an an an an a

The boundedness of closed linear maps in C^* -algebras

SEIJI WATANABE

The domain of a closed *-derivation in a C^* -algebra has many properties. In particular, $\overline{O}TA$ [6] studied such domains by using Lorentz representation and obtained some interesting results on the boundedness of closed *-derivations. Especially, he showed that a closed *-derivation, which is bounded on the unitary group of the domain, is bounded.

Now in connection with strongly continuous one-parameter semi-groups of positive maps on C^* -algebras, we are interested in the boundedness of more general closed linear maps. One of the crucial points in [6] is that the domain of a closed *-derivation becomes a semi-simple Banach *-algebra under the graph norm. Although such fact is not valid in our general situation, we have some generalizations of results in [6] by virtue of a simple lemma on Banach algebras.

Let A and A_0 be respectively a unital C^{*}-algebra and a *-subalgebra of A which contains the identity e of A. The following lemma is elementary, but it is essential in what follows.

Lemma. Suppose that there exists a closed linear map Φ of A_0 into a Banach space. Then A_0 is a semi-simple Banach algebra with an isometric involution under some norm $\|\cdot\|'$ which is equivalent to the graph norm $\|\cdot\|_{\Phi} = \|\cdot\|+\|\Phi(\cdot)\|$.

Proof. Since $(A_0, \|\cdot\|_{\Phi})$ is a Banach space, by the closed graph theorem, the product in A_0 is separately continuous with respect to $\|\cdot\|_{\Phi}$, and hence A_0 is a Banach algebra under some norm which is equivalent to $\|\cdot\|_{\Phi}$ (see [8, p. 5]). Since A_0 is semi-simple by the proof of [8, Theorem 4.4.10], JOHNSON's theorem [5] implies that the involution is continuous in $\|\cdot\|_{\Phi}$, and hence we have the desired norm $\|\cdot\|'$ by another equivalent renorming. The proof is complete.

By the above lemma and [8, Theorem 4.1.5], it follows that a *-subalgebra A_0 , which is the domain of a closed linear map, has sufficiently many unitary elements, more precisely, every element of A_0 is a linear combination of unitary elements of A_0 .

Received August 28, 1980.

An involutive Banach algebra is said to be C^* -equivalent if it is *-isomorphic to some C^* -algebra. B. RUSSO and H. A. DYE [9] showed that a linear map on a unital C^* -algebra, which is bounded on the unitary group, is bounded. This result and the above mentioned remark suggest the following:

Theorem 1. Let Φ be a closed linear map of A_0 into a Banach space. If Φ is norm bounded on the unitary group of A_0 , then A_0 is a C^{*}-algebra and Φ is bounded.

Proof. Since the norm $\|\cdot\|'$ in the Lemma is equivalent to the graph norm $\|\cdot\|_{\varphi}$, there exists a constant N>0 such that $\|a\|' \leq N \|a\|_{\varphi}$ for all $a \in A_0$. Then we have

$$\sup \{ \|u\|': u \text{ is unitary in } A_0 \} \leq N \sup \{ 1 + \|\Phi(u)\|: u \text{ is unitary in } A_0 \} \leq \\ \leq N + N \sup \{ \|\Phi(u)\|: u \text{ is unitary in } A_0 \} < +\infty.$$

Hence from [7, Corollary 12] A_0 is C^* -equivalent, which implies that A_0 is a C^* -algebra. Hence by the closed graph theorem or by Corollary 1 in [9] Φ is bounded.

Theorem 1 implies that any closed *-homomorphism of A_0 into A is automatically bounded. Moreover, this assertion is true for a more general class of maps. More precisely, let Φ be a 2-positive map from A_0 into another C^* -algebra B, that is, for all pairs $\{x_1, x_2\}$ in A_0 , the matrices $(\Phi(x_i^*x_j))$ are positive in the C^* -algebra of all 2×2 matrices over B. Then the Schwarz inequality $\Phi(a^*)\Phi(a) \leq ||\Phi(e)|| \Phi(a^*a)$ $(a \in A_0)$ follows easily ([1], [4]), and hence Φ is bounded if it is closed.

It is natural to ask if every closed positive linear map Φ from A_0 into another C^* -algebra B is automatically bounded, where positivity of Φ means that $\Phi(a^*a)$ is positive in B for all $a \in A_0$. We have however no answer to this question.

Now let Φ be a completely positive linear map on A and put $L_{\Phi}(x) = \Phi(x) - \Phi(x)$

 $-\frac{1}{2} \{\Phi(e)x + x\Phi(e)\}\$ for $x \in A$. Then the generator of a uniformly continuous semi-group of unital completely positive maps on A is essentially determined by two classes of operators, that is, *-derivations on A and maps of the form L_{Φ} for Φ ([2]). In this connection, the following corollary is interesting.

Corollary. Suppose that A_0 is strongly dense in A. Let Φ be a completely positive map from A_0 into A. If L_{Φ} generates a strongly continuous semi-group of linear maps on A, then $A_0=A$, that is, Φ is everywhere defined.

A linear map δ from A_0 into A is called a Jordan derivation if $\delta(h^2) = h\delta(h) + \delta(h)h$ for all $h = h^*$ in A_0 . Then we have the following theorem, which is a generalization of Theorem 2.4 in [6].

Theorem 2. Suppose that A_0 is strongly dense in A. Let δ be a closed Jordan derivation from A_0 into A. If A_0 is closed under the square root operation of positive

elements $A_0 \cap A^+$ where A^+ denotes the positive part of A, then δ is everywhere defined and is bounded.

Proof. Since the norm $\|\cdot\|'$ in the Lemma is equivalent to the graph norm $\|\cdot\|_{\delta}$, $\lim_{n\to\infty} \|x^n\|_{\delta}^{1/n}$ exists and is equal to $\lim_{n\to\infty} \|x^n\|'^{1/n}$ for $x \in A_0$. Hence, for $h=h^* \in A_0$ we have

$$\lim_{n \to \infty} \|h^n\|_{\delta}^{1/n} = \lim_{n \to \infty} (\|h\|^{2^n} + \|\delta(h^{2^n})\|)^{1/2^n} \le \\ \le \lim_{n \to \infty} \|h\| \{ 1 + (2^n \|\delta(h)\|) / \|h\| \}^{1/2^n} = \|h\|$$

because $\|\delta(h^{2^n})\| \leq 2^n \|h\|^{2^n-1} \|\delta(h)\|$ (n=1, 2, 3, ...) where $\|\cdot\|$ is the norm of A. Hence

$$\lim_{n \to \infty} \|h^n\|^{1/n} \leq \|h\| = \inf \left\{ \sum |\lambda_i| \colon h = \sum \lambda_i u_i, u_i \text{'s are unitaries in } A \right\} \leq \\ \leq \inf \left\{ \sum |\lambda_i| \colon h = \sum \lambda_i u_i, u_i \text{'s are unitaries in } A_0 \right\}$$

which implies that the semi-simple involutive Banach algebra A_0 is hermitian from [7, Corollary 5 and 9]. Denote the spectrum of an element x of A_0 in A (resp. A_0) by sp (x) (resp. sp₀ (x)). Now let h be a hermitian element of A_0 . If sp₀ (h) ≥ 0 , then sp (h) ≥ 0 , and hence there exists a hermitian element k in A_0 such that $k^4 = h$ from our assumption. Hence sp₀ (k^2) = { λ^2 : $\lambda \in \text{sp}_0$ (k)} ≥ 0 since A_0 is hermitian. Therefore, A_0 is C^{*}-equivalent from [3, Corollary], which implies that $A_0 = A$, and hence δ is bounded from the closed graph theorem. The proof is completed.

References

- M. D. CHOI, A Schwarz inequality for positive linear maps on C*-algebras, Ill. J. Math., 18 (1974), 565-574.
- [2] E. CHRISTENSEN and D. E. EVANS, Cohomology of operator algebras and quantum dynamical semi-groups, *Preprint*, 1978.
- [3] J. CUNTZ, Locally C*-equivalent algebras, J. Functional Analysis, 23 (1976), 95-106.
- [4] D. E. EVANS, Positive linear maps on operator algebras, Comm. Math. Phys., 48 (1976), 15-22.
- [5] B. E. JOHNSON, The uniqueness of the complete norm topology, Bull. Amer. Math. Soc., 73 (1967), 537-539.
- [6] S. OTA, Certain operator algebras induced by *-derivations in C*-algebras on an indefinite inner product space, J. Functional Analysis, 30 (1978), 238-244.
- [7] T. W. PALMER, The Gelfand—Naimark pseudonorm on Banach *-algebras, J. London Math. Soc., 3 (1971), 59-66.
- [8] C. E. RICKART, General theory of Banach algebras, van Nostrand (Princeton, 1960).
- B. RUSSO and H. A. DYE, A note on unitary operators in operator algebras, Duke Math. J., 33 (1966), 413-416.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE NIIGATA UNIVERSITY NIIGATA, 950—21, JAPAN