Integrability of Rees-Stanojević sums

BABU RAM

1. A sequence $\langle a_n \rangle$ of positive numbers is called quasi-monotone if $n^{-\beta} a_n \downarrow 0$ for some β , or equivalently if $a_{n+1} \leq a_n (1+\alpha/n)$.

We say that a sequence $\langle a_k \rangle$ of numbers satisfies

Condition S^* if $a_k \to 0$ as $k \to \infty$ and there exists a sequence $\langle A_k \rangle$ such that $\langle A_k \rangle$ is quasi-monotone, $\sum_{k=0}^{\infty} A_k < \infty$, and $|\Delta a_k| \le A_k$ for all k.

Condition S^* is weaker than Condition S of Sidon introduced in [4].

Recently, REES and STANOJEVIĆ [3] (see also GARRETT and STANOJEVIĆ [2]) introduced the modified cosine sums

(1)
$$g_n(x) = \frac{1}{2} \sum_{k=0}^n \Delta a_k + \sum_{k=1}^n \sum_{j=k}^n \Delta a_j \cos kx$$

and obtained a necessary and sufficient condition for the integrability of the limit of these sums.

The object of this paper is to show that Condition S^* is sufficient for integrability of the limit of (1).

2. We require the following lemmas for the proofs of our results:

Lemma 1. (Fomin [1]) If $|c_k| \le 1$, then

$$\int_{0}^{\pi} \left| \sum_{k=0}^{n} c_{k} \frac{\sin((k+1/2)x)}{2\sin(x/2)} \right| dx \le C(n+1),$$

where C is a positive absolute constant.

Lemma 2. (Szász [5]) If $\langle a_n \rangle$ is quasi-monotone with $\sum a_n < \infty$, then $na_n \to 0$ as $n \to \infty$.

Received March 22, 1979.

3. We prove

Theorem. Let the sequence $\langle a_k \rangle$ satisfy Condition S*. Then

$$g(x) = \lim_{n \to \infty} \sum_{k=1}^{n} \left[\frac{1}{2} \Delta a_k + \sum_{j=k}^{n} \Delta a_j \cos kx \right]$$

exists for $x \in (0, \pi]$ and $g(x) \in L(0, \pi)$.

Proof. We have

$$g_n(x) = \sum_{k=1}^n \left[\frac{1}{2} \Delta a_k + \sum_{j=k}^n \Delta a_j \cos kx \right] =$$

$$= \sum_{k=1}^n \frac{1}{2} \Delta a_k + \sum_{k=1}^n a_k \cos kx - a_{n+1} D_n(x) + \frac{1}{2} a_{n+1}.$$

Making use of Abel's transformation, we obtain

(2)
$$g_{n}(x) =$$

$$= \sum_{k=1}^{n} \frac{1}{2} \Delta a_{k} + \sum_{k=1}^{n-1} \Delta a_{k} \left(D_{k}(x) + \frac{1}{2} \right) + a_{n} \left(D_{n}(x) + \frac{1}{2} \right) - a_{n+1} D_{n}(x) - a_{1} + \frac{1}{2} a_{n+1} =$$

$$= \sum_{k=1}^{n-1} \Delta a_{k} D_{k}(x) + a_{n} D_{n}(x) - a_{n+1} D_{n}(x).$$

The last two terms tend to zero as $n \to \infty$ for $x \ne 0$ and since

$$|D_k(x)| = O(1/x)$$
 if $x \neq 0$ and $\sum_{k=0}^{\infty} |\Delta a_k| < \infty$,

the series $\sum_{k=1}^{\infty} \Delta a_k D_k(x)$ converges. Hence $\lim_{n\to\infty} g_n(x)$ exists for $x\neq 0$. Now applications of Abel's transformation and Lemma 1 yield

(3)
$$\int_{0}^{\pi} |g(x)| dx = \int_{0}^{\pi} \left| \sum_{k=1}^{\infty} \Delta a_{k} D_{k}(x) \right| dx =$$

$$= \int_{0}^{\pi} \left| \sum_{k=1}^{\infty} A_{k} \frac{\Delta a_{k}}{A_{k}} D_{k}(x) \right| dx \leq \sum_{k=1}^{\infty} |\Delta A_{k}| \int_{0}^{\pi} \left| \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x) \right| dx \leq$$

$$\leq C \sum_{k=1}^{\infty} (k+1) |\Delta A_{k}| =$$

$$= C \left[\sum_{k=1}^{\infty} (k+1) \left| A_{k} \left(1 + \frac{\alpha}{k} \right) - \frac{\alpha A_{k}}{k} - A_{k+1} \right| \right] \leq$$

$$\leq C \sum_{k=1}^{\infty} (k+1) \left| A_{k} \left(1 + \frac{\alpha}{k} \right) - A_{k+1} \right| + C\alpha \sum_{k=1}^{\infty} \frac{k+1}{k} A_{k} =$$

$$= C \sum_{k=1}^{\infty} (k+1) \Delta A_{k} + 2C\alpha \sum_{k=1}^{\infty} \frac{k+1}{k} A_{k}, \quad \bullet$$

the last step being the consequence of $A_k(1+\alpha/k) \ge A_{k+1}$. But

$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n-1} (k+1) \Delta A_k + (n+1) A_n - A_1.$$

Applications of $\sum_{k=0}^{\infty} A_k < \infty$ and Lemma 2 yield

(4)
$$\sum_{k=1}^{\infty} (k+1) \Delta A_k = \sum_{k=1}^{\infty} A_k + A_1 < \infty;$$

(3) and (4) now imply the conclusion of the Theorem.

Corollary. Let $\langle a_k \rangle$ be a sequence satisfying the condition S^* . Then

$$\frac{1}{x} \sum_{k=1}^{\infty} \Delta a_k \sin(k+1/2) x = \frac{h(x)}{x}$$

converges for $x \in (0, \pi]$ and $\frac{h(x)}{x} \in L(0, \pi)$.

Proof. This follows immediately, namely by (2), $2 \sin \frac{x}{2} g(x) = h(x)$.

References

- [1] G. A. Fomin, On linear methods for summing Fourier series, *Mat. Sbornik*, 66 (107) (1964), 144—152.
- [2] J. W. GARRETT and C. V. STANOJEVIĆ, On L¹ convergence of certain cosine sums, Proc. Amer. Math. Soc., 54 (1976), 101—105.
- [3] C. S. Rees and C. V. Stanojević, Necessary and sufficient condition for integrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579—586.
- [4] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc., 14 (1939), 158—160.
- [5] O. Szász, Quasi-monotone series, Amer. J. Math., 70 (1948), 203-206.

DEPARTMENT OF MATHEMATICS MAHARSHI DAYANAND UNIVERSITY ROHTAK-124001, INDIA