The functional model of a contraction and the space L^{1}

CIPRIAN FOIAŞ, CARL PEARCY and BÉLA SZ.-NAGY

The present Note is a straightforward continuation of the recent paper [I]. Indeed, we have noticed subsequently that, under slightly changed assumptions, the results of that paper can be extended from the factor space L^{1} / H_{0}^{1} to the space L^{1} itself, and "localized" on parts of the unit circle C.

The ingredients of these extensions are mostly taken over, with some changes, from the paper [I], and so are the notations and the terminology. When referring. to a specified lemma or formula of [I] we indicate it by the subscript I. Applica-tions to the invariant subspace problem are to be given later.

1. Let us begin with some lemmas requiring little changes with respect to [I].

Lemma 1. If $\left\{a_{n}\right\}$ converges weakly to 0 in \mathfrak{E}_{*} then for any $\varphi \in H^{2}$ and $h \in \mathfrak{S}$ we have

$$
\left\|\left(\varphi \circ a_{n}\right) \cdot h^{*}\right\|_{L^{1}} \rightarrow 0 \quad \text { and } \quad\left\|h \cdot\left(\varphi \circ a_{n}\right)^{*}\right\|_{L^{1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

- (This is a strengthening of Lemma 3_{1}, where only convergence in the factor space $L^{1} / H_{0_{i}}^{1}$ was established.)

Proof. For any $h, k \in \mathfrak{G}$ the function $k \cdot h^{*}$ is the complex conjugate of $h \cdot k^{*}$ so they have the same norm in L^{1}. Therefore it suffices to prove the first convergence. Now, by (4.3) and (4.7) I we have

$$
\left\|\left(\varphi \circ a_{n}\right) \cdot h^{*}\right\|_{L^{1}} \leqq\left\|\varphi\left(a_{n}, h\right)_{\mathbb{E}_{*}}\right\|_{L^{1}}+\left\|\left(\left[\Theta^{*} \varphi a_{n}\right]_{+}, h_{2}\right)_{\mathbb{E}}\right\|_{L^{1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Lemma 2. For any $\varphi, \psi \in H^{2}$ and $a \in \mathcal{E}_{*}$ we have
$\left\|(\psi \circ a) \cdot(\varphi \circ a)^{*}-\psi \bar{\varphi}\right\| a\left\|_{\mathfrak{E}_{*}}^{2}\right\|_{L^{1}} \leqq\|\psi a\|_{H^{2}\left(\mathfrak{E}_{*}\right)}\left\|\left[\Theta^{*} \varphi a\right]_{+}\right\|_{H^{2}(\mathfrak{E})}+\left\|\left[\Theta^{*} \psi a\right]_{+}\right\|_{H^{2}(\mathfrak{E})}\|\varphi a\|_{H^{2}\left(\mathfrak{E}_{*}\right)} \cdot$
(This takes over the role of Lemma 4_{1}, with the unpleasant difference that here we have to increase the right hand side of the inequality by a second term.)

Proof. It readily follows from (4.2) and (4.3) that

$$
\begin{gathered}
(\psi \circ a) \cdot(\varphi \circ a)^{*}=\psi \bar{\varphi}\|a\|_{\mathbb{E}_{*}}^{2}-\left(\psi a, \Theta\left[\Theta^{*} \varphi a\right]_{+}\right)_{\mathbb{E}_{*}}-\left(\Theta\left[\Theta^{*} \psi a\right]_{+}, \varphi a\right)_{\mathbb{E}_{*}}+ \\
+\left(\left[\Theta^{*} \psi a\right]_{+},\left[\Theta^{*} \varphi a\right]_{+}\right)_{\mathfrak{E}}=\psi \bar{\varphi}\|a\|_{\mathbb{E}_{*}}^{2}-\left(\left[\Theta^{*} \psi a\right]_{-},\left[\Theta^{*} \varphi a\right]_{+}\right)_{\mathfrak{E}}-\left(\left[\Theta^{*} \psi a\right]_{+}, \Theta^{*} \varphi a\right)_{\mathbb{E}}
\end{gathered}
$$

Received September 30, 1979.
where $[\cdot]_{-}=[\cdot]-[\cdot]_{+}$; hence,
$\left\|(\psi \circ a) \cdot(\varphi \circ a)^{*}-\psi \bar{\varphi}\right\| a\left\|_{⿷_{\epsilon}}^{2}\right\|_{L^{1}} \leqq$

$$
\leqq\left\|\left[\Theta^{*} \psi a\right]_{-}\right\|_{L^{2}(\mathcal{G})}\left\|\left[\Theta^{*} \varphi a\right]_{+}\right\|_{L^{2}(\mathbb{G})}+\left\|\left[\Theta^{*} \psi a\right]_{+}\right\|_{L^{2}(\mathbb{E})}\left\|\Theta^{*} \varphi a\right\|_{L^{2}(\mathbb{G})} .
$$

Since $\left\|[\cdot]_{-}\right\|_{L^{2}(\mathscr{)}} \leqq\|[\cdot]\|_{L^{2}(\Theta)}$ and since Θ^{*} is also contractive, the proof is done.
Lemma 3. Suppose \mathfrak{E}_{*} is (countably) infinite dimensional, and let $h, k \in \mathfrak{F}$; $\varphi_{1}, \ldots, \varphi_{r}, \psi_{1}, \ldots, \psi_{r} \in H^{2}$ and $\varepsilon>0$ be given. Then there exist $h^{\prime}, k^{\prime} \in \mathfrak{G}$ such that

$$
\begin{gathered}
\left\|\left(h+h^{\prime}\right) \cdot\left(k+k^{\prime}\right)^{*}-h \cdot k^{*}-\sum_{1}^{r} \psi_{j} \bar{\varphi}_{j}\right\|_{L^{2}} \leqq \sum_{1}^{r}\left\|\psi_{j}\right\|_{B^{2}}\left\|\varphi_{j}\right\|_{H^{2}}\left(\eta_{\theta}\left(\psi_{j}\right)+\eta_{\theta}\left(\varphi_{j}\right)\right)+\varepsilon, \\
\left\|h^{\prime}\right\|^{2} \leqq \sum_{1}^{r}\left\|\psi_{j}\right\|_{H^{2}}^{2}, \quad\left\|k^{\prime}\right\|^{2} \leqq \sum_{1}^{r}\left\|\varphi_{j}\right\|_{H^{2}}^{2}
\end{gathered}
$$

Remark. One can choose h^{\prime}, k^{\prime} even to run over sequences $h^{(n)}, k^{(n)}$ $(n=1,2, \ldots)$ such that, for every $l \in \mathfrak{G}, h^{(n)} \cdot l^{*}$ and $k^{(n)} \cdot l^{*}$ tend to 0 in L^{1} as $n \rightarrow \infty$.

Proofs. Almost identical with those of Lemma 5_{1} and Remark ${ }_{1}$, by using Lemmas 1 and 2 in place of Lemmas 3_{1} and 4_{1}, and applying inequality (5.3) both to φ_{j} and ψ_{j}.
2. More essential change is needed with Lemma $2_{\mathbf{l}}$. Its role will be taken by

Lemma 4. Given a subset S of the open unit disc $D=\{\lambda:|\lambda|<1\}$ let s be the set of non-tangential limit points of S on the unit circle $C .{ }^{1}$) Then for any $f \in L^{1}(s)$ and $\varepsilon>0$ there exist $\mu_{1}, \ldots, \mu_{n} \in S$ and $c_{1}, \ldots, c_{n} \in \mathbf{C}$ such that

$$
\begin{equation*}
\left\|f-\sum_{1}^{n} c_{j} P_{\mu_{j}}\right\|_{L^{1}(s)}<\varepsilon \quad \text { and } \quad \sum_{1}^{n}\left|c_{j}\right| \leqq\|f\|_{L^{1}(s)}, \tag{1}
\end{equation*}
$$

where P_{p} is the Poisson kernel function on C corresponding to the point $\mu(\in D)$, i.e.

$$
\begin{equation*}
P_{\mu}\left(e^{i t}\right)=\frac{1-|\mu|^{2}}{\left|1-\bar{\mu} e^{i}\right|^{2}} . \tag{2}
\end{equation*}
$$

Proof. Suppose there exist $f_{0} \in L^{1}(s)$ and $\varepsilon_{0}>0$ for which the assertion does not hold, i.e. such that the open ball G in $L^{1}(s)$ with centre f_{0} and radius ε_{0} is disjoint from the set X of all finite linear combinations $\sum c_{j} P_{\mu_{j}}$ with $\mu_{j} \in S, c_{j} \in \mathbf{C}$, and $\Sigma\left|c_{j}\right| \leqq\left\|f_{0}\right\|_{L^{1}(s)}$. Since both G and X are convex, and G is open, there exist, by the Hahn-Banach separation theorem, a function $g_{0} \in L^{\infty}(s)$ (the Banach dual of $L^{1}(s)$) and a real number α such that

$$
\begin{equation*}
\operatorname{Re} \int_{s} h g_{0} d m \leqq \alpha<\operatorname{Re} \int_{s} f g_{0} d m \tag{3}
\end{equation*}
$$

${ }^{1}$) For any $S \subset D$, the corresponding set $s \subset C$ is a Borel set, indeed an $F_{\sigma \delta \sigma}$.
for all $h \in X$ and $f \in G$ (in particular for $f=f_{0}$); m denotes normalized Lebesgue measure on C.

Thus if we set

$$
\tilde{\mathrm{g}}_{0}(\mu)=\int_{s} g_{0}\left(e^{i t}\right) P_{\mu}\left(e^{i t}\right) d m \quad(\mu \in D)
$$

and observe that

$$
\left\|P_{\mu}\right\|_{L^{1}(s)} \leqq\left\|P_{\mu}\right\|_{L^{1}}=1, \quad \text { and hence, }\left\|f_{0}\right\|_{L^{1}(s)} P_{\mu} \in X,
$$

the first inequality in (3) shows that

$$
\begin{equation*}
\left\|f_{0}\right\|_{L^{1}(s)}\left|\tilde{z}_{0}(\mu)\right| \leqq \alpha \quad \text { for all } \quad \mu \in S . \tag{4}
\end{equation*}
$$

Since \tilde{g}_{0} is a bounded harmonic function on D, by the Fatou theorem we infer from (4) that

$$
\left\|f_{0}\right\|_{L^{1}(s)}\left|g_{0}\left(e^{t}\right)\right| \equiv \alpha \text { almost everywhere on } s
$$

so that

$$
\operatorname{Re} \int_{s} f_{0} g_{0} d m \leqq\left\|f_{0}\right\|_{L^{1}(s)}\left\|g_{0}\right\|_{L^{\infty}(s)} \leqq \alpha
$$

This contradicts the second inequality (3). The proof of Lemma 4 is complete.
3. In the sequel the functional $\eta_{\boldsymbol{\theta}}(\varphi)$ defined in [I] will again play a basic part.

Let us recall, in particular, that for $\varphi=p_{\mu}$, where
we have

$$
p_{\mu}\left(e^{i t}\right)=\left(1-\bar{\mu} e^{i t}\right)^{-1} \quad(\mu \in D),
$$

$$
\eta_{\boldsymbol{\theta}}\left(p_{\mu}\right)=\inf _{\mathscr{H}}\left\|\Theta(\mu)^{*} \mid \mathfrak{H}\right\|,
$$

where \mathfrak{A} runs through the family of subspaces of \mathfrak{E}_{*} of finite codimension; cf. (2.6) .
For any number $\vartheta, 0 \leqq \vartheta<1$, consider the subset

$$
\begin{equation*}
S_{\vartheta}=\left\{\mu \in D: \quad \eta_{\theta}\left(p_{\mu}\right) \leqq 9\right\} \tag{5}
\end{equation*}
$$

of D, and the corresponding set s_{3} of non-tangential limit points of S_{3} on C.
We are going to prove the following substitute for Lemma 5_{1} :
Lemma 5. Suppose \mathfrak{E}_{*} is (countably) infinite dimensional and suppose $f \in L^{1}\left(s_{\alpha}\right)$ and $h, k \in \mathfrak{G}$, and also $\varepsilon>0$ are given. Then there exist $h^{\prime}, k^{\prime} \in \mathfrak{G}$ such that

$$
\begin{gathered}
\left\|\left(h+h^{\prime}\right) \cdot\left(k+k^{\prime}\right)^{*}-h \cdot k^{*}-f\right\|_{L^{2}\left(s_{2}\right)} \leqq 2 \vartheta\|f\|_{L^{1}\left(s_{3}\right)}+2 \varepsilon, \\
\left\|h^{\prime}\right\|,\left\|k^{\prime}\right\| \leqq\|f\|_{L^{1}\left(s_{s}\right)} .
\end{gathered}
$$

Proof. By Lemma 4 there exist $\mu_{1}, \ldots, \mu_{n} \in S$ and $c_{1}, \ldots, c_{n} \in \mathbf{C}$ satisfying (1) (with $s=s_{s}$). One can obviously assume that $c_{j} \neq 0$ for all j, so we can set

$$
\left.\varphi_{j}=\left|c_{j}\right|^{1 / 2}\left(1-\mid \mu_{j}\right)^{2}\right)^{1 / 2} p_{\mu_{j}}, \quad \psi_{j}=\left(\operatorname{sgn} c_{j}\right) \cdot \varphi_{j}
$$

$(j=1,2, \ldots, n)$. Then we have

$$
\psi_{j} \bar{\varphi}_{j}=c_{j} P_{\mu_{j}}, \quad\left\|\psi_{j}\right\|_{\mathbb{H}^{2}}^{2}=\left\|\varphi_{j}\right\|_{H^{2}}^{2}=\left|c_{j}\right|
$$

so that by Lemma 3 we obtain $h^{\prime}, k^{\prime} \in \mathfrak{S}$ such that

$$
\left\|(h+h) \cdot\left(k+k^{\prime}\right)^{*}-h \cdot k^{*}-\sum_{1}^{n} c_{j} P_{\mu)}\right\|_{L^{2}\left(s_{s}\right)} \leqq 2 \vartheta \sum_{1}^{m}\left|c_{j}\right|+\varepsilon
$$

and

$$
\left\|h^{\prime}\right\|^{2},\left\|k^{\prime}\right\|^{2} \leqq \sum_{1}^{n}\left|c_{j}\right| .
$$

Taking also account of (1) we conclude the proof.
4. Now we are ready to state the following:

Theorem. Suppose $\left\{\mathbb{E}^{\boldsymbol{E}} \mathbb{E}_{*}, \boldsymbol{\Theta}(\lambda)\right\}$ is a contractive analytic function, with separable $\mathfrak{E}, \mathfrak{E}_{*}$ and with $\operatorname{dim} \mathfrak{E}_{*}=\infty$. Suppose that for some $\vartheta, 0 \leqq \vartheta<\frac{1}{2}$, the set s_{3} of non-tangential limit points of the set S_{ϑ} (defined by (5)) on C has positive Lebesgue measure. Then for every $f \in L^{1}\left(s_{夕}\right)$ there exist $h, k \in \mathfrak{G}$ such that

$$
\begin{equation*}
f=h \cdot k^{*} \text { almost everywhere on } s_{s} . \tag{6}
\end{equation*}
$$

Proof. As in the proof of Theorem ${ }_{1}$ we choose a number ω such that $2 \vartheta<\omega<1$ and consider an $f \in L^{1}\left(s_{3}\right)$ with $\|f\|_{L^{1}\left(s_{0}\right)} \leqq 1$. Setting $h_{-1}=h_{0}=k_{-1}=$ $=k_{0}=0$ (in \mathfrak{F}) we show by induction that there exist $h_{n}, k_{n} \in \mathfrak{S}(n=1,2, \ldots$) such that (7) $\left\|f-h_{n} \cdot k_{n}^{*}\right\|_{L\left(s_{s}\right)} \leqq \omega^{n}$ and $\left\|h_{n}-h_{n-1}\right\|^{2},\left\|k_{n}-k_{n-1}\right\|^{2} \leqq \omega^{n-1} \quad(n=0,1, \ldots)$. This being obvious for $n=0$ we assume h_{n}, k_{n} to be already found for $n=0, \ldots, q$. Setting $f_{q}=f-h_{q} \cdot k_{q}^{*}$ and $\varepsilon_{q}=(\omega-2 \vartheta) \omega^{q} / 2$, by Lemma 5 we infer that there exist $h_{q+1}, k_{q+1} \in 5$ such that

$$
\left\|h_{q+1} \cdot k_{q+1}^{*}-h_{q} \cdot k_{q}^{*}-f_{q}\right\|_{L^{2}\left(s_{s}\right)} \leqq 29 \cdot\left\|f_{q}\right\|_{L^{2}\left(s_{s}\right)}+2 \varepsilon_{q}
$$

and

$$
\left\|h_{q+1}-h_{q}\right\|^{2}, \quad\left\|k_{q+1}-k_{q}\right\|^{2} \leqq\left\|f_{q}\right\|_{L^{1}\left(s_{s}\right)} \leqq \omega^{q} .
$$

Then we have
$\left\|f-h_{q+1} \cdot k_{q+1}^{*}\right\|_{L^{1}\left(s_{s}\right)}=\left\|\left(f_{q}+h_{q} \cdot k_{q}^{*}\right)-h_{q+1} \cdot k_{q+1}^{*}\right\|_{L^{1}\left(s_{s}\right)} \leqq 2 \vartheta \cdot \omega^{q}+(\omega-2 \vartheta) \omega^{q}=\omega^{q+1}$, and the proof of (7) by induction is done.

By account of (7), the sequences $\left\{h_{n}\right\},\left\{k_{n}\right\}$ are strongly convergent (in $\mathfrak{5}$) and their respective limits h, k satisfy (6). Theorem is proved.

References

[I] B. Sz.-Nagy-C. Foias, The functional model of a contraction and the space $L^{\mathbf{1}} / \boldsymbol{H}_{1}^{0}$, Acta Sci. Math., 41 (1979), 403-410.

