The functional model of a contraction and the space L^1

CIPRIAN FOIAȘ, CARL PEARCY and BÉLA SZ.-NAGY

The present Note is a straightforward continuation of the recent paper [1]. Indeed, we have noticed subsequently that, under slightly changed assumptions, the results of that paper can be extended from the factor space L^1/H_0^1 to the space L^1 itself, and "localized" on parts of the unit circle C.

The ingredients of these extensions are mostly taken over, with some changes, from the paper [I], and so are the notations and the terminology. When referring: to a specified lemma or formula of [I] we indicate it by the subscript I. Applications to the invariant subspace problem are to be given later.

1. Let us begin with some lemmas requiring little changes with respect to [1].

Lemma 1. If $\{a_n\}$ converges weakly to 0 in \mathfrak{E}_* then for any $\varphi \in H^2$ and $h \in \mathfrak{H}$ we have

 $\|(\varphi \circ a_n) \cdot h^*\|_{L^1} \to 0 \quad and \quad \|h \cdot (\varphi \circ a_n)^*\|_{L^1} \to 0 \quad as \quad n \to \infty.$

' (This is a strengthening of Lemma 3_1 , where only convergence in the factor space L^1/H_0^1 was established.)

Proof. For any $h, k \in \mathfrak{H}$ the function $k \cdot h^*$ is the complex conjugate of $h \cdot k^*$ so they have the same norm in L^1 . Therefore it suffices to prove the first convergence. Now, by $(4.3)_I$ and $(4.7)_I$ we have

 $\|(\varphi \circ a_n) \cdot h^*\|_{L^1} \leq \|\varphi(a_n, h)_{\mathfrak{S}_*}\|_{L^1} + \|([\Theta^* \varphi a_n]_+, h_2)_{\mathfrak{S}_*}\|_{L^1} \to 0 \quad \text{as} \quad n \to \infty.$

Lemma 2. For any $\varphi, \psi \in H^2$ and $a \in \mathfrak{E}_*$ we have

 $\left\| (\psi \circ a) \cdot (\varphi \circ a)^* - \psi \overline{\varphi} \, \|a\|_{\mathfrak{G}_*}^2 \right\|_{L^1} \leq \|\psi a\|_{H^2(\mathfrak{G}_*)} \| [\Theta^* \varphi a]_+ \|_{H^2(\mathfrak{G})} + \| [\Theta^* \psi a]_+ \|_{H^2(\mathfrak{G})} \|\varphi a\|_{H^2(\mathfrak{G}_*)}.$

(This takes over the role of Lemma 4_1 , with the unpleasant difference that here we have to increase the right hand side of the inequality by a second term.)

Proof. It readily follows from $(4.2)_1$ and $(4.3)_1$ that

 $\begin{aligned} (\psi \circ a) \cdot (\varphi \circ a)^* &= \psi \bar{\varphi} \|a\|_{\mathfrak{E}_*}^2 - (\psi a, \, \Theta [\Theta^* \varphi a]_+)_{\mathfrak{E}_*} - (\Theta [\Theta^* \psi a]_+, \, \varphi a)_{\mathfrak{E}_*} + \\ &+ ([\Theta^* \psi a]_+, [\Theta^* \varphi a]_+)_{\mathfrak{E}} = \psi \bar{\varphi} \|a\|_{\mathfrak{E}_*}^2 - ([\Theta^* \psi a]_-, [\Theta^* \varphi a]_+)_{\mathfrak{E}} - ([\Theta^* \psi a]_+, \, \Theta^* \varphi a)_{\mathfrak{E}_*}. \end{aligned}$

Received September 30, 1979.

where $[\cdot]_{-} = [\cdot]_{-} [\cdot]_{+}$; hence, $\left\| \left(\psi \circ a \right) \cdot (\varphi \circ a)^{*} - \psi \overline{\varphi} \| a \|_{\mathfrak{G}_{*}}^{2} \right\|_{L^{1}} \leq \leq \| [\Theta^{*} \psi a]_{+} \|_{L^{2}(\mathfrak{G})} + \| [\Theta^{*} \psi a]_{+} \|_{L^{4}(\mathfrak{G})} \| \Theta^{*} \varphi a \|_{L^{4}(\mathfrak{G})}.$

Since $\|[\cdot]_{L^2(\mathbb{C})} \leq \|[\cdot]\|_{L^2(\mathbb{C})}$ and since Θ^* is also contractive, the proof is done.

Lemma 3. Suppose \mathfrak{E}_* is (countably) infinite dimensional, and let $h, k \in \mathfrak{H}$; $\varphi_1, ..., \varphi_r, \psi_1, ..., \psi_r \in H^2$ and $\varepsilon > 0$ be given. Then there exist $h', k' \in \mathfrak{H}$ such that

$$\|(h+h') \cdot (k+k')^* - h \cdot k^* - \sum_{1}^{r} \psi_j \bar{\varphi}_j \|_{L^1} \leq \sum_{1}^{r} \|\psi_j\|_{H^2} \|\varphi_j\|_{H^2} (\eta_{\theta}(\psi_j) + \eta_{\theta}(\varphi_j)) + \varepsilon,$$
$$\|h'\|^2 \leq \sum_{1}^{r} \|\psi_j\|_{H^2}^2, \quad \|k'\|^2 \leq \sum_{1}^{r} \|\varphi_j\|_{H^2}^2.$$

Remark. One can choose h', k' even to run over sequences $h^{(n)}, k^{(n)}$ (n=1,2,...) such that, for every $l \in \mathfrak{H}, h^{(n)} \cdot l^*$ and $k^{(n)} \cdot l^*$ tend to 0 in L^1 as $n \to \infty$.

Proofs. Almost identical with those of Lemma 5_i and Remark_i, by using Lemmas 1 and 2 in place of Lemmas 3_i and 4_i , and applying inequality $(5.3)_i$ both to φ_i and ψ_i .

2. More essential change is needed with Lemma 2_{I} . Its role will be taken by

Lemma 4. Given a subset S of the open unit disc $D = \{\lambda : |\lambda| < 1\}$ let s be the set of non-tangential limit points of S on the unit circle C. ¹) Then for any $f \in L^1(s)$ and $\varepsilon > 0$ there exist $\mu_1, ..., \mu_n \in S$ and $c_1, ..., c_n \in C$ such that

(1)
$$\left\| f - \sum_{1}^{n} c_{j} P_{\mu_{j}} \right\|_{L^{1}(s)} < \varepsilon \quad and \quad \sum_{1}^{n} |c_{j}| \leq \|f\|_{L^{1}(s)},$$

where P_{μ} is the Poisson kernel function on C corresponding to the point $\mu(\in D)$, i.e.

(2)
$$P_{\mu}(e^{it}) = \frac{1-|\mu|^2}{|1-\bar{\mu}e^{it}|^2}.$$

Proof. Suppose there exist $f_0 \in L^1(s)$ and $\varepsilon_0 > 0$ for which the assertion does not hold, i.e. such that the open ball G in $L^1(s)$ with centre f_0 and radius ε_0 is disjoint from the set X of all finite linear combinations $\sum c_j P_{\mu_j}$ with $\mu_j \in S$, $c_j \in C$, and $\sum |c_j| \leq ||f_0||_{L^1(s)}$. Since both G and X are convex, and G is open, there exist, by the Hahn—Banach separation theorem, a function $g_0 \in L^{\infty}(s)$ (the Banach dual of $L^1(s)$) and a real number α such that

(3)
$$\operatorname{Re}_{s} \int hg_{0} dm \leq \alpha < \operatorname{Re}_{s} \int fg_{0} dm$$

1) For any $S \subset D$, the corresponding set $s \subset C$ is a Borel set, indeed an $F_{\sigma\delta\sigma}$.

for all $h \in X$ and $f \in G$ (in particular for $f=f_0$); *m* denotes normalized Lebesgue measure on *C*.

Thus if we set

$$\tilde{g}_0(\mu) = \int\limits_{s} g_0(e^{it}) P_\mu(e^{it}) dm \quad (\mu \in D)$$

and observe that

$$||P_{\mu}||_{L^{1}(s)} \leq ||P_{\mu}||_{L^{1}} = 1$$
, and hence, $||f_{0}||_{L^{1}(s)}P_{\mu} \in X$,

the first inequality in (3) shows that

(4)
$$||f_0||_{L^1(s)}|\tilde{g}_0(\mu)| \leq \alpha \text{ for all } \mu \in S.$$

Since \tilde{g}_0 is a bounded harmonic function on D, by the Fatou theorem we infer from (4) that

 $||f_0||_{L^1(s)}|g_0(e^{it})| \leq \alpha$ almost everywhere on s,

so that

$$\operatorname{Re} \int_{\mathfrak{s}} f_0 g_0 \, dm \leq \|f_0\|_{L^1(\mathfrak{s})} \|g_0\|_{L^{\infty}(\mathfrak{s})} \leq \alpha.$$

This contradicts the second inequality (3). The proof of Lemma 4 is complete.

3. In the sequel the functional $\eta_{\theta}(\varphi)$ defined in [I] will again play a basic part. Let us recall, in particular, that for $\varphi = p_{\mu}$, where

$$p_{\mu}(e^{it}) = (1 - \bar{\mu}e^{it})^{-1} \quad (\mu \in D),$$

we have

$$\eta_{\boldsymbol{\Theta}}(p_{\boldsymbol{\mu}}) = \inf_{\mathfrak{N}} \| \boldsymbol{\Theta}(\boldsymbol{\mu})^* \| \mathfrak{A} \|,$$

where \mathfrak{A} runs through the family of subspaces of \mathfrak{E}_* of finite codimension; cf. (2.6)₁. For any number ϑ , $0 \le \vartheta < 1$, consider the subset

(5)
$$S_{\vartheta} = \{ \mu \in D : \eta_{\theta}(p_{\mu}) \leq \vartheta \}$$

of D, and the corresponding set s_3 of non-tangential limit points of S_3 on C. We are going to prove the following substitute for Lemma 5:

We are going to prove the following substitute for Lemma 5_1 :

Lemma 5. Suppose \mathfrak{E}_* is (countably) infinite dimensional and suppose $f \in L^1(\mathfrak{s}_{\mathfrak{g}})$ and $h, k \in \mathfrak{H}$, and also $\varepsilon > 0$ are given. Then there exist $h', k' \in \mathfrak{H}$ such that

$$\|(h+h') \cdot (k+k')^* - h \cdot k^* - f\|_{L^1(s_{\partial})} \leq 29 \|f\|_{L^1(s_{\partial})} + 2\varepsilon,$$

$$\|h'\|, \|k'\| \leq \|f\|_{L^1(s_{\partial})}.$$

Proof. By Lemma 4 there exist $\mu_1, ..., \mu_n \in S$ and $c_1, ..., c_n \in \mathbb{C}$ satisfying (1) (with $s=s_s$). One can obviously assume that $c_j \neq 0$ for all j, so we can set

$$\varphi_j = |c_j|^{1/2} (1 - |\mu_j|^2)^{1/2} p_{\mu_j}, \quad \psi_j = (\operatorname{sgn} c_j) \cdot \varphi_j$$

(j=1, 2, ..., n). Then we have

$$\psi_j \overline{\varphi}_j = c_j P_{\mu_j}, \quad \|\psi_j\|_{H^2}^2 = \|\varphi_j\|_{H^2}^2 = |c_j|$$

204 Ciprian Foiaş, Carl Pearcy and Béla Sz.-Nagy: The functional model and the space L¹

so that by Lemma 3 we obtain $h', k' \in \mathfrak{H}$ such that

$$\left\| (h+h') \cdot (k+k')^* - h \cdot k^* - \sum_{j=1}^{n} c_j P_{\mu_j} \right\|_{L^1(s_{\theta})} \leq 2\theta \sum_{j=1}^{m} |c_j| + \varepsilon_{0}$$

and

$$||h'||^2$$
, $||k'||^2 \leq \sum_{j=1}^{n} |c_j|$.

Taking also account of (1) we conclude the proof.

4. Now we are ready to state the following:

Theorem. Suppose $\{\mathfrak{E}, \mathfrak{E}_*, \Theta(\lambda)\}$ is a contractive analytic function, with separable $\mathfrak{E}, \mathfrak{E}_*$ and with dim $\mathfrak{E}_* = \infty$. Suppose that for some ϑ , $0 \leq \vartheta < \frac{1}{2}$, the set s_ϑ of non-tangential limit points of the set S_ϑ (defined by (5)) on C has positive Lebesgue measure. Then for every $f \in L^1(s_\vartheta)$ there exist h, $k \in \mathfrak{H}$ such that

(6)
$$f = h \cdot k^*$$
 almost everywhere on s_{ϑ} .

Proof. As in the proof of Theorem, we choose a number ω such that $29 < \omega < 1$ and consider an $f \in L^1(s_\vartheta)$ with $||f||_{L^1(s_\vartheta)} \leq 1$. Setting $h_{-1} = h_0 = k_{-1} = k_0 = 0$ (in §) we show by induction that there exist $h_n, k_n \in \mathfrak{H}$ (n=1, 2, ...) such that (7) $||f - h_n \cdot k_n^*||_{L(s_\vartheta)} \leq \omega^n$ and $||h_n - h_{n-1}||^2$, $||k_n - k_{n-1}||^2 \leq \omega^{n-1}$ (n = 0, 1, ...). This being obvious for n=0 we assume h_n, k_n to be already found for n=0, ..., q. Setting $f_q = f - h_q \cdot k_q^*$ and $\varepsilon_q = (\omega - 2\vartheta)\omega^q/2$, by Lemma 5 we infer that there exist $h_{q+1}, k_{q+1} \in \mathfrak{H}$ such that

$$\|h_{q+1} \cdot k_{q+1}^* - h_q \cdot k_q^* - f_q\|_{L^1(s_{\mathfrak{S}})} \leq 29 \cdot \|f_q\|_{L^1(s_{\mathfrak{S}})} + 2\varepsilon_q$$

and

$$||h_{q+1}-h_q||^2$$
, $||k_{q+1}-k_q||^2 \leq ||f_q||_{L^1(s_0)} \leq \omega^q$.

Then we have

 $\|f - h_{q+1} \cdot k_{q+1}^*\|_{L^1(s_0)} = \|(f_q + h_q \cdot k_q^*) - h_{q+1} \cdot k_{q+1}^*\|_{L^1(s_0)} \le 29 \cdot \omega^q + (\omega - 29)\omega^q = \omega^{q+1},$ and the proof of (7) by induction is done.

By account of (7), the sequences $\{h_n\}$, $\{k_n\}$ are strongly convergent (in \mathfrak{H}) and their respective limits h, k satisfy (6). Theorem is proved.

References

 B. Sz.-NAGY—C. FOIAŞ, The functional model of a contraction and the space L¹/H⁰₁, Acta Sci. Math., 41 (1979), 403-410.

INDIANA UNIVERSITY	MICHIGAN UNIVERSITY	UNIV. OF SZEGED
BLOOMINGTON, INDIANA	ANN ARBOR, MICHIGAN	SZEGED, HUNGARY