s=
Finally, for a Ljapunov function V and given numbers O<n=¢ define
SW,n.e) ={(t, )ERT XCp: ¥ (1, 0(O) = &, V(1,0) = 2¢, Vs, (o) v, <p(0)) < 'I}
SW,n,8) = {(t, )ER*X Cp: V(t,0(0)) =—
V(t,o) = =26 V(o @)-V(t 0) < rr}-

3. The main result

The main result guarantees the existence of the limit of a Ljapunov function
along the solutions of (2.1) as 1 —+co.

Theorem 3.1. Suppose that for a nonnegative Ljapunov function V there exists
a functional W: R* X Cg—R with the following property: for every ¢=>0 there exist
n=n()=0 and {=E&(e)=0 such that
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@) if (1, 9SSV, n,¢), then
3.1 Wit ) = V() -V (1 o)),

Gi) if x(-) is a solution of (2.1) and (t,x)ES(V,n,¢) for every (€[ty,1,]
(ty=1,=t,), then

3.2 V'(tg, x(t)) =V (1, x(t) = j ’ W(t, x,) dt.

Then for each solution x(-) of (2.1) ‘l_i.m v(t, x(t)) “exists.
We first prove the following lemma.

Lemma. If the conditions of Theorem 3.1 are satisfied, then for each solution
x(+) of (2.1) the function V(-,x.) is non-increasing.

Proof. Assume that (2.1) has a solution x(-) such that V(-,x.) is not a
non-increasing function. Then there exists a # =7, and in any right-hand side
neighbourhood of ¢, there exists a ¢ such that V(z, x)=>V(t;, x,)=V(1t,, x(t))>0.
Let ¢ be chosen such that O<e<V(t;, x(#))<2¢ and choose n=n(e), {=E(e)
according to assumptions of the lemma. Obviously there exist 7,, #; such that ;>

I ,
LS, b=, V(ty, x(1)=V(t, x(0)) <V(ts, x(tz))=2¢, V13, x(t3)) -
—V(ty, x())<n and if ‘t€[t,, 1], then V(f, x(1))=V(t, x(2)) and V(, x)=
=V¥(t3, x(t5)). For such 1,, t; we have (¢, x)ES(V,n,€) provided t€[t,, ;). Also

(3.3) V(t, x) =V (t, x(0)) = V (13, x (1)) =¥ (2, x (1)) (1€1ty, 1))
It follows from (3.1), (3.2) and (3.3) that
V(ta, X(1) =V (t2, x(t)) = [ W(t, x)dt =
t2
I3 I3
= [e[Vex)-V(Lx@)]di= [ E[V(ts, x(t) =V (12, x(12))] dt =
[ ]
= (ts= 1) [V (85, x ()~ V (12, x () ]-

Hence t;—1, E%. This is a contradiction. The lemma is proved.

Proof of Theorem 3.1. Suppose that (2.1) has a solution x(-) such that the
limit lim V(t, x(¢)) does not exist. Then Jim V(t, x)=a=>0 (this limit exists

by Lemma). Let ¢ be chosen so that 0<g<a<2¢ and choose n=n(e) and ¢=£E(e)
according to the assumptions of the theorem. Then we can find a constant
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(0< ﬂ<min{%, a;e}) and numbers {,, t, such that
349 =18 =ty, L—HL =T,
(35) R V(’Za x(tz))—V(tlv x(tl)) = B:
(3.6) v, x,)—« < = |[r=V(t,

0=V(t, x(tz))_V(t, x()) =P (t€[ty, L)),

3.7 V(,x(t))=e, V(y,x) =2
(3.8) V(ty, x,) =V (t2, x(1)) = 7,
where y=>0 and

h B E [%] 1
(3.9 Z P
From (3.8) and the monotonicity of ¥ (-, x.) it follows that
(3.10) V(t, x)—V(te, x(1z)) =y (¢€[11, t,]).

Since )3<— by (3.6) we have

G.11) V(t,x)—V(t, x()) =V, x)—a+ja—V(tz, x )| +V (tz, (1)) =V (1, x (1)) <

n.n. .1 _
< ?+?+ 3= n (€[, 1))
From (3.5), (3.6), (3.7) and (3.11) we obtain (¢, x)¢S(V, n,¢) for tc[t,, t,]. Thus,
(3.1) and (3.2) hold for (f, x,) as €[y, )} Let 1,€[ty, 2] be the greatest number
for which

(3.12) V(ts, x(1)) =V (i, x(v)) = ky [k =12,..., [%D

From (3.10) and the choice of 7, it follows that

3.13) Vi, x)—V(t, x(t) = (k+1)y (tE[‘L'k, Ll k=1,2,..., [g])
By (3.1), (3.2), (3.12) and (3.13) we have

7=V (the1, X(1-D)) —V(1, x(1)) = j-lW(t, x)dt =
ud
= f CE P ) -V (1, x@)]dr = fé (k+1)ydt =

Tk

= (Ty-1 rk)é(k+l)y (k—l 2,. [ ] T, ——to)
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whiéh contradicts (3.4). This completes the proof.

Remark 3.1. If the Ljapunov function ¥ in Theorem 3.1 is locally Lipschitzjan
and W= D¢V, then for each solution x(-) of (2.1) the assumption (.2 is
satisfied and even

23
V(ts, x(t) -V (11, x@)) = [ DV, x)dt (=1, = 1).
h
This can be shown as follows. If X(t)=F(¢, x,), then x(t+h)=x(t)+hF(, x)+
+o0(h) (h—0+). From the Lipschitz condition for ¥ we obtain
V(t+h,x(t+h) =V (t, x(2)) = V(t+h, x(@)+hF(t, x))+Llo(B)| -V (1, x (1))
(h =~ 0+4),

where L is the Lipschitz constant for ¥ on a neighbourhood of (¢, x(¢)). Hence
D*V(t, x())=Dg,)V(t, x,), where D*¥(t, x(¢)) is the upper right-hand deriva-
tive of ¥ along the solution x(¢) of (2.1), that is

DV (6, x(0) = J = [V (t+h, x(+B) =V ( x®)]

Likewise we can prove D*V(, x(t))>D(m)V(t,.x,) and we obtain

(3.14) was proved by T. YosHizawa [11] for ordinary differential equations in the
case X=R™. Since V is locally Lipschitzian, ¥ (-, x(+)) is absolutely continuous
on every bounded interval of [¢,, ) and thus

(3.15) V(ta, x(t)) =V (81, x(1)) = f 2D+V(t, x@)dt (tyst =t

From (3.14) and (3.15) it follows that our statement holds.

Corollary 3.1. If for every &=0 there exists an n=n(e)=>0 such that
(t, 9)€S(lp(0)|, n, &) implies D{,)lo|=0, then for each solution x(-) of (2.1)
lim |x(#)| exists. . .

Proof. We apply Theorem 3.1. Let V(t, x)=|x| and W(t, 9)=Df )0l Since
the condition of Corollary 3.1 is stronger than condition (i) of Theorem 3.1 and the

4
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function V is locally Lipschitzian, from Remark 3.1 it. is obvious that the -limit
exists. -

“Corollary 3 1 is dueto J. R. HADDOCK [4].

In the next corollary of Theorem 3.1 we do not assume that the Ljapunov func-
tion is nonnegative. :

Coro'llary’ 3.2. Suppose that for a Ljapunov function V there exist functionals
W,, We: R*XCg—~R with the following property: for every e=0 there ex:st
n=n(e)>0 and £=E((e)=>0 such that

@) t,9)ESWV,n,e) implies Wy(t,9) = E[V(L, 0)—V (1, 0(0))],
(i) ¢ 9eSV,n,¢) lmplles Wy(t,0) = E[V (1, 0(0)-V (1, 9)],
@) if (¢, x)€ Sw, 7,8 . (tE[tl, tl, ty=t,=1t,), then

V(t;, x(t)) =V (1, x(t)) = j ’ W, (¢, x,) dt,
R (lV) lf (t9 xr)ES(V’ LB 8) (tE[tia tﬂ]s tO = tl = tz)a then

V(ty, (1)) =V (ts5 x(tz)) f Wi, x)dt,

where x(-) is a solution of (2.1).
Then for each solution x(-) of (2.1) 11m V(t x(2)) exists.

Proof. Let V(t, x)=max {V(s,x),0}, V.(t,x)=—min {V(t, x),0}. From
conditions (i), (i), (iii), (iv) of Corollary 3.2 it follows that V;, W, and V,, W, sat-
isfy conditions (i), (ii) of Theorem 3.1. This implies that for every solution x(.)
of .(2.1) the hmlts lim Vi(t, x(2)) and’ lim Vz(t x(t)) exist. Thus the corollary
is proved.

4. Applications and examples

1. Consider the equation '
4.1 - X =f(Lx®)+g@ x),

where f: R*XX,~X, X,CX, g: R*XC,~X, C,cC. (4. 1) is the special case of
the equation (2.1), when

F(t, ¢) f (¢ ¢(0))+g(t ).

Theorem-4.1. Suppose that for a nonnegative, locally Lipschitzian Ljapunov
Jfunction 14 there exist functions a,p: R*—R* with the following properties...
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. () -a(t)is bounded for t=t,, .. :
(u) the function p is locally Lipschitzian on (0, oo),
(i) V(t, x+y)=V(t, x)+V(t,y) for all (t,x), (1, y)ER*XX,

(iv) hﬁﬁ % [V(+h, x+hf(, x))—Y(t, )] = —a(Op(¥ (t, x))

for all (1, x)€R+><X,, o B

v) for.. every £>0 there exists an n= r](s)>0 such that (t, (p)e S(V n, s)
implies ﬁfﬁ 5 V(t+h hg(t, go))<a(t)p(V(t ?). B

Then for each solution. x(+) of (4.1) hm V(t x(t)) extsts

Proof. We apply Theorem 3.1. Let W;D(’;_I)V. By Remark 3.1 it is sufficient
to prove that condition (i) of Theorem 3.1 is satisfied. Let ¢=0 be given and choose

n=n(¢) according to assumption (v) If (t (p)éS(V n, a), then from condmons
(i)—(v) we obtain

:D(*u)'-V(t ¢)=Tim + [V(t+h p(0)+hf (2, <p(0))+hg(f tp)) V(t <p(0))] =
= Im — [V(t+h 9(O)+hS(t, 9(O) -V (t, p(O)]+ Fm + V(t+h hg(t, <p)) =

= aO[p(7(t, ) p(V (&, 9O))] = KLV, 9)—V (1, 0 (O)] =
=Vt 0)-V(LeO)],
where L is the Lipschitz constant of p on 5, 28] and X is an upper bound for o on
[%6, oo) This completes the proof.-

. IL. We now apply Theorem4l to obtam a result for equation (4.1) in the
case X —R . . ‘

Theorem 4.2. Let X=R. If f(1,0)=0, xf (1, x)s a(t)x® for all(t, x)€ R+ XX,,
lg(t, @)l =a()|e) forall (1, ©)ER* X C, and a(t) is bounded for t=t,, then for each
solution x(+) of (4.1) hm x(t) exists.

Proof. In Theorem4.l let V(t, x)=|x|, «(t)=a(t), p(u)=1, n(c)=e. Thus,
V is a Lipschitzian function and conditions (i), (i), (iii) and in the case x=0 con-
dition (iv) in Theorem 4.1 are obviously satisfied. We have

h (|x+hf(t x)l-—lxl) = h | |{l+h /@ x) 1) =—a(®) x|,
if xz0 and '

Ihg(t ?)l =gt o)l = a® el

h0+h

4
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that assures also conditions (iv), (V) in Theorem 4.1 to be satisfied. This completes
the proof.

Example 4.1. Let us consider the scalar equatioh

4.2 x() = —ax()+b(Ox(r—1(t)),

where a=0, b(r) and 1(t) are continuous for t=t#,, |b(t)|=a, 0=t(t)=r.

For equation (4.2) in this case N. N. Krasovsk1l [9] proved that the zero solu-
tion is uniformly stable. Applying Theorem 4.2 we obtain that x(¢) tends to a con-
stant as t--<=, where x(-) is a solution of (4.2). '

II. Let us consider the following special form of equation (4.1):

4.3) (0 = —a()x() +k=2"1. Be(Dx (1= (0)),

where a, b, 7,: R¥—~R are continuous functions and 0=t (¢!)=r (k=1,2, ..., n).

Theorem 4.3. Let k: [—r,o)—~(0,) be a continuous and locally Lipschitzian
function. If there exists a K€R* such that

n + o
(4.4) k(t) 2%— a()— Dkft;‘) =K (t€R%),
then for each solution x(.) of (4.3) ,l_i}.}} k() x(t)| exists.
' Proof. Apply Theorem 4.1 setting ¥ (r, x)=|k(t)x], oz(t) a(t)—Dk(l;)(t),

pw=1, n(e)—s It is clear that conditions (i), (ii), (iii) in Theorem 4.1 are satisfied.
Using (4.4) we can check conditions (iv), (V) in Theorem 4.1 as follows

1 k(t+h)(1 —ha (z)) k@) _
70)

iy -:T(|k(t+h)(x—ha(t)x)|—lk(t)xl) k(x| Tim

— sl (22~ «r)] = —a (W (5,3,

EF} % lk(t+ hh ké; b,(t)x(t—-zk(t))l = k(?) Lg'"l bk(t)x(t—tk(t)) =

= k(z) 2':’ lek(rt_)}z)—) Vi, x) = [a - Dk(lj)(t)) V(t, x,) = «() V(2, x)).

This completes the proof.
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Remark 4.1. If for equation (4.3) the inequality 2"' [B(D)l=a()=K holds,
k=1

then k(z)=1 satisfies (4.4) and by Theorem 4.3 ‘1_1"12 |x(#)| exists. But Theorem 4.3
can be used even if this inequality does not hold, as the following example shows.

Example 4.2. Let us consider the equation
4.5) x(0) =—a@®x@)+b@x(t—(),
where a(r), b(t) and t(¢) are continuous for t=t,, 0=1(t)=r and there exists a
KeR* such that a(t)=|b(#)|=K for r=¢,. Let k(t)=exp (o'f (a(s) — [b(s)])ds).

We have

+
2l ==,

exp ( (2() = 1b©)) ds) ——=ri = b = K.
¢ exp( [ (a@®—Ib(s))ds)

Thus, from Theorem 4.3 it follows that for each solution x(.) of (4.5)

Jim Ix(t) exp ( f (a(9)— 1B () ds)'

exists.
IV. Let us consider the equation

(4.6) %(1) = —h(x(O)+h(x(—1()),
where (1) is continuous for t=t,, 0=t(t)=r and A(s) is continuous for s€R.

Theorem 4.4. If the Sunction h is increasing and locally Lipschitzian on (—<-, 0)
and (0, <), then for each solution x(+) of (4.6) tlilg x(t) exists.

Proof. Apply Corollary 3.2 setting V(1 x)=x, W, (¢, ¢)=—W,(t, )=
=DVt 0). Let >0 be given, n(e)=¢ and {(e)=max {L,, L,}, where L,,
L, are the Lipschitz constants of 2 on [g, 2e], [—2e, —¢], respectively. Since
Wy(t, x)= — Wy(t, x)=%(t) it is obvious that conditions (iii), (iv) in Corollary 3.2
are satisfied. If (1, x,)€ S(x(¢), n, ¢) then

(1) = —h(x@®)+h(x(—1(D) = —h(x(O)+h(X) = E(FX—x()).
If (1, x)ES(x(t), n, &), then
—x() = h(x@)—h(x(—(1)) = h(x()—h(x) = {(x()--x).

Thus conditions (i), (ii) in Corollary 3.2 are satisfied and the theorem is proved.
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.Remark-4.2. Applying-Theorem 4.4 to case- h(u)=u'?, ©(t)=r we get a new
proof for the followmg COD]eCt\lI'C of S. R. BERNFELD and, J R. HADDOCK [1], which
was solved by C. Jenu [5]): each solutlon of the scalar equatlon x(t)— '——x1’3(1)+
+x13(=F) ‘tends to a constant as f—oo. * - - AT
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