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Selecting independent lines from a family of lines in a space 

L. LOVÁSZ 

0. Introduction. A family of flats in a projective space is called independent,. 

if no member of the family intersects the flat spanned by the other members. It is 
an interesting combinatorial problem to select a maximum number of independent 
flats from a given family of flats. In the special case when all the flats are faces of 
a simplex, this question is equivalent to the so-called matching problem for hyper-
graphs : given a collection of sets, find the maximum number of disjoint ones among, 
them. This problem is known to belong to the class of (in a sense) hardest combina-
torial problems, the so-called NP-complete problems (see [6]). Hence there is no 
hope to solve it in a satisfactory way. 

However, the special case of the matching problem when all the given sets 
are pairs, is well-solved [2, 4]. This suggests that probably the problem of selecting, 
a maximum set of independent lines from a family of lines is solvable. 

"Solution" here may mean two different things: 
(a) find a minimax formula for the number in question; 
(b) find an algorithm to determine this number such that the running time of 

the algorithm is polynomial in the number of data. 
We shall present a solution in the sense of (a) (Theorem 2). It remains open 

if these methods can be extended (or other methods found) to yield a solution in 
the sense (b), but we hope the answer is affirmative. The problem we discuss can 
be considered as the so-called "matroid parity problem" for representable matroids-
(see LAWLER [3], Ch. 9). We shall discuss the difficulties of generalizing our methods, 
along with other connections to matroid theory in section 5. 

1. Some special cases and equivalents. The famous f-factor problem, solved by 
TUTTE [5], is the following. Let G be a graph and/an integer-valued function on its: 
vertex set V(G). Does there exist a subgraph G' such that the degree of x in G' is 
f{x), for every x£V(G)l 
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This problem can be reduced to the line-selection problem as follows. Let, 
f o r each x£V(G), Ax be a flat of rank*/(x) in a projective space, such that the 
flats {Ax : x£V(G)} are independent. For each edge e=(x,y), select two points 
PetX£Ax and pFt >.€ Ay such that the points {pe,x: e is a line adjacent to x } are in 
general position on Ax (i.e. no f(x) of them are contained in a proper subflat of 
Ax). Let e denote the line connecting pe x to pey. Then it is easy to verify that 

a subgraph H has degree S/(x) at each point x iff the lines {e: e£E(H)} are 

independent. 

So G has an /-factor iff the family {e: e£E(G)} contains ~ y /(x) inde-
X 

pendent lines. Our results therefore yield a necessary and sufficient condition for 
the existence of an /-factor in a graph. Although our condition has features similar 
to Tutte's, to derive Tutte's theorem from it is somewhat lengthy. 

We may place the points pe,x on Ax in such a way that they form an arbitrary 
matroid embeddable in the projective space we consider. This yields then a solu-
tion to the "matchoid problem" of Edmonds in the special case when the matroids 
prescribed at the vertices are representable. 

Finally, we mention an equivalent version of our problem. Let / be a collec-
tion of lines which spans a rankr projective space P. Let v(^f ) be the maximum 
number of independent lines in and the minimum number of lines in 
which still span P. Then v (¿f)+n [JF)=r. This identity is a generalization of 
Gallai's identity in graph theory, and can be proved along the same lines. So we 
also have a minimax formula for the minimum number of lines in a family which 
span the same flat as the whole family. The transformation of Theorem 2 to this 
version is left to the reader. 

2. Preliminaries. Let P be a projective geometry over a (possibly skew) field. 
We shall denote by X the span of the set XQ P, i.e. the smallest flat (subspace) 
containing X. Each flat A in P has a rankr(^4), which is one larger than its dimen-
sion. So 0 has rank 0, points have rank 1, lines have rank 2. We extend the nota-
tion of rank over arbitrary subsets of P by r(X)=r(X) and even over a collec-
tion of subsets of P by r ( j f ) = r ( U Jf). Similarly, if ¿f is a collection of sub-
sets of P we set 5P = U * . 

The rank satisfies the important identity 

r(AUB) + r(Af)B) = r(A) + r(B), 
where A, B are flats. 

* The rank r(A) of a projective space A is its dimension plus 1. 
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We shall make use of the following very simple lemma: 

Lemma 1. Let Ax, ..., Ak, D be flats in a projective geometry and AtQD. 

Assume that 

t=i 
k 

Then P| 
¡=i 

Proof. We show by induction on k that 

r^n.-.n^) ^ r(D)~ 2 {r(D)-r(Ad}. 
¡=1 

This is trivially true if k—1. Let ks2. Then 

s riA.n.-.n Ak^) + r(Ak)-r(D). 

Applying the induction hypothesis the assertion follows. 
Q.E.D. 

Recall that a set of lines in a projective geometry is called independent if no 
member of the set meets the span of the rest. It is immediately seen that each subset 
of an independent set is independent. 

Lemma 2. Let 2F be a set of lines in a projective space. Then 

(1) 2 \ & \ . 

Equality holds iff 3? is independent. 

Proof. Let Then 

r(SF) = r(e) + r -r(eD^-e) = r(^-e) + 2-r(ei]^-e). 

Hence the inequality (1) follows by induction. If -F is independent, then clearly 
so is !F—e and then equality in (1) follows by induction. On the other hand, if 
equality holds in (1) then the computation above implies that r{eC\lF— e)=0, i.e. 
efl J2"—e=0. Since this holds for every it follows that J5" is independent. 

Q.E.D. 

A set # of lines is called a circuit, if r($) = 2|#| —1 but every proper subset 
of is independent. Thus a circuit is a minimal dependent set of lines; but not 
every minimal dependent set of lines is a circuit, as shown by 3 lines in general posi-
tion in the space. 
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Note that if "if is a circuit and then 

2 \<6\-\ = r(«) = r(<6-e)^2-r(e(\^e) = 2|?|-r(enM1 

whence it is seen that e meets <<i— e in exactly one point. 

Lemma 3. Let X be a set of lines such that r(Jf)=2|Jf| —1. Then tf con-

tains exactly one circuit. 

Proof. Let <6 be a minimal subset of j f with /•(#)=2 |<ii|-l. We claim that 
all proper subsets of are independent. In fact, 

r($-e) = r(<^) — 2 + r(ef]^—e) = 2|<g,|-3 + r(en#-ri) £ 2\9-e\-l. 

Equality here would contradict the minimality property of c6. Hence is inde-
pendent for every e. This implies that if is a circuit. 

Assume now indirectly that there is another circuit c6'. Let e.g. 
We have 

r ( J f -/ ) = r ( X ) - 2 + r ( / n X^f) = 2\JiT\-3 + r(fn JP=7). 

But fCW—f and so / n x — / ^ 0 . Hence X - / is independent and so it 

cannot contain any circuit. 
Q.E.D. 

Let 3? be an arbitrary set of lines in a projective geometry. Let v ( j f ) denote 
the maximum number of independent lines in A set of independent lines 
will be called a basis of . 

Let S>3 be a basis of Jf and e a line not contained in SB. Obviously, e must inter-
sect 38. Lemma 3 implies that 38-\-e contains a unique circuit, which will be called 
the fundamental circuit of e relative to 88. Trivially, the fundamental circuit of e 

contains e. If e intersects a line f€33 then the fundamental circuit of e, relative to 
38, is the set {e,f}. 

If ^ is a basis, e a line not contained in 38, and / a line of the fundamental 
circuit of e relative to 38, then 3S—f+e is another basis. We say that 38—f+e 

arises from 38 by elementary augmentation. Trivially, the inverse of an elementary 
augmentation is an elementary augmentation as well. 

3. Primitive sets of lines. In this section we discuss a special type of arrange-
ment of lines. These sets will be the most difficult cases in the proof of the main 
result. A set 3V of lines in a projective space is called primitive, if the intersection 
of spans of all bases is void. 

Lemma 4. Let JP be a primitive set of lines and 3ftx, 382 two bases of JF. Then 

0$! can be transformed into 38 2 by elementary augmentations. 
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Proof . Let 3S2 be two bases such that arises from â?, by elementary 
augmentations and is maximal. If 0)[=38'2 we are done by the remark 
after the definition of elementary augmentation. 

We claim that In fact, if then there exists a line 
such that e %S&2. Let (ê be the fundamental circuit of e relative to . Since 
is independent, there exists a line 3&'2=$i'2-Ve~f is a basis which arises 
from ^ by elementary augmentations and which has \3&'XÇ\$'2\>¡¿¡$[033'̂ , a con-
tradiction. 

So we know that 3â[=3ft2. We want to show that Assume indirectly 
that there exists a line 3ft'2. Consider a basis which does not span e. 

Such a basis exists since Jf is primitive. Choose and so that \3S[Ç\S80\ 

is maximal. Obviously, ^„T^J, and hence, there exists a line gÇ.âS0 such that 
Let ^ denote the fundamental circuits of g relative to and 38'2. 

We distinguish two cases. 

Case 1. <êi7é(S2. Then since otherwise, &'2+g would contain 
two distinct circuits, contradicting Lemma 3. Similarly Qi&i+g- So we can 
select lines -®2-g and / a i ^ - ^ - g . Now 2 8 " g is a basis 
arising from by elementary augmentations, and a con-
tradiction. 

Case 2. <ëx = <é2. Then ei<gx=^2. Let and put @?=@'t+g-f. 

Now l ^ i n ^ ' l ^ l ^ n ^ l , and since e^3S'2, this is a 
contradiction. 

Lemma 5. Let № be a primitive set of lines and .yfQff such that r ( j f ) s 

^2v + 2. Then the flats spanned by the circuits in & have no element in common. 

Proof . Suppose indirectly that a point p is contained in the span of each 
circuit in j f . Since is primitive, there exists a basis SSQfC such that the span 
of 3S does not contain p. Choose such a @ with maximal. Since r(âS+p) = 
=2v + l < r ( X ) , there is a line such that e^W+p. Then p^W+e. Let if 
be the fundamental circuit of e relative to J1. Then p^SS and so by the definition 
of p, Jf. Let / e ^ - j f , then is a basis such that p^W and 

which is a contradiction. 

Lemma 6. Let iff be a primitive set. of lines, Si a basis, such that 

r(âS+e+f)=2v+2. Let (êx and ^ be the fundamental circuits of e arid f respectively, 

relative to 3S. Then <&1C[<g2 = Çi. 

Proof . Suppose indirectly that ^ f l * ^ ? ^ . Let ..., denote the circuits 
in Jf =âS+e+f and let £>, be the flat spanned by For each u£jf, 
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S2v+1, since otherwise Jf—u would be an independent set of v + l lines. Let 

= r ( j f - u ) = 2v}. 

If u£J?"—then Jf—u contains a unique circuit by Lemma 3. Let 

JTf = {u£ JfT- Jf0: i?f g JT-u}. 

Thus {Jf0 , J f l s ..., JT,} is a partition of Jf, and 
</> — -v/" V V O j ^ ,/t Q Jl J . 

implies now by Lemma 5 that r s 3. Furthermore, we have 

r ( A ) = 2 p f - J f 0 - J f ; | - 1, r j u f l , ) = 2|JT-jr0|-2. 
< 

(Here /-((J D,)s2|Jf—Jf0|—2 is trivial; in the case of strict inequality Lemma 3 
i = l 

would imply that UZ>; contains only one circuit, which is not the case.) Now apply 
Lemma 1: 

¿ { ' • ( ¿ ^ • j - K A ) } = i { 2 W - 1 } = 2 | j r - j f 0 | - i < r ( u A ) , 

t 
and so Pi A 5*0- But this contradicts Lemma 5. 

¡=1 
Call two lines e, f of a primitive set coherent, if r(38+e+f)^2v + l for 

every basis 38. 

Lemma 7. Coherence of lines is an equivalence relation. 

Proof. Symmetry and reflexivity of coherence are evident. Suppose e and /, 
moreover / and g, are coherent. We show that e and g are coherent. Suppose indi-
rectly that there exists a basis such that r(3S1+e+g)=2v+2. Since ^C is primi-
tive, there exists another basis 3S2 such that f%382, and so r(382+f)—2v-1-1. Choose 
@2 such that I ^ D ^ I is maximum. Since r(381+e+g)>r(3$2+f), there exists 
a line /i€^i+e+g such that h^3S2+f, i e. such that 

(3) r(^2+/+/i) = 2v+2. 

So h is not coherent with / and so h^e, g. Thus h(^3Sl. Let # denote the funda-
mental circuit of h relative to 3d2. Since we may choose a line 
Then 38'2=3i2+h-l is a basis such that f%i%2 (since f%382+h by (3) and 38'2<z 

<z3?2+h), and moreover, \3i'2(\3S^>\382C\38-h. This contradicts the choice of 38 2. 

Q.E.D. 

Lemma 8. Let 3% be a basis and e a line not in the span of 38. Let m denote 

the fundamental circuit of e relative to 38. Then all lines in <6 are coherent. 
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Proof. Suppose indirectly that there is a line /£<£ such that e,f are not 
coherent. Let SB' be a basis such that r(@'+e+f)=2v+2. From among all counter-
examples choose one in which \3B'V\3B\ is maximal. Since r(3$'+e+f)>r(3&+f) 

there is a line g£38'+e+f not contained in the span of SB+f. Obviously, g^e,f, 

so g£38'. Let denote the fundamental circuit of g relative to SB. Since r(3S+f+g)= 

=2v+2, if follows by Lemma 6 that ^ = 0 - Hence if we replace any element 
of by g in 3B, we obtain another basis 38* which has the property that the 
fundamental circuit of/relative to S3* is <€, but \38*C\S8'\>\38C\S8'\, a contradiction. 

Q.E.D. 

Lemma 9. If is primitive, e,f£3€ and e and f intersect, then e and f are 

coherent. 

Proof. Suppose not, then there exists a basis J1 such that r(38+e+f)=2v+2. 

By an elementary augmentation we get a basis 38' such that e~3i' but f%38'. But 
by efl/>¿0 the fundamental circuit o f / relative to SB' is {e,f}, which contradicts-
Lemma 8. 

Q.E.D. 

Lemma 10. Let be a primitive set of lines, 38 a basis of e a line not in 

the span of SB and stf the set of lines in 38 coherent to e. Then every line coherent to e 

is contained in sf+e. 

Proof. Let /be a line coherent to e. Let p^e—38 and q£f and denote by 
g the line pq. Set =3>?+g. 

Claim 1. v(3tf") = v. For suppose indirectly that contains an independent 
s e t ^ of v+1 lines. Obviously, and 3F—g is a basis of №. But 

r(&-g + e+f) S r{F) = 2v + 2, 

which contradicts the assumption that e and / are coherent. 

Claim 2. ¿tf" is primitive. This follows immediately from the fact that all bases 
of are bases of 

Claim 3. If two lines of are coherent in № then they are coherent in 
for the same reason. 

Claim 4. e, f and g are coherent in Jtf". This follows by Lemma 9. 
Now by Lemma 8, all lines in the fundamental circuit of g relative to 38 are 

coherent to g in By Claim 4, they are coherent to e in and so by Claim 3, 
they are coherent to e in Thus g f W Since p^sd but pde, it follows. 
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that g has at least two points in sf+e. But then g Q ^ + e , and consequently 
q£sf+e. q being an arbitrary point of/, it follows that fQs4+e. 

Q.E.D. 

Let ..., denote the equivalence classes of the relation of coherence. 
Consider a basis 28 and set v f= \280 Observe that the numbers vf are inde-
pendent of the choice of 29\ in fact, they remain the same when an elementary aug-
mentation is carried out by Lemma 8, and every other basis can be obtained from (% 
by elementary augmentations by Lemma 4. 

Our result on primitive set of lines can be summarized as follows : 

Theorem 1. Let № be a primitive set of lines. Then there exist flats A1} ..., Ak 

with the following properties: 

(i) A1,...,Ak are disjoint. 

(ii) Every line in is contained in exactly one of Alt ..., Ak. 

(hi) r (4 )=2v ( +1. 
(iv) Every basis contains precisely vi lines in At. 

(v) v ( j f ) = i v ( . 
¡=1 

Proof. Denote by A, the flat spanned by First we show that r(Ai) — 
—2v f+l. Let and 2S any basis not spanning e. Let s/i=28C\M'i. By Lemma 8, 
the fundamental circuit of e relative to 28 is contained in s/t+e. Hence r(s/i+e) = 
=2v f + l . On the other hand, Lemma 10 implies that all lines of ^ are contained 
in sft + e. Hence A — s i ^ e and r (Ai )=2v f+l . 

Thus (iii) and (iv) are proved, (v) follows immediately. If we show (i) then (ii) 
will be trivially true. 

So let 1 we show that AiClAJ=0. Let e^^, e^^fy, and let 2d 

be a basis such that r(28+el+eJ)=2v+2 (such a basis exists by the definition of 
the sets Let ¿¿,=28034?,. By the argument above, e, meets s/t (t—i, j) and 
At=sft + et. But 

r(A,\JAj) = r ^ U ^ U h , ej)) S r(28+ei+ej)—2\@—sii—s4]\ = 

= = 1^1 + 1^1+2 = r(Ad+r(Aj). 

Hence Ai and A j are disjoint. 
Q.E.D. 
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4. The main result. 

Theorem 2. Let № be a set of lines in a projective geometry. Then the maxi-

mum number v(j^f) of independent lines in 3V is the minimum of the expression 

r M + | [ i W t l M ] , 

where A, Alt ..., Ak are flats such that AQA, 0=1, ...,k) and for every e^yP 

either eDA^d or there is an i such that eQAt. 

Proof. I. First we show that if J*" is a set of independent lines, A, Alt..., Ak 

are subspaces such that A Q Ai and each line of 3F either meets A or is contained 
in one of the A?s then 

Let S'i and J^ denote the set of lines of 2F contained in At and meeting A, respec-
tively. Let A\ be the subspace spanned by Then r(A'i) = 

=2|^j'|. Moreover, the subspaces A\ are clearly independent and, therefore, so are 
the subspaces Aid A, i=0, ..., k. Hence 

r(A)^ 2 r(A[n A). 
i=0 

Here r(A'ir)A)=r(A'i)+r(A)-r(A'i\JA)^r(A'i)+r(A)-r(Ai), whence 

and using integrality, 

m ^ ^ ^ + rCA'^A). 

Moreover, obviously \^\^r(Af]A'0). Hence 
W = 11 Sr(A'onA)+ 2 + n s 

II. We want to construct subspaces A, A1,..., Ak satisfying the conditions in 
the theorem. We use induction on v(Jif) = v. If 3/P is primitive then the result is 

9 
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immediate by Theorem 1. So we may suppose that tf is not primitive, i.e. there 
exists a point p contained in the span of each basis. Delete the lines containing p 

from 3? to obtain the system . Project the lines of from p onto a hyperplane 
T. Let e' be the projection of e on T, and 3^x = {e': 

The system c?̂  contains no v independent lines. In fact, if v lines from 
are not independent, then neither are the corresponding lines in ; if v lines from 
J f j form a basis then p is contained in their span and hence the rank of their span 
decreases by the projection from p. 

So by the induction hypothesis, there exist flats D, Dx, ..., Dk in T such that 
DQDi (/=1, for each the line e either meets D or is contained in 
some Dt; and 

Consider now the subspaces A=D+p, A~Dt+p. Obviously, AQA,. Fur-
thermore, the lines 

in ffl — m e e t A, and so do all lines e for which e' meets D. 

If e'QDt then eQAt. Finally, r{A)=r(D) + l, r(Ai)=r(Di) + l and hence 

r l A ) + 1 p&pdL ] = r № ) + 1 + ! [ ^ m ] _ v . 

|Q.E.D. 

5. Connections with matroid theory. The first question which comes up is whether 
or not Theorem 2 remains valid in an arbitrary matroid. First of all, the definition 
of independence of lines has to be done more carefully; let us accept the natural 
solution that a set J* of lines is independent if In this case the prob-
lem is equivalent to the so-called matroid parity problem (see L A W L E R [3], Chap-
ter 9). 

A counterexample to the analogue of Theorem 2 is any affine space, where 
consists of all lines parallel to a given one. Of course, if we extend our affine space 
to a projective space then we could choose k=0, A the common ideal point of 
our lines. But in general, there seems to be no hope to extend the original matroid 
so as to achieve the validity of Theorem 2. The possiblity of "simulating" the flat 
A inside the matroid seems to be a difficult, and probably not only technical, question. 

It is clear that independence of lines does not define, in general, a matroid. 
See e.g. iwo disjoint lines and a third one meeting both. There is a class of systems 
of lines, however, for which the situation is different. Let us call a set of lines 
flexible, if r(efl for each line For each e£3/e, let p(e) be the 
intersection of e with J^f— e, if this exists, and an arbitrary point of e otherwise. 
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The next proposition shows that independence of lines in a flexible set defines a. 
matroid : 

Propos i t ion 1. Let № be a flexible set of lines. Then ¿FQffl is independent 

iff the set ¿?'={p(e): of points is independent. 

Proof . It is trivial that if & is independent then so is SF'. Assume now that 
J5"' is independent. Then we prove by induction on \<S\ that if 'SÇ^êF then 

(4) r(P'U9) = + 

For this will mean that SF is independent. 
(4) is trivially true for i?=0. Let 3 V 0 and eCé. Then 

T(JF' U 9 ) = r ( ^ ' U ( 0 - e ) ) + l, 

since Jf being flexible, e intersects ¿F' U e) in precisely one point. This proves 
(4) by induction. 

Q.E.D. 

Finally, let us point out one more matroid which is induced by a set of lines. 
This is a certain analogue of the matching matroid of graphs by EDMONDS and FUL-
KERSON [1]. Let be a set of lines. Call a subset dispersive, if there exists, 
a basis 0S of tf such that r(® US?)=2vpf ) + 

Proposi t ion 2. Dispersive sets form the independent sets of a matroid. 

This proposition generalizes Lemma 8, and can be proved along the same lines 
Details are omitted. 
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