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A problem of Sz.-Nagy 

JAN A. V A N CASTEREN 

1. Introduction 

Let § be a complex Hilbert space. Relatively simple proofs of the following 
results arc given. 

(a) A power bounded operator T on § is similar to a unitary operator if and 
only if T is surjective and if there exists a constant M such that 

(i-IA|)ll*ll ^Af||7,*-;jf||> Ml < i, 

(b) Let iA be the generator of a strongly continuous group {P,: /€R} in 
Suppose that sup {HP-,!!: /=0} is finite. Then A is similar to a selfadjoint operator 
if and only if there is a constant M such that 

ReA||x|| ^ M^Xx—iAx\, Re A > 0, x<LD(A). 

By spectral theory the "only i f " parts are obvious. For a contraction T, sta-
tement (a) is due to GOHBERG and KREIN [3], who deduced it from a theorem of 
SZ.-NAGY and FOIA§ [10]. In the latter theorem the authors provide a sufficient 
condition for an invertible contraction T to be similar to a unitary operator, in 
terms of the characteristic operator function 0 r (A ) of T. This condition is that 
a constant N exists for which 

11*11 ^iV||er(A)*||, |A| < i, 

For the concept of characteristic operator function and its connection with the 
theory of unitary dilations we refer to SZ.-NAGY and FOIA§ [11, ChapitreVI, pp. 
228—230, and Chapitre IX, p. 334]. 

The problem of finding a simpler proof of statement (a), avoiding characteristic 
functions and dilation theory, was pointed out by SZ.-NAGY in [2]. In the present 
paper we shall give a solution. We shall even do it for non-contractive, but power 
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bounded operators. Indeed, the proof of (a) shall be reduced to the comparatively 
simpler theorem of SZ.-NAGY [9] which asserts that an invertible operator S is sim-
ilar to a unitary operator if (and only i f ) sup {[|S"||: /i£Z} is finite. 

Statement (b), the continuous counterpart of (a), is entirely new. 

2. Main results 

We shall need a few definitions. A linear operator T on § is said to be power 

bounded if sup {HT"!!: n€N} is finite. Let A and B be linear operators with domain 
and range in §>. Then A is said to be similar to B if there exists a bounded linear 
operator V with bounded everywhere defined inverse such that AV=VB. 

Theorem 1. A power bounded operator T on § is similar to a unitary operator 

if and only if it satisfies one of the following conditions (in (ii)' T is supposed to be a 

contraction): 

(i) T has power bounded inverse S. 

(ii) The operators (T— A/)-1, |A|<1, exist and 

SUP{(1— |A|)||(T— A/)-1||: |A| < 

(ii)' The operators 6R(A)-1, |A|<1, exist and 

sup {ll©,.^)-1»: 

(iii) T has an inverse S for which the operators (/—AS)-1, |A|<1, exist and for 
which 

liminf sup{(1 —r2)||(/—AS)-1||: |A|=r} 

(iv) T is surjective and there is a constant M such that 

(1—|A|)||*|| S M\\Tx—kx\\, |A| -<= 1, 
Proof. SZ.-NAGY [9] proves the sufficiency of (i) by means of an invariant 

mean on Z. The necessity of (i) is trivial. The implications (i)=>(ii), (ii)=>(iii) and 
(iii)=>(iv) are more or less trivial. The implication (iv)=>(ii) follows from the fact 
that boundary points of the spectrum of a closed linear operator are approximate 
eigenvalues; e.g. HALMOS [4, Problem 63, p. 39]. In [10] SZ.-NAGY and FOIA§ use 

unitary dilation theory to prove the sufficiency of (ii)'. By establishing certain mutual 
inequalities between ||0T(A)-1|| and ||(R-A/)-1||, |A|<1, GOHBERG and KREIN [3] 

prove the equivalency of (ii) and (ii)'. See also KREIN [5, 6] and SZ.-NAGY and FOIA§ 
[11, Chapitre IX, p. 334]. 

A simple proof of the implication (iii)=>(i) runs as follows. Since it neither 
uses unitary dilation theory nor characteristic functions it solves a problem posed 
by SZ.-NAGY in [2, p. 585]. 



A problem of Sz.-Nagy 191 

Fix x in § and r in [0,1). Denote 

M(r) = sup {(1 -rOlKZ-AS)-1 ! !: W = r} 

for 0 < r < l and put M0=sup {||rn||: From (iii) it follows that the spectral 
radius Q(S) of S satisfies Since ||rn||^M0, n€N, it also follows that 
e ( T ) s 1. Hence, for |/.|<1, we have norm convergence in both expansions 

(I-J.S)-1 = 2 (i-ZT)-1 = 2 ^"T". 

n=0 n=0 

So, since ST=I, we have with l=re", 0 S r < l , 

co oo oo 2 rMeintSn= 2rne~in'T" = n= — OO R — 0 /1 = 1 

= (/— re"5)_1 + re~" T(J— re~u T)~l = (1 - r2) (/ - rj'S)-1 (I-re~ u T)~K 

Thus, by (iii), it follows that 

2 /-2'n|||S',x||2 = f 2 rMeimSnx dt 

1 
= ^ f \\(l—r2)(I—rei'S)~1(I—re~"T)~1x\\2dt S 

—n 
1 + n 

sM(r)2-— f I\(I-re~i,T)-1x\\2dt = 
—it 

+it 
2 rne-in,T"x 
n—0 

dt = M{rf 2r*n\\T"x\\2. 
n = 0 

= M(r)2 • — J 
—n 

Consequently, 

2 r ' lS"* ! ! 2 ^ ( M ( r ) 2 - i ) 2 ^"lli""*!!2. 
n=l (1=0 

Next, fix m in N, m£ l . Then, 

r2m||5m*||2 = (1-r2) 2 r2n\\Tn-mS"x\\2S 
n = m 

3=( l - r 2 ) -M 0 2 2 »•2n||5",x||2s ( l - r^Mo 2 2 ||S"jc||8 

n=m w=l 

and, by what is proved above, 

r2m||Smx||2=s ( l - r 2 )M 0 2 (M ( r ) 2 - l ) 2^"\\Tnx\\2S 
n=0 

Si (1 -r2) A f 0 2 (M ( r ) 2 -1 ) Ml(1 - r2 ) -1 IIJC||2 = M%(M(r)2-1)|| xIP-
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Since 0 < r < l is arbitrary, we conclude that 

||Sm|| ^ liminf M02(M(r)2-1)1 '2, m S 1. 
>r»l 

Hence (i) follows. 

Remark 1. The operator (1—r2 ) (/-rS) - 1 (/—rS - 1 ) - 1 can be considered as 
ikind of an operator valued Poisson kernel. 

Remark 2. In [7] SHIELDS discusses a number of boundedness properties of 
powers of an operator in relation to the boundedness properties of its resolvent 
family. See also VAN CASTEREN [12] where similar questions are considered. 

* 

Next we describe the continuous analogue of Theorem 1. For a proof the reader 
will need Stone's theorem and some other standard facts on strongly continuous 
semigroups. For all this we refer to YOSIDA [13]. 

Theorem 2. Let iA be the generator of a strongly continuous group {Pt: /£R}. 
Assume that sup {||P_,||: i s 0} is finite. Then A is similar to a selfadjoint operator 

if and only if it satisfies one of the following conditions: 

(i) sup{||7>J: s s O H « . 

(ii) The inverses (XI — iA)-1, Re A>0, exist and 

sup {Re XKXI-iAyW: Re X > 0} < =°. 

'(iii) The inverses (XI— iA)~x, Re A>0, exist and 

lim inf sup {to||A7—i/4)_1||: Re A = <w} < <o40 

(iv) There is a constant M such that 

Re A||x|| == M\\Xx-iAx\\, Re A > 0, x£D(A). 

Proof. We only prove the implication (iii)=>-(i). Here we use Plancherel's 
theorem in L 2 ( R , § ) ; e.g. see EDWARDS and GAUDRY [1, § 3.4, p. 53] or STEIN [8, 

Chapter II, § 5, pp. 45—47]. 
Fix x in § and to >0. Put 

M(oo) = sup {2(o\\(XI-iA)~1\\: R e A = to}. 

From standard semigroup considerations it follows by (iii) that the integral 

f e-a^-*sPsxds 
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exists and that 
OO CO oo 

f e-°'ul~iisPsxds= f e~t0S~'SsPsxds+ f e~ms+i^P.sxds = 
0 0 

= = 2(a({co + i^)I-iA)-%(o-ii)IJriA)-1x. 

So by Plancherel's theorem it follows that 
CO | » » 

f e-°-<a^\\Psx\\2ds = — f | f e-°>M-'SsPsxds\fdQ = 

= ¿ 7 WMin+iOI-i^doi-iQI+iA^xWtdlis 

I OO CO oo 

= M(co)2 — f || f e-as^sP^xds\\2d^M((of- f e-^P.^'ds. 
2 j r -CO 0 0 

Put M0=sup {||P_t||: issO} and fix 0. Then 
oo 

e-*"s\\PsxP = 2co f e-*™\\P_is^Psx\\*ds^ 
s 

S2a)M2 7e-2rasH^xll2rfs ^2ojM02 7 
S 0 

and by what is proved above, 
oo 

e-2<oS\\Psx\\2 2coM$(M((o)2-l) f e-2as\\ P-Sx\\2ds^ 
o 

2cuM04(M(co)2-l) 7e~2asds-\\x\\2 = M^(M((o)2-\)\\x\\2. 
o 

Consequently, we conclude that 

|jPJ s M02 lim inf (M(w)2 -1)1/2, s fe 0. 
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