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Summary

This document describes the Access Control Model realized for the novel Pepys dis-

tributed, Internet-wide, �le-system. The model design has been widely inspired to

various existing standards and best practices about access control and security in �le-

system access, but it also echoes peculiar basic principles characterizing the design of

Pepys, as well as the ΠP protocol, over which Pepys itself relies.

The proposed model is based of few cardinal points, which makes it particularly

suitable for �le-systems in which a consistently number of users wants (or has to)

share its own data.

Particularly our model aims to create an environment where the following goals

are satis�ed:

• users can set their own rules for their data,

• the system administrator has to be able to set upper-bound rules in which every

user has to obey,

• users can form real communities, sharing so their data and the rules applied to

it,

• users can delegate other users in order to perform a given action on their behalf.

This document also provides technical details about how the model has been realized

on a Linux port of Pepys.
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Part I

Introduction

In computing, a distributed �le-system (or network �le-system) is any �le-system that

allows access to its objects (�les and directories) from multiple hosts sharing via a

computer network. This makes it possible for multiple users on multiple machines to

share �les and storage resources.

In a conventional �le-system, is understood where the �le actually resides; since

the system and disk are known. In a distributed �le-system, the location of a �le,

somewhere in the network, is hidden from the user point of view. Files in this type

of �le-systems are stored in remote �le-servers.

Distributed �le-systems may include facilities for �le replication and fault tol-

erance. That is, if a limited number of nodes in the �le-system crash, the system

continues to work properly. File replication means that a �le (or a �le-system object

in general) is replicated in more di�erent servers; this fact a�ects positively perfor-

mances and �les availability.

Moreover a distributed �le-system may provide a system �le-local-caching. That

is, when a remote �le is retrieved by a user, such �le is also stored in the user's ma-

chine for future accesses. This fact reduces the network tra�c, by retaining recently

accessed disk blocks in such cache, so that repeated accesses to the same information

can be handled locally. If required data is not cached yet, a copy of data is brought

from the server to the user.

Some example of well-known distributed �le-systems are the Jade �le-system [21]

and the sun network �le-system [25].

Since distributed �le-system allows to share objects among di�erent users, each of
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them could (theoretically) have access to every object contained in it; a privacy issue

is thus emerged. Therefore a protocol which regulates the users interactions and the

object accesses has to be de�ned.

Usually each user owns a certain set of permissions on a given �le-system object

(capabilities) . A decision process uses these rules to establish whether a user can

perform a requested action on a requested object. The protocol which rules how users

can have access to the �le-system objects is called Access Control Model (ACM).

Historically the �rst remote �le-servers were developed in the 1970s. In 1976

Digital Equipment Corporation created the File Access Listener (FAL [5]), an imple-

mentation of the Data Access Protocol as part of DECnet Phase II which became

the �rst widely used network �le system. In 1985 Sun Microsystems created the �le

system called "Network File System" (NFS [27][24]) which became the �rst widely

used Internet Protocol based network �le system. Other notable network �le systems

are: Andrew File System (AFS [1]), Apple Filing Protocol (AFP [12]), NetWare Core

Protocol (NCP [20]), and Server Message Block (SMB [16][17]) which is also known

as Common Internet File System (CIFS [30][17]).

The presented work has been developed in Bell-Labs Ireland (Dublin) in July-

November 2012. It was also submitted and then successfully presented at the 7th

International workshop on plan 9 [9] the 16th in November 2012.
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Part II

Related work

In order to design an e�cient and state-of-the-art access control model, some of the

most widely known and deployed standards for �le-system access control have been

considered.

Particularly, our work was greatly inspired to the POSIX Access Control Lists

(ACLs) [2, 11]. POSIX ACLs overcome some of the limitations of the old UNIX

�le-system [28], allowing for the de�nition of multiple per-user and per-group rules,

providing a great liberty of �exibility in expressing access-control rules. Even though

the ACL model presents some limitations (as highlighted in [23]), they are used in

the most modern operating systems. Some systems implement an abbreviated form

of ACL by restricting the assignment of authorizations to a limited number of named

group of users, like expressed by [23].

The access-control model proposed in this document is also based on attaching

lists of access-control rules to �les, therefore our model is also referred to as an ACL

model, even though there are various di�erences with the standard POSIX ACL (see

Section 2 for details).

In order to represent the set of allowed permissions for users or user groups, the

classical concept of a bit-mask has been used, similarly to the UNIX �le-system [28].

However, the set of allowed permission bits does not match perfectly UNIX. For

example, we do not support the right of execution for �les (that would not have sense

in a distributed system); also, taking inspiration from NTFS [29], the co-owner bit

has been added, used in ACL entries to de�ne which users are co-owners of the �le,

i.e., they can manage its ACL settings.
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Also, in our model the concepts of users and groups are somewhat uni�ed, being

also possible to de�ne arbitrary nesting levels among groups of users. This behavior

can be thought of as a �exible way to de�ne users' roles and their hierarchical or

nesting relationships, hence can be compared to the expressiveness often found in

RBAC [26] models.

Our model design allows users to manage their own �les permissions, allowing

for a completely discretionary access-control, as found in DAC [15] models. At the

same time, it is provided the possibility, for a system administrator (or speci�c set of

privileges users), to de�ne �upper-bound� rules that cannot be overcome by regular

users, stealing some of the characteristics of typical MAC [15] models, and taking

inspiration from similar characteristic available in in NTFS. In this way we provided

a good trade-o� between two di�erent kind of policies: Discretionary and Mandatory.

In the literature works as [4][3] and [32] have been also proposed, in order to �nd this

trade-o�.

Our implementation did not address comprehensively authentication, yet. How-

ever, a basic authentication mechanism has been realized, taking inspiration from

HTTP-Auth [10], used in the HTTP protocol, in which clients send their hashed

password to authenticate to the server. The authentication mechanism also re-uses

the �everything is a �le� old paradigm of UNIX and further developed in the Plan9

OS [7]. Furthermore, we support a primitive mechanism for delegation [14] of author-

ity through o�-line delegation certi�cates resembling Amoeba capability lists [18, 6].

Also an on-line delegation is available; in such case, as we will can see, certi�cates are

not necessary.

Various other access-control models for distributed �le-systems have been pro-

posed in the literature, such as the WebFS [31] work, including a mechanism allowing

entities to delegate other entities in order to act on their behalf ([8] [19] and [33]) on
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a set of de�ned �le-system objects, or others.
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Part III

Access control in Pepys

1 Introduction on Pepys

Pepys is an innovative distributed �le-system born to meet the increasingly growing

demand, from users, to always have their data available anywhere.

Pepys is composed of a multitude of servers that, together, present a collection of

�les organized in trees or volumes. It uses a hierarchy of caching �le servers and a

set of archival storage servers, brought together through a common set of protocols

for data access and control. Moreover, in order to design a fault-tolerant system, �les

may be replicated among servers; doing so it is even possible to improve the speed of

�les fetching (the same approach is also used by [31]).

In Pepys, when a new �le is created, it is not necessary that every directory present

into the path is present. For example, the �le named /a/b/f can exist in the �le-

system without requiring existence of /a/b and/or /a. The existing object having a

name with the longest pre�x matching the name of another object merely becomes

the guard of said other object. For example, if /a and /a/b/f exist and /a/b not,

then /a is the guard of /a/b/f. The guard relationship among objects ultimately

regulates how exactly access control is performed, within the Pepys �le-system, as it

will be detailed in section 2.

Pepys is a versioned �le-system, i.e., when a �le is modi�ed, a new version of the

�le is added to the system, that keeps storing all the previous versions. This way it

is always possible to keep track of the �les history. Versioning allows for an e�cient

caching of �les.
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Moreover, �les in Pepys may have attributes. These are de�ned in the same name

space as for the regular �les. For example, if owner is a valid attribute for the �le

/a/b/f, then its complete name is /a/b/f/owner. To avoid confusion between �les

and attributes, a special character is used in the �le operations when referring to

attributes.

Pepys is composed by two di�erent types of process: ΠP client and ΠP server

(see 1). The �rst one, as the name suggests, is a client-side process which represents

the connected user and its requests of operations onto the �le-system. The second

one instead is a server-side process, which purpose is to process the user's requests,

and to reply to him.

Pepys uses a new transport protocol (called ΠP ) in order to minimize the round-

trip message exchanges, between a ΠP client and a ΠP server, necessary to perform �le

operations. The protocol allows to send, to the server, multiple consecutive requests

in a single packet (these request are packed by ΠP clients). Thanks to this approach,

ΠP servers perform clients requests one by one, and send back a set of responses in

order to communicate the operations outcome. In order to better understand how

ΠP works, let us make an example. Let us suppose that a client wants to open a

�le named test and write into it a line of text. The used protocol allows to pack

a single request which contains three statements: open test; write line; close

test. After that the ΠP client will send such packet to the ΠP server, which will

perform the required operations and, �nally, it will send to the ΠP client a response.

Being still under heavy development, Pepys has various features still under imple-

mentation, or merely at a design stage. For example, Pepys was not including any

mechanism for access control, yet. This document describes the work that has been

done in order to add an Access-Control Model to the Pepys distributed �le-system,

complying with the general principles behind the Pepys design.
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Figure 1: Pepys components.

Pepys �le-system is currently implemented on top of a new operating system called

Osprey [22] (see �gure 1), providing an alternative approach to cloud computing, and

speci�cally aiming to improve latency and predictability of cloud applications and

support for mobility. In order to read a detailed explanation of Osprey, please refer

to [22].

A key component in the overall architecture is the ΠP protocol, supporting all

Pepys operations, including various interactions with the Osprey kernel itself.

As showed in �gure 1, the original Pepys server we modi�ed included ΠP Ram,

basically an in-RAM �le-system. ΠP Ram contains data structures and functions to

manage �le-system objects and the accesses to them. Particularly it contains struc-

tures which represent �les (or guards) and the necessary functions to create/write/read

them. Such �le-system is referred as non-persistent �le-system, basically because its

content cannot survive to a system reboot.

As explained in 3.1, this structure has been extended to keep �les on a Linux (and

generally POSIX) �le-system, and to support our new AC model.

Finally, from now on, the terms server and system will be interchangeably used

to refer the ΠP server.
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2 Access Control

In this section an overview of the access control model, with its main aspects, is

shown.

Particularly, our access control model has to cover these aspects:

• each user is free to de�ne the access control rules for its own objects, in the

most �exible way possible;

• the traditional distinction between users and groups is replaced by a uni�ed

vision of such entities;

• access control rules can be speci�ed at a generic abstraction level, considering

sets of �les and sets of users, then re�ned for speci�c subsets of those �les and/or

users;

• however, each user freedom is constrained by the rules dictated by system ad-

ministrators, if any;

• re-using the �everything is a �le� approach to manage as many operations as

possible, including operations involving the administration of the access-control

operations, such as editing of ACL rules or creation of users.

More details on the speci�c aspects are reported below.

2.1 Entities

The di�erence between users and groups has been overcome by introducing the con-

cept of entities, representing users or groups of users, that can be authorized or denied

the access to portions of the �le-system.
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An entity represents the subject who has request to perform an action onto the

�le-system. A trivial example could be this: let us suppose that user Sam wants to

create a �le; in such case Sam, as being the subject of the operation, is the entity.

Every operation within the �le-system is performed by entities.

In order to make the system security administration as scalable as possible, entities

(i.e., users and groups) can belong to others entities. If needed, a system can be

con�gured in such a way that a nesting relationship becomes valid when both involved

entities agree about it. An entity has to be aware of the fact that, adding another

entity in the set of entities belonging to it, is equivalent to giving them all the access

rights to which it is entitled, unless otherwise overridden by more speci�c rules.

This feature can be also easily retrieved in the real life. Let us suppose that a

person is registered at a rental movies center, and for this reason it owns a card that

it has to show every time it wants to rent a movie. We can state that the set of people

which own such card are the group of person which are able to rent a movie in the

same movie center. Let us suppose now that the movie center belongs to a company

which holds a set of equal centers. In this case a person will be able to rent movie in

one of them without distinction. Of course exceptions are possible: for example the

company can own di�erent types of movie centers where di�erent cards are requested.

In this case, in order to rent movie in di�erent movie centers, a person has to own

di�erent cards, hence it belongs to di�erent groups.

In our approach there are no limitations for the nesting level of the belong-to

relationship, which is to be considered a transitive relationship. For example if Sam

belongs to Nilo, and Nilo belongs to Tommaso, then Sam belongs (indirectly) to

Tommaso.

Hence, a �belong-to� relationship between two entities can be:
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1. Direct

2. Indirect (if transitively inherited).

The �rst kind of relationship is considered stronger than the second one, from an

access-control (AC) perspective, meaning that an AC rule referring to a direct father

of a user has priority over an AC rule referring to a generic ancestor. The direct and

indirect ancestors of an entity can be visualized in a �belong-to� relationship priority

tree in which the entity under consideration is the root of the tree (see �gure 2).

These trees (named belong-to trees or entities tree) represent the whole ances-

tor hierarchy of an entity. Trees are divided into levels, according the �belong-to�

relationship priority, these level are scanned one by one during the access control

algorithm 2.2.1.

Moreover, as we will see in section 2.3, an entity authentication is not mandatory.

An entity can decide whether or not to authenticate itself onto the system. Of course

the system will treat in di�erent ways authenticated entities from those who are not.

Two system-level entities are always de�ned in the system, called others and

nobody. Each entity de�ned in the system belongs implicitly to nobody, but only

in the weakest possible sense (see Section 2.2.1). The others entity instead is a

convenient way, in ACL rules, to refer to any authenticated user in the system. Also,

unauthenticated entities, as well as entities just logged onto the system, and about to

authenticate, are treated by the system as implicitly being the nobody entity. Also, is

the system implicitly considers that others belongs to nobody, as shown in �gure 2.

Even though the name nobody could be misleading according what has just been said,

is due to the behavior held by the system to the entities that are not authenticated

(yet). Anyway the purpose of nobody and others is further detailed in section 3.6

Moreover since nesting of relationships can be arbitrarily added by users, loops
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Figure 2: Belong-to relationship tree, rooted at a generic entity E1.

are possible in the belong-to trees. Such a situation, albeit unusual, is still handled

by the implementation consistently.

2.2 Access Control Model

Each object in the �le-system owns an ACL table which contains the access rules

governing access to it; each rule names an entity and its permissions to the object, as

shown in �gure 3.

Each ACL can have one or more co-owners, which can manage the rules in such

ACL. At least one co-owner has to be always present, so to ensure that there is always

someone able to manage the object security settings. Therefore, the system forbids

the operation of deleting the ACL rule for the last co-owner. In other words if only

one co-owner is named in a certain ACL, its entry cannot be removed until it is the

only one contained in such ACL.

ACL rules apply generally to the object they are attached to, but are implicitly

and dynamically inherited also by all the objects having it as a guard (i.e., the children

�les), and any other further object down the containment/guard hierarchy of objects
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Figure 3: Access control list (ACL).

(i.e., the whole subtree rooted at the object).

Normally, a rule attached directly to an object takes precedence over a rule at-

tached to its guard (father), or a rule attached to its guard's guard, etc. However,

there is a special type of rules, called non-overridable rules (o-rules), that forcibly

apply to the the whole subtree of the guarded �les and cannot be overcome. Such

rules are designed to be used typically by system administrators to restrict the AC

settings that regular users may be willing to con�gure for their own created contents.

As a result, a regular rule in an object stating that an entity has certain permissions

is e�ective only if there are not any o-rules, in its guards chain or in the object itself,

stating otherwise.

An ACL rule mentioning the others entity can be used to grant or deny access to

any user known to the system, when acting as an authenticated user. Also, an ACL

rule mentioning the nobody entity can be used to grant access to any user connected

to the system, and if combined with others (see 2.2.1 and 2.3), for those who are

not authenticated (yet). However, authentication is only partially addressed in Pepys
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(e.g., server authentication is unaddressed, so far), as a full mechanism will have to

be integrated with cryptography at the ΠP protocol level.

The type of supported permissions in the current design and implementation is

mostly inspired to traditional UNIX �le-systems: read and write of �les, traversability

of guards, ACL management (co-ownership) and delete permission (as found on NTFS

�le-systems [29]). However, this tentative set of permissions can easily be extended to

more complex permissions or permission set. It is noteworthy to mention that, whilst

on traditional �le-systems, the read permission over a folder refers to the ability to

read the folder contents, in Pepys it is planned to provide distinct permissions to read

a guard's children (the guarded/contained objects), and to read any �les contained

in the corresponding sub-tree.

Another feature that is being discussed, from the ACM perspective, is the one

in which there are multiple guards for the same object, a situation resembling the

concept of link in traditional UNIX �le-systems.

2.2.1 Decision Algorithm

At the core of the Pepys ACM there is the algorithm deciding whether or not to

grant a given user access to a given �le for a given operation. The central idea for

such algorithm is: �more speci�c rules take precedence over more generic ones�. This

means that, if the entity can reach an object (permission given by the traversability

bit), AC rules directly attached to it have priority over AC rules inherited by guard

objects or other ancestors (the o-rules described above are the only exception, when

present).

The decision algorithm locating the proper permissions applying to a given entity

for a given operation (e.g., write) on a given object, can be expressed shortly in these

few steps:
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1. Traversability check: the system checks that the entity has the right to tra-

verse (e.g., 'x' permission bit) all the existing guards going from the �le-system

root down to the desired object, looking at those guards ACL tables. The

traversability permission, in such tables, can either be granted directly to the

entity attempting the access, or indirectly through any of the entity parents or

ancestors, in the belong-to relationship;

2. Check if there is a rule for the entity in the object ACL;

(a) as soon as a match is found, its permissions mask are used to determine

the access;

3. Check if there is a rule for any ancestor of the entity (i.e., as due to the belong-

to speci�ed relationships), giving priority to rules naming direct ancestors, then

2nd level ancestors, etc., up to nobody;

(a) as soon as a match is found, its permissions mask are used to determines

the access;

4. Get the inherited rules from the object guard and start again the algorithm

from step 2;

5. If there are no rules about the entity or for one of its ancestors the access is

denied.

It is important to say that the o-rules a�ecting a given entity are combined with

the permissions mask returned by the algorithm above; this operation gives us the

e�ective permissions which the entity owns on the object (see section 2.2.2).

Moreover, as we can see, it is been decided to give the priority to the entity

ancestors, named in the speci�c object, rather than a possible rule for the applicant
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entity in the object guard; this because we consider more accurate the rules contained

in the speci�c object rather than those in its guard.

Furthermore, since every entity belong to nobody entity, if the nobody ACL rule

is present, it allows to inhibit inheritance of guards rules; since the algorithm would

break at step 3. Same reasoning can be made for others applies to every authenti-

cated entity.

This makes the algorithm very �exible since is possible decide when the decisional

process has to stop.

2.2.2 Access control rules

As reported brie�y in section 2.2, there are two kind of rules.

• Regular rules (r-rules)

• Not overriddable rules (or obligatory rules or o-rules)

The �rst ones are the rules which are taken in account when we have to retrieve

the most speci�c rule, for a named entity, during the decision algorithm. Instead

the second ones can be considered merely as upper-bound rules which cannot be

overcome by regular rules. As detailed in section 2.2.1, when an entity tries to perform

an operation, the permissions as coming from regular rule matching its name are

intersected with the restrictions provided by a matching o-rule.

Particularly, when an o-rule is de�ned in an ACL, it does not mean that the

named entity in the rule owns the expressed permissions, but merely that such entity

will not be granted more than those permissions, starting from the object where the

o-rule is placed. Hence if the object is a guard, the entity will not have more than

such permissions in the whole subtree held by the guard.
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Furthermore, while using regular rules it is possible to add exceptions for a named

entity in every level of a guards tree; o-rules can only narrow the permissions going

down to such tree. For example, assuming that the path a/b/c/.../f exists, if the

ACL of b contains an o-rule for a named entity, the rights for such entity (or its

members) cannot increase going down the tree (hence c/.../f).

If an administrator wants to add an exception to an o-rule, it has to add it in the

same ACL where the �rst o-rule is de�ned. For a detailed explanation see section 4.2.3.

The o-rules meaning is merely to contain the entity rights, inside a set of permis-

sions. This makes the life easier for a system administrator.

O-rules have always priority on regular rules. Therefore if an ACL contains an

o-rule which refers indirectly an entity and a r-rule which names directly such entity,

both are taken in account, not solely the r-rule. The operation requested in such case

is only allowed if the combination of both rules allows it.

Finally each entity can be directly named, in a rule (o-rule or r-rule), only once

in an ACL.

2.2.3 Delegation

Entities can delegate others entities in order to act in their behalf, on a given object.

Each delegation is associated with a speci�c object and contains: the name of the

delegator, the name of the delegatee, a set of permissions assigned to the delegatee, an

expiration date and a value which represents the depth of the trust chain (see below

in this section). Clearly, the permissions granted by delegation cannot be higher than

the ones held by the delegator on the object. Figure 4 shows a general delegation and

the �elds contained in it.

Two kinds of delegation are possible:
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Figure 4: Delegation components.

1. On-line.

2. O�-line.

In the �rst one the delegator issues the delegation to the system, merely specifying

in it who is the delegatee, its permissions, the depth of the trust chain and the �le-

system object on which the delegation is applied. In the second way the delegator, as

well as �ll the delegation like the �rst method, signs it and issues it to the delegatee.

When the delegatee wants to perform an action on behalf of the delegator, it will

present the delegation to the system. Figure 5 shows what has just been said: as we

can see, on-line delegations are performed by a single step, whereas the o�-line ones

are performed by two di�erents steps.

In the �rst case the signature is not required, since the system knows exactly who

is the delegator and its permissions (for the anonymous cases see 3.6). In the second

case the system, before to approve the delegation, has to know who is the issuer.

Therefore the delegation has to be signed by the delegator.

The delegations are taken in account using the same algorithm described in 2.2.1,

and only if the access is denied using the regular ACL rules.
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Figure 5: Types of delegation.

Every entity can use its delegations in order to delegate other entities, so as to

build a chain of delegations (or trust chain). Every delegation in such chain cannot

have an expiration time beyond the one expressed in the delegation immediately above

(i.e., the delegation used to issue the new one). Therefore, the expiration time in the

head of the chain bounds the expiration time of all the delegations in such chain.

Moreover, the entity which issues a delegation, marks it with a number represent-

ing the maximum length of the trust chain from that point. Of course these numbers,

going down through the delegations chain, can only be smaller. Therefore the value

assigned by the �rst delegator in the chain, represents the maximum length which

the chain can have. This value can also be null, in this case the trust chain length

is limitless. In �gure 6 an example of trust chain in shown. As we can see the �rst

delegator set a value as maximum trust chain length, which is decremented every time

a sub-delegation is issued. Once this value reached zero, it will not be more possible

to sub-delegate any entity.

Moreover it is always possible to revoke a delegation merely by resetting its expi-

ration time; the delegation will become thus no more valid.

The type of explained delegation so far is referred as grant delegation in the lit-
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Figure 6: Trust-chain length representation.

erature; this kind of delegation is also treated in [8]. In fact according to such work,

delegation of privileges may be classi�ed into (at least) two di�erent family: grant

and transfer. In the �rst case, following a successful delegation operation, allows the

delegated access rights to be available to both the delegator and the delegatee. In

the second case instead, once a delegator delegated a set of rights to a delegee, it lost

automatically such set of rights: a delegator does not able to bene�t of the delegated

rights. Our case is clearly the grant one. Such model is also referred as a mono-

tonic model since a delegated entity rights cannot be decreased, once a delegation is

successfully performed.

2.3 Authentication

Authentication of users has been temporarily realized as a simple (hashed) password

veri�cation. Authentication is not mandatory, to connect to the server. An entity
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can have access to the system without having authenticated itself. In this case, the

system considers the connected entity as being the nobody entity, thus the access-

control permission speci�ed for such entity throughout the �le-system apply. While

being connected to the system, an entity can authenticate itself whenever needed,

upgrading its session from the rights corresponding to the only nobody entity to the

rights associated with its actual name. Therefore until the user is recognized as to be

nobody, the corresponding permissions will be taken in account in order to delegate

other entities. Even though such delegations are (in most of the cases) purposeless,

they are anyway available.

One of the goals of the Pepys �le-system is to become a content-distribution plat-

form. Supporting an unauthenticated state of the session is useful, in such context, to

realize a sort of �incognito� mode of access by which public contents can be distributed

worldwide without requiring users to reveal their identities.

Hence is clear that the system must be able to treat in a di�erent way the authen-

ticated entities from the other ones; this is achieved by using the couple others and

nobody. Indeed others refers to entities which are logged onto the system, instead

nobody to every entity present in the system (including both authenticated and not).

In order to better understand how these two entities are used, let us consider an

ACL table of a �le-system object. An ACL entry referring to the others entity applies

to �every user logged and authenticated onto the system but for which no other ACL

entries have been found in the ACL table�; an ACL entry referring to the nobody

entity, instead, applies to �every user logged onto the system, either authenticated

or not�. ACL entries for others have priority over the ones for nobody, i.e., the AC

engine behaves as if the former entity were a subgroup of the latter one (see �gure 2).

Finally, if a server needs to authenticate users before allowing access to its con-

tents, this can always be done by specifying the permissions wanted for the authen-
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ticated entities following the rules above (and using others if needed) and no access

rights for the nobody entity.

In literature some works which show a model where users are treated like the

presented one can be retrieved. An example can be [13], where a special ACL entry

to refer to every entity regardless of their credentials is used. Therefore such entry,

whose subject is named Anonymous, matches every user in the system. The meaning

of such entry is exactly the same of the Nobody one.
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3 Implementation Notes

In this part some implementation notes are shown; unfortunately for company con�-

dentiality questions, it is impossible to publish the source code.

3.1 Porting on Linux

The �rst step in our work was to unplug the Pepys �le-system from its original

structure (showed in �gure 1) and therefore build a layer, called Lib Posix, in order

to make the Pepys �le-system runnable on UNIX machines.

In fact, thanks to the porting, we were able to use debug software, in order to

better implement the presented access control model. Even though Osprey has an own

set of tools, some these are not completed yet and also still under heavy development.

Moreover, in order to allow operations of swapping/loading objects from/into

RAM, a new component, called Pipdiskfs, has been added to the POSIX version of

Pepys server.

Particularly, thanks to the Pipdiskfs layer is possible to swap (or to load), from

the RAM, whole ACLs tables or parts of them (for example few entries of a table).

Similarly is also possible to swap (or to load) entire entities or merely parts of them.

Of course is also possible to swap/load regular �les.

Furthermore this layer �lls the existent gap between the Pepys and the UNIX

�le-system. For example, guards in Pepys have been realized by directories in Linux.

As has been said in 1, Pepys is composed by two di�erent parts: server and client.

In order to let communicate these two parts, the porting has been realized by using

the FIFO queues; provided by all UNIX �le-systems. In this way clients and servers

store their ΠP messages into these queues in order to communicate.

These queues are very simple: each process (ΠP client or ΠP server both) instan-
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Figure 7: Porting on Linux implementation.

tiates an own named pipe (where the name of the process is the same of the pipe)

which will be used to retrieve the incoming messages. In fact a named pipe (also

referred as FIFO for its behavior) is system-persistent and exists beyond the life of

the process. Processes generally attach to the named pipes (usually appearing as a

�le) to perform inter-process communication (IPC). In this kind of special-�les each

message is stored as if the �le were a FIFO queue. When a Pepys client has to send a

message to a server, it has to know the name of the server. Therefore the client will

be able to perform a write operation on the server named pipe. Since di�erent clients

can communicate with the same server, they must be able to write in the the same

named pipe without interfere each other. Therefore they must have exclusive access

to the server named pipe each time the have to send a message. In order to let this

possible a shared memory portion, in which processes can synchronize themselves,

has been used. In order to see how a memory portion can be shared among processes,

please refer to shmget manual.

The implementation is conceptually shown in �gure 7.
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Figure 8: File-System structure.

3.2 File-System Structure

Inside the �le-system, entities are represented by special guards, which own a set of

special �les. Moreover, as we can see in �gure 8, each entity is associated with a home

object (folder) over which it has full control.

Particularly each entity guard (e.g., E1 in �gure 8) holds:

Ibelto/Beltome: necessary to establish a new relationship.

Approved: list of entities which the named one belongs to

Proxies: provides a mechanism for permissions delegations.

e-�les: others entity �les as, for example, entity public key.

Each entity guard is managed by the guard above called /entities, which holds also

a special �le called Login in order to allow entities authentication.

An ACL table is represented by an object attribute, which can be changed only

by the co-owners as reported in such ACL.
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Instead an object delegation is a special object attribute, managed by the system,

and hidden from the user's point of view.

The motivations behind this implementation is discussed in section 2.2.3.

3.3 Entities relationship

When an entity wants to become member of another entity's users group, it writes

the name of the other entity in its Ibelto �le (over which it normally has write

permission). The other entity (or the system administrator), on its own, has to write

the name of the �rst entity in its Beltome �le, in order for the new relationship to

become e�ective. For each entity, the e�ective Ibelto relationships are reported in

the approved special object within the entity folder, normally accessible to it for

reading.

It is impossible for an entity to remove from its parents the system entities nobody

or others. Also, depending on how the system is being administered, it is possible

to allow users to write to their own Ibelto �le, enabling them to propose changes

to their belong-to relationship, including their removal from groups they belong to.

On the other hand, it is equally possible to forbid such write operations, leaving the

administration of users and groups entirely to system administrators, as it commonly

happens in nowadays operating systems.

In order to express the willingness to belong to another entity, a user has to write

in its ibelto �le the entity name, using this syntax:

[first entity name ]:[ second entity name ]:...:[ last entity name]

Consequently, in order to express the willingness to be the father of an entity, a

user has to write its name in the beltome �le, using the same syntax.

In our implementation, when the agreement is reached, the relationship become
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e�ective.

3.4 Collection of entity rules

One of the biggest challenges was to dynamically collect the o-rules, referred to a

given entity, without heavily impact on the model performances.

Since these kind of rules have the highest priority on every one else, they have to

be taken in consideration every time they change. Even though a new o-rule could be

propagated in all the objects held from the one where is applied, this would heavily

impact in system performances, by making really slow any rules modi�cation.

In order to �nd a good trade-o� between adaptiveness and performances, o-rules

are collected during the walk procedure; which is performed to check if an entity is

able to reach the �le-system object in which the operation has been requested. This

seems to be a really good solution since, in any case, an entity has always to walk to

reach an object. Hence the retrieved rules can be easily collected.

Anyway this approach implies a drawback. Let us suppose that the path /a/b/c/d/.../f

exist, and an entity walks from a to the object d. During the walk the o-rules are col-

lected. Let us assume that such entity, once it reached the object, uses it but leaves it

opened (e.g, let us think about a �le-system window in which a user browses �les and

directories). Even thought a new o-rule (about such entity) is added in the object a,

next entity walk will start from the object d (it is left opened), hence the new o-rule

will not be collected. In order to avoid these situations, every time a new o-rule is

added, all the walk operations (of every entity) should start from the �le-system root

path. This solution would imply, clearly, a heavy performances leakage. Therefore

the collected o-rules are refreshed when an entity visits an object. Moreover, when

an entity closes the object reached by a walk, its next walk will start from the root
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guard, hence o-rules will be collected again.

Of course an entity can have more than one opened object. In this case if it closes

one, it is always able to continue to walk using another opened object (let us think

again to have two di�erent �le-system windows).

Moreover the proposed solution does not impact on the model consistence. In fact

it is lawful suppose that if an entity is able to perform an action on an object, it has

the right permissions to do so. Therefore it should have such permissions for the time

the object is left opened.

In order to de�ne if an entity owns the walk permission, during the walking pro-

cedure, (also) a regular rule in every visited object has to be searched. Since we have

to pick up a valid r-rule from the object ACL table, the rule we obtain is also stored,

so to have it already available during the access control algorithm. This impacts

positively on ACM performances in terms of execution time and complexity.

The caches are realized by a stack of rules. In this way when a user performs a

forward walk (e.g., from /a/b to /a/b/c) a new rule is pushed at the top of the stack.

When a user performs a backward walk (e.g., from /a/b/c to /a/b) the top stored

rule is popped out. By using such approach the �rst top rule is the one concerning

the very object which the user is requesting.

Moreover when applying the algorithm 2.2.1 is requested to search for a rule in

the object guard, we do not need to visit such object in �nding a rule. All we need

to do is a pop operation on the stack-cache in order to retrieve a valid rule.

Cases in which no rules have been found in an ACL, for a user, in the walk

operation, the last valid one is replicated.

Furthermore stack-caches are stored in the user session structure; and there is one

for each opened �le-system object. Clearly whether a user performs a login, these

caches have to be completely invalidated, since its credentials are changed.
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Another pre�xed goal was to let the delegation mechanism as an addictive optional

feature in our model. In order to do not impact on ACM performances, delegated

rules are not stored during the walks procedure. Delegations are checked dynamically

only if the requested action by an entity, according the ACL regular rules, would be

denied.

3.5 Delegation

As we said in section 2.2.3, two kinds of delegation are possible: on-line and o�-line.

In both of these two cases the delegatee acts in behalf of the delegator.

A valid delegation acts like a temporary ACL entry, so the very �rst idea could

be to change (temporary) the ACL tables to store a delegation rule. However, the

delegator might not have permissions to administer an object ACL but still willing

to delegate some other entity to perform actions on its behalf on that object.

The proposed model allows for this kind of scenarios, merely allowing to each

entity to solely write/read its own proxies �les. As a consequence, the system will

make the requested delegations e�ective, or ignore them, if they are invalid.

Moreover a delegation can contain a subset of permissions held by the delegator

on a given object. Therefore it is not mandatory to delegate an entity with all the

permission held by the delegator. For example let us suppose that entity1 wants

to delegate entity2 on the object file in which entity1 owns the whole set of

permissions (i.e., cdrwx). entity1 can only delegate entity2 to read, not necessarily

to have the same rights of entity1.

On-line delegation In the on-line delegation, when an entity wants to delegate

other entities to act in its behalf, it has to write the delegation in its proxies �le.

Speci�cally it has to indicate who is the delegatee, its permission, an expiration date,
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depth of delegation chain and the object to which the delegator is referring to.

After that, the system will consider the delegation as e�ective only if it is compliant

with the delegator's permissions on the speci�ed object (i.e., an entity cannot delegate

permissions it does not possess over a �le-system object).

The right syntax to use to issue an on-line delegation is:

[delegatee name ]:[ permissions ]:[ depth chain ]:[ expiration date ]:[ object]

Let us suppose therefore that entity1 wants to delegate entity2 (and only it) to

read an object named file up to 14th in November 2013. proxies �le has to contain

the following line:

entity2:r:0:00/00/00/14/11/2013: file

O�-line delegation In the o�-line delegation method, the delegator composes a

delegation, it signs it, and it stores it somewhere in the �le-system. The delegatee

must specify in its proxies �le who is the delegator and a valid path where the signed

delegation is stored. The system then checks the delegation signature using the public

delegation key available in the entity folder, and, only if the veri�cation succeeds, the

delegation is considered e�ective.

Therefore, this time, the proxies �le has to contain two �elds, speci�cally:

[delegator name ]:[ path where the delegation is stored]

In the example mentioned in the above paragraph, by supposing that the delegator

stores its delegation in the path /deleg/to_entity2, entity2 has to write in the

proxies �le:

entity1 :/deleg/to_entity2

The �rst information is necessary to the system in oder to retrieve the correct
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Figure 9: Unauthenticated session.

public key (in order to verify the delegation signature); the second one to know where

the delegation can be found.

The syntax of the delegation is the same showed in the above paragraph:

[delegatee name ]:[ permissions ]:[ depth chain ]:[ expiration date ]:[ object]

3.6 Authentication

When a client logs onto a Pepys server, it is not required to authenticate itself imme-

diately, resulting in a session being in an unauthenticated state (see �gure 9).

This means that the nobody access rights apply for the client, whenever an opera-

tion on the �le-system is attempted. The client can authenticate itself at any time by

using the special �le Login. Speci�cally, when an entity wants to upgrade its session

(see �gure 10), it has to write its (SHA-256) hashed password using a write command.

In section 6.8 will be showed how the login procedure has been implemented.

The server compares the hashed password with the one stored in the entity pass-
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Figure 10: Session switching.

word �le, and, if they match, the entity session is upgraded to an authenticated state.

From now on, the actual identity of the entity is used for checking the access rights

of the user.

Note that the Login �le is a special �le, in that it does not really stored any

password. Such �le can be opened by multiple remote clients concurrently without

problems, as in the implementation the authentication material being provided by

each client is kept into a separate bu�er associated with each session.

Moreover thanks to the characteristics of the ΠP protocol to group multiple re-

quests in the same message, it is possible for a remote client to stu�, within a single

round-trip interaction with a Pepys server, the set-up of a session, opening of the

Login �le and writing of the password, opening of the target �le-system �le and issue

of the desired read or write operation.

However, the very simple authentication protocol realized so far is also relatively

weak, in that it is easily subject to replay attacks, thus it can be improved by adding

a time-stamp to the hashed password to be written into the Login �le, or a server-
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provided random number (i.e., a nonce). Though, the last mechanism would require

at least two round-trips with the server.

Finally, we plan to review and improve the authentication mechanism by integrat-

ing it with cryptographic extensions of the ΠP protocol which are being designed at

the time of writing, that will allow for having encrypted client-server interactions.

3.7 File-system tools

The developed software included, in addition to the Pepys �le-system porting, a few

other tools:

1. Administration tool allowing for initializing the �le-system, specifying:

(a) Entities allowed and their login password.

(b) Server name.

(c) Mount point (on the underlying Linux �le-system) to allow for swap-

ping/loading of objects from/into the RAM.

(d) Path of directory that will contain temporary �les (i.e., named FIFOs

currently used for client/server communications).

2. An interactive terminal in which is possible interact with the Pepys �le-system

(create �les, administer ACL settings).

3. A set of �ad-hoc tests� to test the main �le-system features.

In the next sections the purpose of each of these will be explained in detail.

3.7.1 Con�guration �le

In order to ease the con�guration of the �le-system, an administration tool has been

created.
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Particularly, a �le in which specify the allowed users and some of initials con�gu-

rations, has been provided.

Let us see an example:

1 # Example of config file

2 # This is a comment line

3

4 # Server name

5 server: sam

6

7 # Set the disk mount point

8 mount: ~/Alcatel -Lucent/Pepys/Porting/DISK/root

9

10 # Set the keys directory

11 # Public keys mast be named: pubkey

12 # Private keys (if there are) must be named: privkey

13 # This path must contain directories named as the represented entities

14 keys: ~/Alcatel -Lucent/Pepys/Porting/DISK/RSA_keys

15

16 # Entities allowed

17 # Format: entity: Name Password

18 entity: entity1 asd

19 entity: entity2 asd

20 entity: entity3 asd

21

22 # Temp file path

23 tmpdir: /tmp/

Server name is used to represent the administrator entity within the �le-system,

and in order to let the clients able to exchange ΠP messages with the server part.

The Pepys �le-system mount point is expressed using the key-word mount. Inside
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such path is possible see the Pepys �le-system structure mapped on Linux, as said

in 3.1.

The key-word key represents the path where the entities keys are stored. Speci�-

cally such path has to contain a set of di�erent folders which are named as the entities

they represent. For example, according the above example of con�guration �le, let

us suppose that the system has to own the public keys of the entities: entity1,

entity2 and entity3. The path contained in keys has to contain three directories

(or four if also the key of the serer has to be stored) named entity1, entity2

and entity3 (and sam if necessary). Each of these directories, in turn, contain

the public keys of the entity (renamed pubkey), therefore: $keys/entity1/pubkey,

$keys/entity2/pubkey and $keys/entity3/pubkey.

The allowed Entities in the �le-system are speci�ed by the key-word entity. Each

entry has to contain the entity name and a password.

Finally is possible to specify the path where the FIFO queues are stored, by using

the key-word tmpdir.

It is important to say that none of these key-words are mandatory; if one or more

of these are not expressed, the default values are used.

Anyway if no entities are reported, no one will be able to authenticate itself. Every

entity in the system will be referred as the Nobody one within the system.

3.7.2 Interactive terminal

In order to access to the �le-system, an ad-hoc terminal has been implemented.

Speci�cally some of the well-known Linux command has been replicated: echo,

cat, > (�) (output redirection), seftacl and getfacl. Moreover some new com-

mand are been added: login, logout and help.
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Echo The echo command prints a line of text in the standard output.

The syntax is:

echo line -of-text

Speci�cally using the quotes is possible to write, in the terminal, the exact line of

text contained between them.

Furthermore, by combining the echo command with the > (�), is possible to write

in a �le. For example let us suppose that we want to write the phrase Hello world!

in a �le named asd.txt. In order to do so, the the right syntax to use is:

echo "Hello world !" > asd.txt

The execution of above line performs a trunc mode write, hence a new phrase is

stored to the �le, truncating its whole content after that.

In order to append a new content at the end of a �le, the symbol �, combined

with the command echo, has to be used. For example, let us suppose that we want

to write My name is Nilo at the end of the same �le. What we have to do is write

into the terminal:

echo "My name is Nilo" >> asd.txt

Finally, using the echo command, if the indicated �le does not exist, it is created.

Cat The cat command, shows on the standard output the content of a �le, which

is passed as argument.

The syntax is:

cat file

For example, if we use the cat command with the �le asd.txt (used in the echo

paragraph):
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cat asd.txt

asd.txt:

Hello world!My name is Nilo

If the �le does not exist, an error is returned.

Setfacl This command allows to add (and to delete) rules in ACL tables. setfacl

has been implemented regarding the POSIX one.

The syntax is:

setfacl [-m/-x][ entity ][:[ permissions ]] object

The option -m is used to add (or to modify) an ACL rule. In this case is mandatory

to express the entity name, the permissions to give to such entity and the �le-system

object where the rule applies.

The option -x is used to delete an ACL rule. In such case the solely mandatory

values are the entity name and the �le-system object.

Like already said in 2.2, the available permissions are: read (r), write (w), traversabil-

ity of guards (x), ACL management (c) and delete (d).

Let us assume that we want to give the write permission to tom in the �le asd.txt.

The right command to use is:

setfacl -m tom:w asd.txt

Note that setfacl command used with -m does not always add a new rule in an

ACL table. Indeed, like said in section 2.2.2, if a rule which names the same entity is

already present; it is updated with the new given permissions.

In order to remove an ACL rule, -x option has to be used. For example if we

want to remove the rules which names tom from the ACL table of asd.txt, we have

to use the following syntax:
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setfacl -x tom asd.txt

Note that whether no rules which name the given entity are present, no errors are

returned.

Overall using setfacl, if the object does not exist, an error is returned.

Getfacl The command getfacl is used to display the current ACL table of a �le-

system object.

The syntax is:

getfacl object

For example, let us suppose that we want to see the ACL table of asd.txt used

in the last paragraph, the right syntax to use is:

getfacl asd.txt

Assuming that asd.txt was created by the entity nilo and that we did not remove

tom among the ACL rules in the last paragraph, the result that getfacl shows will

be:

**** ACL TABLE ****

-crw - nilo

---w- tom

**** END TABLE ****

According this ACL table, nilo is the only �le co-owner and it can (of course)

change the ACL rules, read and write the �le. Instead the only action which tom is

able to perform is to write into the �le.

Finally note that no one of the named entities owns the x permission. This because

traversability cannot be applied to �les, and the execution mode is not contemplated

according what has been said in II.
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Login The login command allows entities to authenticate themselves to the system.

Therefore an e�ect of thlogin command is to upgrade an entity session, from an

authenticated one to the authenticated one, like it has been explained in section 3.6.

The syntax is:

login password

The purpose of this command is merely to be a shortcut. Indeed, as reported

in 3.6, the authentication process is performed by writing a hashed password in the

login special �le. Therefore this operation can be accomplished even by using the

echo command, if the hash of the password is known.

The steps performed by the login command are: hashing the passed password as

argument and to write the result into the login special �le.

Note that, like expressed in 3.6, no real �le write operation is performed. login

special �le is merely an interface to let the entities able to authenticate themselves.

Logout The logout command allows entities to de-authenticate themselves from

the system.

The syntax is:

logout

Thanks to this command a session of an entity is downgraded to the unauthen-

ticated one. Therefore from now on the entity will be recognized as nobody (as

explained in section 3.6), until it authenticates it again.

Help Finally is also possible to see all this commands, with a little manual, by using

the help command.

The syntax is:
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help [(opt)command]

This command, without arguments show all the available commands with a short

description; otherwise it shows the command passed as argument with its description.

3.8 Ad-hoc tests

In order to test the behavior of the access control model, a set of ad-hoc tests are

provided.

These tests merely use the commands provided by the Pepys terminal, in order to

reproduce real situations, and to test the results given by the access control model.

The provided tests aim to cover every aspect of the proposed model, let us see

now each of them in detail.

Every test returns an OK message if all went well, FAIL if (at least) an error

occurred.

Note that each entity, generally, is only able to write starting from its own home

directory (see �gure 8). In order to do not repeat the part of such path every time

we have to perform an action on a �le, the �rst part will be omitted. For example,

in order to have access to a �le placed in /homes/nilo/a/b/file, we will use the

compressed path form /a/b/file.

Permission denied In this test there are two involved entities. The �rst one,

named entity1 creates a �le, then changes the access control rules in order to deny

the read access to another one entity named entity2.

After that, the entity entity2, logs onto the system and tries to read the same

�le.

The test succeeded if such operation is denied.
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Entity nesting Entity nesting allows the permissions inheritance among entities,

as explained in section 2.1. In order to test this behavior an ad-hoc test was created.

In this test three entities are involved: entity1, entity2 and entity3.

First step is to create a relationship between entity1 and entity2; particularly

entity2 becomes a child of entity1. Same operation is performed between entity2

and entity3. Therefore the �nal nested relationship entity3 ∈ entity2 ∈ entity1

has been created.

After that entity1 creates a new �le in which it writes a line of text. After that

entity3 logs onto the system and tries to write in the same �le.

The test succeeded if such operation is allowed.

Rules overriding In this test the o-rule behavior is shown. Three entities are

involved: entity1, entity2 and entity3.

First of all an entity named entity1 logs onto the system and creates a �le

/a/b/file.

Note that for what has been said in section 1, it does not necessary that a and/or b

exist; the last existent one become automatically the guard of the new created object.

Anyway, since in this test also the object b is created, it becomes automatically the

file guard.

Moreover entity1 add an o-rule to the object b where denies to an entity named

entity3 to gain the read access from now on (i.e., beyond b.

Furthermore entity1 adds a regular rule in the ACL of b which states that the

named entity entity2 will be able to manage such ACL table.

After that entity2 logs onto the system and set an new rule in the file ACL (it

is able to do it according to the algorithm showed in section 2.2.1) in which gives the

read permission to entity3.
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After that entity3 logs onto the system and tries to read the content of file.

According the rule's precedence, every entity which belongs to entity3 (including

the entity itself), must not be able to read any object beyond b.

The test succeeded if the read operation requested by entity3 is denied.

Priority relationship This test case is thought to show the correct behavior of

the algorithm 2.2.1.

The �rst step is to create the relationship: entity3 ∈ entity2 ∈ entity1 (as it

has been shown in the entity nesting paragraph).

After that an entity named entity4 creates a new �le in which set two di�erent

rules, like reported below:

## ACL table ##

entity4: cdrw -

entity1: -----

entity2: --r--

After that entity3 logs onto the system and attempts to read the �le. By scan-

ning sequentially the ACL table, the �rst match for entity3 would be the one rep-

resented by the second line. Even though this would be a valid match, according the

entity3 entities-tree, the third line in the ACL table represents a more speci�c rule

for entity3.

Therefore, in order to consider the test passed successfully, the decision algo-

rithm 2.2.1 has to pick the third rule from the ACL table. Hence the test succeeded

if entity3 is able to read the �le.

This test merely proves the priority rightness of the algorithm showed in sec-

tion 2.2.1.
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On-line delegation In this test the on-line delegation behavior is tested.

Three entities are involved: entity1, entity2 and entity3.

entity1 creates a new �le in which denies the read operations to entity3, but

gives such right to entity2.

After that, entity2 logs onto the system and issues an on-line delegation to

entity3, where entity2 gives to entity3 the permission to read in behalf of entity2;

for two seconds.

Therefore entity3 logs onto the system and tries to read the content of the �le.

If the operation succeeded, entity3 waits for two seconds, then retries the same

operation.

If the �rst read succeeded and the second one does not, the test succeeded.

O�-line delegation This test is very similar to the one explained in the above

paragraph.

In this case entity2 signs an o�-line delegation and stores it in the path /a/b/delegation.

After that the same test showed in the last paragraph is repeated, using this kind

of delegation.

Again, if the �rst attempt of read performed by entity3 succeeded and the second

one fail, the test succeeded.
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4 Some examples

In the proposed ACM, a good trade-o� between �exibility and simplicity of setup has

been targeted. As it has been said, this goal was achieved by merging the concepts

of users and groups in the solely concept of entities and by adding the concept of

o-rules.

Let us see now some examples which show how this model aims to face some

common situations. In order to better understand when we are talking about a group

(i.e., an entity which contains at least another entity) the expression g-entity will be

used.

4.1 Deny access to a de�ned set of users

It is common that a system administrator wants to deny the access to a particular

directory tree (guards in Pepys), or merely to a given �le, from a user or a group of

them.

Let us suppose that the administrator does not want a g-entity to be able to

write on a de�ned �le, clearly supposing that g-entity (and each entity which belongs

to it) is not a �le co-owner.

Instead of adding a new rule for each entity belonging to g-entity (even though

rightful), thanks to the entity concept itself, this situation can be solved merely adding

a new rule in the �le ACL.

Assuming that the administrator name is Admin, the ACL table is:

## ACL table ##

Admin: cdrw

g-entity: --r-
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Of course it is also possible to add exceptions for speci�ed entities which belong

to the g-entity.

For example if the administrator wants that only x-entity, which belongs to

g-entity, is able to write on such �le, a new rule has to be added:

## ACL table ##

Admin: cdrw -

g-entity: --r--

x-entity: --rw-

Hence when an entity which belongs to g-entity, but di�erent to x-entity, tries to

write in the �le, the access will be denied. Instead for x-entity will be grant.

It is also important to remark that the order in which these two rules are placed

in the ACL table is irrelevant for the algorithm outcome.

The case in which a �le co-owner belongs to g-entity is meaningless in this

scenario; because being a co-owner, it would be able to change the rule. We will see

in 4.2 how these kind of problems can be addressed.

4.2 Not overridable rules

Another possible scenario may be one in which an administrator wants to let the users

free to manage the access rules for their objects, but restricting the rights which they

can have/assign.

Assuming the path a/b/c/d/.../f exists; let us see some examples which show

how an administrator can manage the access rights to the objects contained in such

path.

Moreover, the whole �le-system subtree rooted by (for example) the guard b, will
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be indicated using the expression �beyond the guard b�.

4.2.1 Rights restriction

Let us suppose that g-entity1 is a co-owners of guard c:

## ACL of c ##

Admin: cdrwx

g-entity1: cdrwx

Let us suppose, moreover, that the administrator wants to establish a rule for the

entity g-entity2:

• g-entity2 must not be able to delete objects starting from b.

In order to achieve this goal, the administrator, has to add an o-rule for g-entity2

in the ACL table of b:

## ACL of b ##

Admin: cdrwx

g-entity2: !c-rwx #o-rule

In this way, the delete right to every entities belonging to g-entity2 starting from

the guard b, is denied.

This does not mean that g-entity1 cannot assign the delete permission to g-entity2

(or at one of its members); but merely that if it does that, it will not take e�ect:

## ACL of d ##

Admin: cdrwx

g-entity2: cdrwx #d bit does not take effect
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In the last table g-entity2 being a co-owner of the d, can assign the delete permission

to other entities. Therefore such entities will be able to delete the objects where they

own such permission. This does not create inconsistencies since, according to the

o-rule expressed in b, g-entity2 can have the rights of co-owner and only it (and its

members) has to be unable to delete objects.

4.2.2 Contained rights

Let us suppose now that the administrator wants to establish these rules that cannot

be overcame beyond the guard b:

• g-entity1 and g-entity2 are the only co-owners allowed (together with their

members).

• Deny the delete permission to anyone else.

In order to do so, the administrator has to add three rules in the b ACL:

## ACL of b ##

Admin: cdrwx

g-entity1: !cdrwx #o-rule

g-entity2: !cdrwx #o-rule

nobody: !--rwx #o-rule

The �rst two rules are necessary because, otherwise, the system would pick the

nobody o-rules also when g-entity1 (or g-entity2) walks through the guard b. In

fact as expressed in 2.1, every entity in the system belongs to nobody.
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4.2.3 The o-rules exceptions

Using the o-rules is impossible to add exceptions for a named entity beyond the �rst

one. This fact means that if an o-rule applies for an entity in the guard b, the

permissions held by the entities which belong to it (and the entity itself) cannot be

increased in the guards c, or d etc. Permissions expressed by these rules can only be

decreased, over the �rst one, going down to the same �le-system tree.

For example, let us suppose that x-entity belongs to g-entity1, and that the

administrator wants to establish these rules beyond b:

• Deny to g-entity1 to delete the objects.

• Let free x-entity to delete the objects.

In this case the table is:

## ACL of b ##

Admin: cdrwx

g-entity1: !c-rwx #o-rule

x-entity: !cdrwx #o-rule

Therefore each member of g-entity1, except for x-entity, will not be able to delete

objects beyond b.

Again, if the o-rule for x-entity would be wrote in the ACL of the guard c, it

would not be taken under consideration.

We will see in section 6.6 why is not possible add an exception to an o-rule by

using a r-rule.
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4.2.4 Freedom of decision

This is example is a merely generalization of those ones above. We show how an

administrator can let the users free to decide how to manage their objects (so who

are the co-owner etc), but prohibiting to anyone to accomplish a given action.

Let us assume that the administrator does not want that anyone deletes the objects

beyond the guard b; but for the remain rights the users can decide for themselves.

In such case the ACL table should be:

## ACL of b ##

Admin: cdrwx

nobody: !c-rwx #o-rule

Furthermore, the rule above does not implies that everybody in the system (rep-

resented by nobody) can manage the objects beyond b, but merely that the objects

co-ownership is denied to no one.

If only the logged users can be declared as co-owners, a new rule rule has to be

added:

## ACL of b ##

Admin: cdrwx

others: !c-rwx #o-rule

nobody: !--rwx #o-rule

4.3 Sticky bit example

This example shows how to implement a behavior sticky bit like.

Our goal is to let the logged users free to create their own objects, in a given
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directory, but to make they able to delete only the ones they are created. In our

model the �le-system object creation is associated with w bit.

Assuming that the path /a/ exists, let us see how is possible achieve the pre�xed

goal.

The ACL table of a should be:

## ACL of a ##

Admin: cdrwx

others: --rwx #o-rule

nobody: !---- #o-rule

According to this table, each authenticated entity is able to create objects in a.

Particularly when a new object is created (assuming by x-entity), its ACL, by

default, is:

## ACL of a generic object ##

x-entity: cdrwx

With these two tables, entities di�erent from the one who has created the �le-system

object, will not be able to delete such object.

In this case, anyway, every entity is able to write in every object contained in a.

If we want that only the owner may be able to do so, it has to add a new rule in its

objects.

## ACL of a generic object ##

x-entity: cdrwx

others: --r-x
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Therefore, unfortunately, this mechanism is not atomic; but it is deployable only

through two steps.

4.4 O-rules and R-rules

Let us see how an inappropriate use of the o-rules combined with r-rules can cause

unpleasant situations.

Assuming that x-entity1 is the only co-owner of b:

## ACL of b ##

x-entity1: cdrwx

nobody: -----

and x-entity2 is the only co-owner of c:

## ACL of c ##

x-entity2: cdrwx

nobody: -----

In this con�guration no one is able change the object c except x-entity2. In fact,

according to the c ACL table, if an entity di�erent from x-entity2, tries to modify

such ACL, the others entry will be picked by the decision algorithm. Therefore the

requested operation will be denied according the rule expressed by the picked entry.

Even though x-entity1 is unable to change directly the ACL of c, it can change

the b one. Particularly it can add this new rule:

## ACL of b ##

x-entity1: cdrwx

x-entity2: !-----

nobody: -----
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Hence the object c cannot be modi�ed by anyone, unless x-entity1 removes the o-rule.

4.5 File-system con�guration

Let us see how can be con�gured a simple �le-system. In this example we are con-

sidering the structure shown in section 8.

These rules have to be de�ned:

• Entities must be able to read, write and traverse the objects guarded by its own

guard (guarded by entities).

• Entities must not be able to manipulate the objects guarded by the guards of

other entities (guarded by entities).

• Entities must not be able to manipulate the content directly guarded root.

• Entities must not be able to manipulate the content directly guarded by entities.

• Each entity can manipulate its home and the objects guarded by it.

• Each entity must be able to authenticate itself.

Below is shown a possible �le-system con�guration which is compliant with the rules

just de�ned.

## root ACL ##

Admin: cdrwx

nobody: --r-x
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## entities ACL ##

Admin: cdrwx

nobody: --r-x

## home ACL ##

Admin: cdrwx

nobody: --r-x

## x-entity guard ACL (guarded by entities) ##

## the same for all objects guarded by it##

Admin: cdrwx

x-entity: --rwx

nobody: -----

## home ACL of x-entity ##

Admin: cdrwx

x-entity: cdrwx

## login ACL ##

Admin: cdrwx

nobody: --rw -
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Figure 11: Main model operations complexity. N: number of entities, A: number of the ACL entries, M: size of

hash table.

Figure 12: Matching operation between ACL list and entities tree complexity. N: number of entities, A: number

of the ACL entries.

5 Performances

In this section some results which show the performances of the discussed ACL model

are presented.

Since our purpose was not to create a high performance model, it will be reported

how some improvements can be made.

A summary of complexities is also shown in �gure 11 and �gure 12.

Moreover each test was performed on a Intel(R) Core(TM) i5-2520M CPU @

2.50 GHz machine using Linux Ubuntu 12.04.1 Precise Pangolin.
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Figure 13: Entity creation process.

5.1 Add a new entity

When an administrator wants to create a new entity, it is necessary to check that

such entity does not already exist.

Therefore is necessary to scan the entities list to check whether the new one can be

created. Since a regular list has been used to keep track of the entities, this operation

grows linearly with the number of entities present.

In �gure 13 is shown a graphical representation of the necessary time to create

a new entity (Y axis), as function of the number of entities already present in the

system (X axis).

The experiment was conducted as follows: �rst, a �le-system with a pre�xed

amount of entities was created; then, a new entity has been added recording the

spent time to perform such operation. As we can see, this time grows linearly with

the number of already existing entities.
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Figure 14: Alphabetic binary-tree example.

If N represents the amount of entities present in the system; by using a regular

list, the used space to store such list and the time spent to update it, have complexity

O(N).

A more clever approach may be to use an alphabetic ordered binary-tree in which

entities are stored according their names. In such case the update/creation operation

is performed with a complexity of O(logN), whereas the allocated space has still

complexity O(N). In such tree each node reports the entity name, and can points to

other two child nodes.

An example of alphabetic binary-tree is shown in �gure 14.

In this case when an entity has to be retrieved, we can traverse the binary tree

starting from the root and by choosing the branch to follow merely by performing a

di�erence by the entity names. For example, let us suppose that we have to check

whether the tree showed in �gure 14 contains a node named �David�. We have to

start from the root and check whether �David� is alphabetic greater than the name

contained in it. In this case �David� is greater than �Bob�, hence the right branch

is followed. At this point �David� is checked with �Charlie� and, again, �David� is

alphabetically grater than �Charlie�. Since �Charlie� is a leaf, the three does not

contain any node named �David�.
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Finally a hash function could be used. In this case there would be two ways to

implement this approach: by using open-hashing and by using close-hashing. In the

�rst case, when an entity has to be added, a possible collision is managed by using a

dynamic list of collided entities. Instead in the second case collisions can be managed

by adding the new entry in the �rst available position in the hash table.

Complexity of this last approach depends of the hash table size. In fact if we rep-

resent such dimension as M, the operation of entity update/creation has complexity

O(1) if M >�> N, whereas the allocated space is obviously linearly with M, hence

O(M).

Since in a real scenarios it is correct to assume that not a so large amount of

entities are managed by the same system; the binary-tree approach seems to reach

the best trade-o� between scalability and speed of execution.

Anyway, these operations are performed only when a new entity has to be cre-

ated. Therefore such operations are not supposed to be performed so often in a real

distributed �le-system.

5.2 Build and scan entities trees

As reported in section 2.1, each entity in the system, owns a belong-to tree (or

entities tree) where it is the root. Entities tree is the most important structure in the

whole access control model because it is used every time the algorithm 2.2.1 must be

performed.

In this test the performances obtained in building and scanning the entities trees

are shown.

First, a certain amount of entities in relationship each other are set; then it will

be shown how much time is spent in order to obtain and to scan the whole entity tree
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Figure 15: Entities tree building procedure.

of an entity.

Relationships among entities are created using a random function with a uniform

distribution.

The ancestors value, reported as values of X axis in �gure 15, has to be considered

as the sum of direct parents and inherited both.

As we can see from �gure 15, the complexity of the operation grows quite linearly

with the number of ancestors which the selected entity has. Therefore if N is the

number of the ancestors, the complexity is O(N) for what concern the spent time and

the allocated space both.

Moreover, since all types of relationship nesting are allowed, cases of in�nite loop

may occur. These cases are avoided merely by using an integer which marks every

entity visited during the scan procedure.

In order to �nd the most accurate match for an entity, an appropriate sorted list

of ancestor is necessary. This list has to be sorted according the priority of such
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ancestors with the main entity (root of entities tree) as explained in 2.1.

When we have to �nd the most speci�c rule in an ACL, it will be necessary to

scan the entities list, element by element, until a valid match is not retrieved with

the ACL list, or the entities list is over. These are the cases in which entities lists has

to be scanned.

There is no linear dependency in building entities trees, since such operation has

been implemented with constant time complexity (or O(1)). This is a very good

result since a heavy nesting among entity relationships, does not introduce additional

complexity. This goal was achieved merely using for each entity a list of pointers which

refer to the entities which it directly belongs to. In other words a list of pointers to

the �rst level ancestors.

During the checking algorithm it is only necessary to follow such pointers itera-

tively. A new pointer is added in an entity list, if such entity holds a new relationship

with another entity.

Therefore time complexity of building entities tree is time constant (O(1)) and al-

located space large as the amount of �rst level ancestors. The only linear dependency

is obtained only when we have to scan it. This complexity is the lowest possible.

Of course, whether in following pointers of a list, a swapped entity is found, we

have �rst to load it in order to retrieve its entities list. In these cases time spent to

scan an entities list will grow.

It is important to say that is useless to use a real tree structure to represent an

entities tree. In fact the only cases in which we have to access to the entities tree are

when we have to �nd a rule for an entity. In these cases we have to check �rst the

principal entity (root), then the �rst level ancestors, then the second ones and so on.

Therefore by using a tree we would check �rst the �rst tree level, then the second one

and so on until the last tree level. This behavior is exactly the same which we can

64



obtain by using a classic list. Therefore, whether the word �tree� is used to refer to

the ancestors structure, this has been implemented as a simple list.

5.3 Add an ACL entry

The procedure shown in section 5.1 has been adopted also when a new ACL entry

has to be added in an ACL list. Before to add a new entry is necessary check if there

is another entry which represents the same entity named in the new rule. Therefore

a list of entries has to be visited. This test case results to be exactly the same shown

in section 5.1.

In this case anyway it would be necessary make some changes in order to im-

prove the performances, since this operation could be more frequently than the one

explained in section 5.1.

For this reason a really good way to represent an ACL table, would be the one in

which the rules are stored in a binary-tree arranged in alphabetic order.

If the number or rules contained in an ACL table is A, then the allocated memory

would have linear complexity O(A). Instead the necessary time to update such table

would have logarithmic complexity, hence O(log A).

Finally, also in this case a hash function could be used, but for the same reasons

expressed in 5.1 this approach is not the best.

5.4 Collection of entity rules

As reported in section 3.4, rules are collected during the entity walk operation.

The algorithm showed in 2.2.1 states that the rule picked from an ACL is the

most speci�c for an entity. Therefore if an entity is requesting to perform an action,

we would have to scan its whole entities tree, level by level, in �nding the �rst entity
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which is contained in the ACL table (if there is one).

Therefore cases in which is necessary to scroll these two structures entirely (ACL

table and entities tree both) represents the worst cases.

In this test both lists (also entities trees are lists as it has been said in section 5.2)

are been created with the same number of elements. Moreover, in order to show the

worst case, it has been positioned the only entity which is present in both lists, at

the end of both.

As we can �gure, complexity of this operation is quite quadratic; hence if N is

the number of ancestors of an entity and A the amount of rules contained in an ACL

table, time complexity of this operation is O(N*A).

Figure 16 shows the well-known quadratic shape.

This result could be improved using again a binary-tree. In fact, whereas the

entities list must be scanned linearly element by element, an ACL table can be rep-

resented as a binary-tree (according what has been said in section 5.3). In this way,

for each element contained in the entities tree, the search operation is performed with

complexity O(Log A). Hence for �nding a match for an entity in an ACL table would

be overall O(N * Log A).

5.5 Scan an ACL table

Since ACL rules are stored in entities stack-caches (see section 3.4), entity match-

ing actually is to pick the last value from its cache. Therefore complexity of these

operations is constant (O(1)).

5.6 Scan a delegations list

As showed in section 3.4, delegations are not collected during the walk procedure.
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Figure 16: Ancestors ACL matching algorithm.

Therefore when it is necessary to check the delegations, the same algorithm showed

in section 5.4 is followed. Therefore the same considerations are also valid in this case.
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6 Problem experienced and solutions proposed

In this paragraph some conceptual problems that are been experienced, and their

solutions, are shown.

6.1 ACL de�nition

First problem was to de�ne what exactly ACL has to be and where physically stores

it. An ACL is a set of rules which regulates the accesses to an object and to its

attributes; so an ACL has to be tied to the object it represents.

Problems have been posed were:

• if an ACL is put in a �le which links to the object represented by the ACL; who

establishes the rules to access to the �rst �le?

• If an ACL is put inside the object which it represents; who establishes the rules

to access to the �le part where the ACL is stored?

In the proposed model ACLs are stored among �le attributes as showed in �gure 17.

Moreover such attribute is treated as a special one since no one has to be able to

delete it, and only the ACL co-owners has to be able to change it.

In order to modify an ACL, an entity, writes on the ACL attributes the changes

and only if the request is compliant with the ACL rules it will take e�ect.

This operations are made automatically by using the command setfacl, as

showed in 3.7.2.

6.2 Delegation de�nition

A delegation behaves exactly like a temporary ACL rule; for this reason delegations

could be implemented modifying temporarily an ACL table, and storing there the
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Figure 17: ACL is placed among specials �le attributes.

delegations rules. Even though this procedure is useful; it makes an exception. In

fact, according an ACL, only the co-owners are allowed to modify the rules contained

in it; but anyone who holds at least one valid permission must be able to delegate it.

So if we want to place a delegation among the ACL rules we have to break this rule,

otherwise only the co-owners would be able to issue valid delegations.

Therefore a new �le, called proxies, has been introduced in every entity guard

(�gure 8). Such �le contains the delegation issued by the entity represented by the

guard. This approach does no introduce any exceptions.

Another problem about the delegation mechanism was to decide where store them

once they were valid. For the same reasons showed in section 6.1, the delegations are

stored among the special attributes (see �gure 17).

A new delegation will become valid when the system will approve it. The system

approves a delegation only if the permissions expressed in it, are compliant with the

issuer rights on the �le-system object reported in the delegation.

Unlike from the ACL case, this mechanism is completely hidden from the user

point of view, entities are aware only that in order to create a new delegation they
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Figure 18: Sub-delegation loop.

have to write it in their proxies �le.

If the delegation is not valid no errors are reported, the solely consequence is that

such delegation will not be used in the decision algorithm.

6.3 Sub-delegation

Another question to de�ne was about the possibility for a delegatee to delegate an-

other entities using its delegations.

Without de�ne any rule some unpleasant situations may occur. For example,

assuming that there are no limits about the delegations usage; a delegated entity

may use its delegations to sub-delegates another entity which, in turn, it may sub-

delegate the �rst one and go on; making thus the delegation expiration time limitless.

As showed in �gure 18, E1 issues a delegation for E2 which could sub-delegates E3

using an expiration time longer than the one expressed in the original delegation. In

turn E3 could sub-delegates E2 using an expiration time longer than the one expressed

in the previous sub-delegation; and go on.

Therefore some rules have to be de�ned. Particularly two important aspects of a
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delegation have to be evaluated:

• Sub-delegations lifetime.

• Trust chain depth.

The �rst parameter states how much time a sub-delegation can be considered valid;

whereas the second one states how long the sub-delegation chain can be.

Users can decide to express (or not) the value of the second parameter, which

is left unset by default (hence a limitless length of trust chain). This value merely

represents the maximum number of time which a delegation can be used in order to

delegate other entities, before to be considered no more valid to delegate.

Instead, for what concern the timing question (�rst parameter), an expiration

time has to be mandatory expressed in every delegation. Moreover entities are not

allowed to sub-delegate other entities for an expiration time beyond the one indicated

in the delegation used to issue the new one. This rule is transitive in all the trust

chain. For example, given a chain of delegationa->b->c...k-1->k, b cannot have an

expiration time beyond the one expressed in a, as well as c cannot have an expiration

time beyond the one expressed in d and, clearly, same reasoning up to k. This avoids

delegations endless cases.

6.4 Co-owners

Since that more than one owner is allowed in a �le ACL, may happen that they want

to remove each other from the ACL table. If this would be possible, the object could

remain without anyone able to change its access rules. The �rst followed approach

was to de�ne a main-owner which cannot be directly removed unless it gave its main-

ownership to another entity. Later it was decided that this way was slightly intricate;

so it has been decided to deny the removal to the last named co-owner in the ACL.
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Note that if an ACL table does not contain the entry nobody (or others) the

co-owners removal does not imply any problems, since the rules of its guard are

automatically inherited. In fact, if an entity wants to modify an object ACL in which

no co-owners are named, according the decision algorithm expressed in 2.2.1, the rules

of the guard are taken in account. Instead if the entry nobody (or others) is present,

it inhibit the rules inheritance. In this last case if neither others nor nobody is able to

manage the object ACL and no co-owners are present in such ACL, no entity will be

able to change the object rules. Hence the �le-system administrator has to intervene

to solve this deadlock.

By assuring that at least one co-owner is alway named in an ACL table, we are

able to avoid all these problems.

6.5 Entities relationships

As it has been said in 2.2.1, entities are able to use their ancestors rights during the

decision algorithm, if no more speci�c entry is matched in an object ACL.

This suggests that a protocol which regulates how two entities can stipulate a new

relationship has to be de�ned.

The following approaches were taken in consideration:

• Let the administrator decide what relationships create.

• Create a new relationship when an entity request it.

• Create a new relationship when both part involved agreed.

The �rst one is the most monitored, but also the most rigid since when an adminis-

trator has de�ned a relationship, this cannot be modi�ed by anyone but it. Moreover
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anytime which two users want to create a new relationship they have to ask the per-

mission to the system administrator, which could not be available. Therefore this

solution could introduce a huge wasting of time.

The second one, Even though is the most e�cient in terms of execution time,

it is the less secure according the role of the entity which requests to create a new

relationship. Indeed two di�erent parts can make such request: the father and the

child. In order to better understand, considering a general relationship entity2 ∈

entity1, we refer as the father entity1 and as the child entity2. If the approach

used foresees that the requester is the child, an entity may recklessly belongs to

every entities it wants to; having so theoretically access to every objects it wants

to. This solution is therefore the less secure. The other case presents the opposite

drawback. If the requester is the father could happen that an entity wants to make

a new relationship with another one, merely to harm it. For example, assuming that

there is an ACL table that states that entity1 are not allowed to read a �le-system

object, and does not say anything about entity2. In this case entity1 may want

to create the new relationship entity2 ∈ entity1 just to harm entity2. In fact,

during the access control, if no rules for entity2 are retrieved, the parents ones are

checked.

Finally the third one is a good trade-o� between �exibility and security. For these

reason this one has been implemented.

The mechanism in which two entities create a new relationship is expressed in 3.3.

6.6 Not overridable rules behavior

Not overridable rules allow to con�gure the system in few steps and to safely control

what users are able to do.
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These rules cannot be operative rules, otherwise it would be impossible to express

rules like: �everyone is be able to� without implicitly de�ne �everyone can do�.

For example, assuming that a rule which allows to everyone who is logged to be

able to be a co-owner (on a given object) has to be de�ned. As we saw in section 4.2.4

the rule to add is:

others: !cdrwx

This is possible only because this rule is not e�ective, but it merely represents an

upper-bound limit. If it were a real rule its meaning would be �everyone who is

logged is a co-owner�.

This model of rules, even though simple to understand, presented a lot of problem.

In fact their priority with the others rules had to be well de�ned.

A trivial case may be one in which, in the same object, there is a r-rule which

names directly an entity, and an o-rule which names one of its ancestors.

Since an o-rule has priority on the r-rules, but the r-rule is more speci�c, what

should be the right rule to follow? Just one (and in these cases which one?), or both

combined?

These situations are solved as showed in 2.2.2. In other words, we search in every

ACL both type of rules separately, by applying the algorithm expressed in 2.2.1.

6.7 Not overridable rules and delegations

Another question concerning the o-rules was about what it would happen if an entity

delegates another one to perform a given action which, according some o-rules, could

not perform. This scenario is quite di�erent to the one reported in section 6.6. Indeed

in this case the entity who has requested to perform an operation, would act in behalf
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of another entity which is able to do it. This situation is not trivial.

In order to understand how this can be very tricky, let us see a theoretical example.

Assuming that path a/b/.../f exist, and that the ACLs of the guard a and b

respectively are:

## ACL of a ##

x-entity1: !c-rwx

## ACL of b ##

x-entity1: c-rwx

According these tables x-entity1 is unable to delete objects beyond a, but it is able

to decide who can do it thanks to the co-owner bit. Therefore x-entity1 can write

a new rule in the ACL of b, naming x-entity2 in such way:

## ACL of b ##

x-entity1: c-rwx

x-entity2: -drwx

Besides having rights to delete objects, x-entity2 is now also able to delegate other

entities to do it in its behalf. Particularly x-entity2 can delegate x-entity1, over-

coming the o-rule presents in a.

Even though this does not create inconsistencies, since x-entity1 acts in behalf

of x-entity2 (which is allowed to delete �le-system objects) this has been possible

solely thanks to x-entity1.

In order to avoid all these tricks which could override the o-rules, it has been

decided to give higher priority to the o-rules rather than the delegations.
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6.8 Authentication management

Another question we faced was about the way in which entities can log onto the

system. Ideally each entity could own an object in which writes its credentials to

authenticate itself. Such an object could be placed in the guard which names the

entity, contained in the entities guard.

Moreover, in order to authenticate an entity, the object has to have the write

permission for nobody, since every entity before to be authenticated is unknown from

the server point of view. This fact introduces a huge security issue.

Let us suppose that a x-entity is writing on its login object in order to authen-

ticate itself. Since nobody can write on such object, a malicious entity could write a

sort of �null� letter at the end of the �le, a moment before which x-entity sends the

request, authenticating itself as x-entity. The system is not able to prevent these

situations since each entity, before to be authenticated, is nobody.

Moreover when an x-entity is authenticated, the object content must be deleted,

otherwise every entity by writing a �null� letter would be able to authenticate itself

onto the system as x-entity. This is possible merely because nobody has to be able

to write in the login object.

A possible solution for all these problems may be to use a common object for all

the entities, where each entity has to take its lock before start writing its credentials.

In this case only an entity at time takes the access to the object, avoiding all the

problems explained up to now. Unfortunately this approach implies new drawbacks.

Indeed if an entity session crashes, the object is left locked; making impossible to

authenticate other entities. Furthermore a malicious entity may block on purpose

such object just to harm the users which want to authenticate themselves onto the

system.
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The solution adopted plans to use a special �le together with a session bu�er, in

which the entities write their credentials.

From the user point of view, when it wants to authenticate itself, it has to write

on such �le; but, when this happen, the content is automatically redirected to its

session bu�er. Such �le is not really present into the �le-system, but is merely an

interface which can be used by the users to authenticate themselves.

In this approach entities are unable to create dead-lock situations and, since actu-

ally they do not write on the same object, all the problems highlighted are avoided.
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Part IV

Comparison with other models

The proposed ACM design takes cue from the other well-known models, particularly

from the ACL POSIX one.

In this section are going to be discussed the di�erences between our model and

two other well-known models for the accesses control, which have mostly inspired the

presented one.

Throughout this part, for simplicity of reading, we refer to an entity which contains

other entities as a group, and to a single entity as a user.

7 UNIX standard and ACL POSIX

The traditional UNIX �le-system object permission model de�nes three classes of

users: owner, group and others. Each of these classes are associated with a set of

permissions which de�ne the rules to access to the object. Available permissions are:

read (r), write (w) and execution/traversal (x).

In such model the owner entry represents the object owner permissions, group

represents the owner group permissions (owning group) and �nally others represents

the permissions held by everyone else in the system.

A POSIX ACL table is a collection of rules, which represent a user (or a group)

and its permissions on a �le-system object. Each one of these three classes of users

is represented by an entry in such table; whereas permissions for additional users

(groups), called named users (named groups), occupy additional ACL entries.

A POSIX ACL may contain any number of named users (or named groups) entries,

78



which are automatically assigned to the group class.

The meaning of the permissions expressed by the group class is merely to bound

the permission which every entry, assigned to this class, can own. Therefore permis-

sions contained in this class act like a mask : every named entry/group permissions

are masked used the permissions indicated by the group class itself.

This typ of ACL is called access ACL and de�nes the current access permissions

of a �le-system object.

A second type of ACL, called default ACL, can be used in order to implement the

inheritance concept. This type of ACL de�nes the permissions a �le-system object

inherits from its parent directory at the time of its creation. This type of ACL plays

no direct role in access checks, but it is merely used when a new �le-system object is

created, in order to collect a set of initial rules. Furthermore, only directories can be

associated with a default ACL.

7.1 Comparison with Pepys ACM

The ACM proposed in this document extends the concept of mask (as de�ned by the

group class in the POSIX ACL) by introducing the o-rule concept. In such way it

is possible to decide whether (and in what �le-system position) to apply a certain

restriction, and for which entity.

Moreover whereas the �le owner in a POSIX ACL cannot be changed (it is who

has created the �le for all the �le lifetime), in our model it is possible to transfer the

ownership merely by adding a new entry which contains the co-owner bit set in the

permission set.

Furthermore, in the presented model, it is possible to let an object dynamically

inherit the rules of its guard, merely by not adding the nobody (and in case oth-
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ers) entry in the object ACL. Therefore if the parent guard rules change, they are

automatically inherited from the guarded objects.

Finally, in the POSIX ACL, the presence of the others entry is mandatory; in our

model it is not.

7.2 Access check algorithms

The algorithms followed by these two models can be divided in two common steps:

1. Select the ACL entry which matches most closely the user who requested the

operation.

2. Check if the matching entry contains su�cient permissions to let the user pro-

ceed.

In the POSIX ACL model, in the �rst step, ACL entries are looked in the following

order: owner, named users, named groups, others.

Moreover if a user is a member in more than one group named in a POSIX ACL,

and if some of them contains the necessary permission to grant the requested action,

one is picked (the result is the same regardless of which one is picked). If none of

the matching groups entries contains the requested permission the access would be

denied regardless of which entry is picked. If no entry is found for the requesting user

the others permissions entry determines the access to the object.

In our model, entries in an ACL table are looked in the following order: entities,

others, nobody.

When a user want to perform an action on a �le-system object, if its name is not

directly reported in the object ACL rules, the algorithm picks the entry which has

highest priority (see section 2.1). If there are not any entries which refer (directly or

indirectly) to the user, the rules of the guard above are considered.
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Therefore, the ACL POSIX algorithm tries to �nd an entry which could grant

the access to the requesting user, whereas in our model the most accurate entry is

searched to determinate the access.

Finally in both of these two algorithms, when an entry is picked, a permissions

mask is applied to retrieve the real user permission. However, whereas in POSIX

ACLs such mask is contained in the same ACL table, and �xed by the �le owner; in

our model the mask is determined also by the ACLs of the guards up in the �le-system

hierarchy. Note that in our case masks are given by a collection of o-rules.

8 NTFS

In the NTFS model, the basic permissions which can be assigned to �les are: Full

Control, Modify, Read & Execute, Read, and Write. Whereas, for folder the available

permissions are: Full Control, Modify, Read & Execute, List Folder Contents, Read,

and Write.

Particularly for what concern folders, Read permission make a user able to view

and to list �les and sub-folders contained in it; the Write permission, accordingly,

allow to add �les and sub-folders. Read & Execute permission permits viewing and

listing of �les and sub-folders as well as executing of �les; inherited by �les and folders.

List Folder Content makes a user able to view and to list �les and sub-folders, as well

as executing of �les; this right is inherited by �les and folders. Modify permission

allow to read and to write �les and sub-folders; moreover it allows deletion of the

folder. Finally Full Control allows to read, to write, to change, and to delete �les and

sub-folders .

Instead, for what concern the �les, Read permission allows to a user to read the

�le content, the Write one to write it. Read & Execute permission permits viewing
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and accessing of the �le's contents as well as executing of the �le. Thanks to the

Modify permission a user is able to read, to write and to delete a �le. Finally with

the Full Control permission, a user can read, write, change and delete the �le.

Moreover, in NTFS �le-system, if a user owns full control permission over a folder,

it can delete �les contained in it, regardless of the permission on such �les.

Actions that users can perform are based on the sum of all the permissions assigned

to the user and to all the groups the user belongs to ([29]). For example, if a user

owns the Read access to a given �les, and a group in which it belongs to has the

Modify access on the same �le, the user will have Modify access. This behavior is

inherited, hence if a parent group belongs to the administrator group, the user will

own Full Control permission. If no permissions are retrieved for a requesting user,

the access on a �le-system object is denied.

Since also in this model a user can own a list of permission, the ACL approach is

used.

Another interesting feature is about the usage of two family of rights: Allow and

Deny.

When establishing permissions on a �le-system object, a user has to specify

whether the entry should have access (Allow) or not (Deny) to such object. Since al-

ready the lack of a permission match, for a particular user, is considered as �permission

denied�, cases in which Deny permissions are necessary are not so common. Finally,

the Allow and Deny permissions inherit down through the �le-system structure.

8.1 Comparison with Pepys ACM

Pepys ACM model presents some little common features with NTFS model.

For example, the idea to use an independent permission to establish if an entity is
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allowed to delete �le-system objects, was taken by studying the NTFS model. Thanks

to this approach is possible, for example, to de�ne entities which can write de�ned

�les but which they do not have the faculty to delete them. This is not possible in

�le-systems UNIX-based, because the faculty of delete �le-system object is bound to

the write permission.

In our model the execution permission is not present. This fact does not apply

any limitation to the available operations since the �le-system objects are remotely

stored (Pepys �le-system is a distributed �le-system); hence the execution permission

(alone) would be useless. According to this, if we cut o� the execution among the

NTFS operation, our permissions set and the NTFS one are pretty the same.

Another common feature is the algorithm outcome when no rights, for a given

user, are retrieved. In fact, in both model, the access is denied. Furthermore the

rights inheritance in both models are very similar.

Finally there is just one signi�cant di�erence between these two model and it is

the way to apply exceptions. Whereas in the NTFS case if a user owns Full Control

permission (on a folder) it is able to delete the whole content, int our model is possible

to add exceptions merely by adding the rules in the object ACL contained in the folder,

or using the Pepys semantic, guarded by the guard.

Our model appears to be more �exible and manageable than the NTFS one.

For example thanks to the Full Control permission, the actions performed by user,

may become uncontrollable. This can be even more dangerous if such permission is

assigned to a group. Instead in our model is possible to add exceptions in any case

for any �le-system objects/users.
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Part V

Conclusions and Future Work

An access-control model for the Pepys Internet-wide distributed �le-system has been

proposed, showing the characteristics of its design. The proposed model takes into

account the basic principles behind the well-known POSIX ACL standard and other

widely used �le-systems, enriching the model with characteristics that are inspired to

the general principles of the Pepys distributed �le-system.

This model aims to cover the main aspects which a distributed �le-system access

control should have, that is: authentication, authorization, granularity, autonomous

delegation and revocation; as properly expressed in [17].

This document provided also a few notes on how the model has been implemented

in a Linux port of the Pepys current code base.

Possible future work on the topic include: integration of Pepys and particularly of

the current authentication mechanism with properly designed cryptographic exten-

sions to the ΠP protocol and possibly optimize the most recurrently used code paths

improving performances.
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