Weighted shifts quasisimilar to quasinilpotent operators

LAWRENCE A. FIALKOW

1. Introduction. The purpose of this note is to resolve certain questions raised in [8] and [9] concerning quasisimilarity and quasinilpotent operators. We prove that a weighted shift is quasisimilar to a quasinilpotent operator if and only if it is a direct sum of quasinilpotents (Theorems 2.7 and 2.8). As an application, we show that there exist operators T such that T and T^* are quasiaffine transforms of quasinilpotent operators but such that T is not quasisimilar to any quasinilpotent operator (Corollary 2.9). In section 3 we relate our results to several open problems concerning quasisimilarity and spectra.

Let \mathfrak{H} denote a separable infinite dimensional complex Hilbert space and let $\mathscr{L}(\mathfrak{H})$ denote the algebra of all bounded linear operators on \mathfrak{H} . Let \mathscr{N} and \mathscr{Q} denote, respectively, the subsets of $\mathscr{L}(\mathfrak{H})$ consisting of all nilpotent and quasinilpotent operators. For T in $\mathscr{L}(\mathfrak{H})$, let $\mathfrak{M}(T) = \{x \in \mathfrak{H} : ||T^n x||^{1/n} \to 0\}$. $\mathfrak{M}(T)$ is a linear manifold whose closure is hyperinvariant for T; moreover, T is quasinilpotent if and only if $\mathfrak{M}(T) = \mathfrak{H}$ [7, Lemma, page 28].

An operator X in $\mathscr{L}(\mathfrak{H})$ is a quasiaffinity if X is injective and has dense range. An operator B is a quasiaffine transform of an operator A if there exists a quasiaffinity X such that AX = XB. Operators A and B are quasisimilar if they are quasiaffine transforms of each other [18]. C. APOSTOL, R. G. DOUGLAS, and C. FOIAS [4, Corollary, page 413] gave necessary and sufficient conditions for two nilpotent operators to be quasisimilar, but analogous results for quasinilpotent operators appear to be unknown. The present note concerns the quasisimilarity orbit of \mathscr{Q} . Let $\mathscr{Q}_{af} = \{T \in \mathscr{L}(\mathfrak{H}): T \text{ is a quasiaffine transform of some quasinilpotent operators},$ $and let <math>\mathscr{Q}_{af}^* = \{T \in \mathscr{L}(\mathfrak{H}): T^* \text{ is in } \mathscr{Q}_{af}\}$. Let \mathscr{Q}_{qs} denote the quasisimilarity orbit of \mathscr{Q} , i.e. $\mathscr{Q}_{qs} = \{T \in \mathscr{L}(\mathfrak{H}): T \text{ is quasisimilar to some quasinilpotent operators}.$

In [8] and [9] we obtained the following invariants for membership in \mathcal{Q}_{qs} . A compact subset $K \subset \mathbb{C}$ is the spectrum of an operator in \mathcal{Q}_{qs} if and only if K

Research supported by National Science Foundation Grant #MCS76-07537A01.

Received April 10, 1979.

is connected and contains 0 [8, Theorem 3.11]. If T is in $\mathcal{Q}_{qs'}$, then T satisfies the following properties:

(I) $\mathfrak{M}(T)$ and $\mathfrak{M}(T^*)$ both contain orthonormal bases for \mathfrak{H} ; in particular, $\mathfrak{M}(T)$ and $\mathfrak{M}(T^*)$ are dense in \mathfrak{H} [8, Proposition 3.13].

(II) If $\mathfrak{M} \neq \{0\}$ is an invariant subspace for T, then $\sigma(T|\mathfrak{M})$ is connected and contains 0; if additionally, $\mathfrak{M} \neq \mathfrak{H}$, then $\sigma((1-P_{\mathfrak{M}})T|(1-P_{\mathfrak{M}})\mathfrak{H})$ is connected and contains 0 [8, Theorem 3.1]. ($P_{\mathfrak{M}}$ denotes the orthogonal projection of \mathfrak{H} onto \mathfrak{M} and $\sigma(\cdot)$ denotes the spectrum of an operator.) Each operator satisfying (I) also satisfies (II) [8, Proposition 3.15]; several equivalent reformulations of (II) are given in [9, section 3].

Note that $\mathscr{Q}_{qs} \subset \mathscr{Q}_{af} \cap \mathscr{Q}^*_{af}$ and that if T is in \mathscr{Q}_{af} , then $\mathfrak{M}(T^*)$ is dense [8, Lemma 3.12]. C. APOSTOL [3] proved that $\mathfrak{M}(T^*)$ is dense if and only if T is a quasiaffine transform of a compact quasinilpotent operator. Thus an operator T satisfies (I) if and only if T is in $\mathscr{Q}_{af} \cap \mathscr{Q}^*_{af}$.

In [8] we studied whether (I) actually implies membership in \mathcal{Q}_{qs} , or equivalently (in view of Apostol's result), whether $\mathcal{Q}_{qs} = \mathcal{Q}_{af} \cap \mathcal{Q}_{af}^*$. In [8] we obtained an affirmative answer to this question for decomposable operators (including normal, spectral, compact, and Riesz operators) and for hyponormal operators. If T is decomposable and $\mathfrak{M}(T^*)$ is dense, then T is quasinilpotent [8, Corollary 3.4]; moreover, the only hyponormal operator satisfying $\mathfrak{M}(T)^- = \mathfrak{H}$ is the zero operator [8, Theorem 3.6]. In section 2 we show that despite these positive results, \mathcal{Q}_{qs} is actually a proper subset of $\mathcal{Q}_{af} \cap \mathcal{Q}_{af}^*$, so that neither (I) nor (II) necessarily implies membership in \mathcal{Q}_{qs} .

2. Weighted shifts in \mathcal{Q}_{qs} . Let $I = \mathbb{Z}$ or \mathbb{Z}^+ and let $\alpha = \{\alpha_n\}_{n \in I}$ denote a bounded sequence of complex numbers. Let $\{e_n\}_{n \in I}$ denote an orthonormal basis for \mathfrak{H} . The weighted shift with weight sequence α , W_{α} , is defined by the relations $W_{\alpha}e_n =$ $= \alpha_n e_{n+1}$ ($n \in I$). If $I = \mathbb{Z}^+$, W_{α} is a unilateral shift, while if $I = \mathbb{Z}$, W_{α} is a bilateral shift. T. B. HOOVER [14] exhibited weight sequences α and β , both with infinitely many zero terms, such that W_{α} and W_{β} are quasisimilar, W_{α} is quasinilpotent, and the spectrum of W_{β} is the closed unit disk. In this section we characterize the weighted shifts in \mathcal{Q}_{qs} .

For T in $\mathscr{L}(\mathfrak{H})$ and $n \ge 0$, let $\mathfrak{M}_n(T) = \ker(T^{n+1}) \ominus \ker(T^n)$. Let $\mathfrak{P}(T) = = \bigvee_{n=1}^{\infty} \ker(T^n) = \sum_{n=0}^{\infty} \oplus \mathfrak{M}_n(T)$, and let $\mathfrak{M}_{\infty}(T) = \mathfrak{H} \ominus \mathfrak{P}(T) = \bigcap_{n=1}^{\infty} (\mathfrak{H} \ominus \ker(T^n))$. In the sequel, dim \mathfrak{M} refers to the orthogonal dimension of a closed subspace $\mathfrak{M} \subset \mathfrak{H}$.

Lemma 2.1. If A and B are quasisimilar operators in $\mathcal{L}(\mathfrak{H})$, then A and B have the following properties:

- 1) dim $\mathfrak{M}_n(A) = \dim \mathfrak{M}_n(B)$ for $0 \le n \le \infty$;
- 2) dim ker (A^n) = dim ker (B^n) for n > 0.

Proof. Let X and Y denote quasiaffinities such that AX = XB and YA = BY. To prove 1) it suffices to show that dim $\mathfrak{M}_n(B) \ge \dim \mathfrak{M}_n(A)$ for $0 \le n \le \infty$, for then 1) follows by symmetry. Let $0 \le n < \infty$; we may assume that dim $\mathfrak{M}_n(A) > 0$. Let $\{e_k\}_{0 \le k < p}$ $(0 denote an orthonormal basis for <math>\mathfrak{M}_n(A)$. Let $P_0 = 0$ and for n > 0, let P_n denote the orthogonal projection onto ker (B^n) ; note that $P_{n+1} - P_n$ is the projection onto $\mathfrak{M}_n(B)$.

We show that $\{(1-P_n)Ye_k\}_{0\leq k\leq p}$ is an independent sequence in $\mathfrak{M}_n(B)$. Since $A^{n+1}e_k=0$, then $B^{n+1}Ye_k=YA^{n+1}e_k=0$, so $(1-P_n)Ye_k=(P_{n+1}-P_n)Ye_k\in\mathfrak{M}_n(B)$. Suppose $0\leq j< p$, $c_0, \ldots, c_j\in \mathbb{C}$ and $\sum_{i=0}^j c_i(1-P_n)Ye_i=0$. Then $\sum c_iYe_i=P_n\sum c_iYe_i\in \ker(B^n)$, and so $YA^n(\sum c_ie_i)=B^n(\sum c_iYe_i)=0$. Since Y is injective, $\sum c_ie_i\in \ker(A^n)$, and thus $0=(\sum c_ie_i, e_m)=c_m$ for $0\leq m\leq j$. Therefore $\{(1-P_n)Ye_k\}_{0\leq k< p}$ is independent, and it follows (via Gram-Schmidt) that dim $\mathfrak{M}_n(B)\geq p=\dim\mathfrak{M}_n(A)$. This completes the proof of 1) for $n<\infty$.

Note that if $y \in \mathfrak{M}_{\infty}(A)$, then $X^* y \in \mathfrak{M}_{\infty}(B)$. Indeed, if $z \in \mathfrak{H}, n > 0$, and $B^n z = 0$, then $(X^* y, z) = (y, Xz) = 0$ since $Xz \in \ker(A^n)$ and $y \in \mathfrak{M}_{\infty}(A)$. Since X^* is injective, it follows that dim $\mathfrak{M}_{\infty}(B) \ge \dim \mathfrak{M}_{\infty}(A)$; the reverse inequality follows by symmetry.

For 2), note that since ker $(A^{n+1}) = \text{ker}(A^n) \oplus \mathfrak{M}_n(A)$, $\mathfrak{M}_0(A) = \text{ker}(A)$, ker $(B^{n+1}) = \text{ker}(B^n) \oplus \mathfrak{M}_n(B)$, and $\mathfrak{M}_0(B) = \text{ker}(B)$, the result follows from 1) by induction on n.

Corollary 2.2. Let A and B be quasisimilar operators in $\mathscr{L}(\mathfrak{H})$. Then there is an operator B' unitarily equivalent to B such that $\mathfrak{M}_n(A) = \mathfrak{M}_n(B')$ for $0 \le n \le \infty$.

Proof. For $0 \le n \le \infty$, let P_n and Q_n denote, respectively, the orthogonal projections onto $\mathfrak{M}_n(A)$ and $\mathfrak{M}_n(B)$. Note that $\sum_{0 \le n \le \infty} P_n = \sum_{0 \le n \le \infty} Q_n = 1$ and $P_i P_j = Q_i Q_j = 0$ for $i \ne j$ $(0 \le i, j \le \infty)$. Lemma 2.1 implies that there exists an isometric operator V_n which maps $\mathfrak{M}_n(A)$ onto $\mathfrak{M}_n(B)$. Let $V = \sum_{0 \le n \le \infty} V_n P_n$ (strong convergence); then $V^* = \sum V_n^* Q_n$ and V is unitary. If $B' = V^* BV$, it follows that $\mathfrak{M}_n(A) = \mathfrak{M}_n(B')$ for each n.

Remark. An analogue of Corollary 2.2 for n=0 is implicit in the proof of [19, Lemma 2].

For T in $\mathscr{L}(\mathfrak{H})$, let $(T)' = \{S \in \mathscr{L}(\mathfrak{H}): TS = ST\}$ and let $(T)'' = \{R \in \mathscr{L}(\mathfrak{H}): RS = SR$ for each S in $(T)'\}$. In the sequel r(T) denotes the spectral radius of T.

Lemma 2.3. Let A, B, X, and Y be operators such that AX=XB and YA=BY. If $R\in(B)''$, then $XRY\in(A)'$ and $r(XRY)\leq r(YX)r(R)$.

Proof. The hypothesis implies that XRYA = XRBY = XBRY = AXRY, so XRY commutes with A. Since $R \in (B)''$ and $YX \in (B)'$, R commutes with YX, and thus $r(XRY) = r(YXR) \leq r(YX)r(R)$.

Corollary 2.4. If A is in \mathcal{Q}_{qs} , then A commutes with a nonzero quasinilpotent operator.

Proof. Let $B \in \mathcal{Q}$ be quasisimilar to A and let X and Y denote quasiaffinities such that AX = XB and YA = BY. Lemma 2.3 implies that XBY is a quasinilpotent operator commuting with A; moreover, since X is injective and Y has dense range, XBY is nonzero if B is nonzero. If B=0, then A=0, so the result is clear in this case also.

Lemma 2.5. Let W be a noninvertible injective weighted shift such that $r(W) > 0^{\circ}$. If S commutes with W, then $\sigma(S)$ (the spectrum of S) has nonempty interior or S is a scalar multiple of the identity.

Proof. The proof depends on several results from [15] to which we refer the reader for complete details. We consider first the case when W is a unilateral shift. In this case S may be represented as a multiplication operator M_{ϕ} on a space of formal power series $H^2(\beta)$ [15, Theorem 3(b)]. The power series for the multiplier Φ is convergent in $D = \{z \in \mathbb{C} : |z| < r(W)\}$ [15, Theorem 10(iii)], and thus represents an analytic function $\Phi(z)$ in D. Now $\sigma(M_{\phi})$ coincides with the spectrum of Φ in $H^{\infty}(\beta)$ [15, Proposition 20], and thus $\sigma(M_{\phi})$ contains $\Phi(D)$ [15, page 79]. If M_{ϕ} is not a scalar multiple of the identity, then Φ is non-constant, and it follows that $\Phi(D)$, and thus also $\sigma(M_{\phi})$, has nonempty interior. The proof for the case when W is a non-invertible bilateral shift is analogous; the pertinent results are [15, Theorem 3(a)], [15, Theorem 10'(iii—b)], and the remarks of [15, page 83].

Remark. The conclusion of Lemma 2.5 may fail if W is invertible; consider the unweighted bilateral shift, whose spectrum is the unit circle. Note also that there exist noninjective, non-quasinilpotent weighted shifts which commute with nonzero quasinilpotent operators.

Corollary 2.6. If W is a noninvertible injective weighted shift and r(W)>0, then W commutes with no nonzero quasinilpotent operator.

Theorem 2.7. Let $W = W_{\alpha}$ be a bilateral weighted shift. The following are equivalent.

- 1) $W \in \mathcal{Q}_{qs};$
- 2) W is a direct sum of quasinilpotent operators, and if α has at most finitely many zero terms, then W is quasinilpotent.

Proof. The implication $2) \Rightarrow 1$ follows from [8, Proposition 3.10]. For the converse, we assume that $W \in \mathcal{Q}_{qs}$ and we consider several cases depending on the number and location of the zero terms in the weight sequence α . Note that since $W \in \mathcal{Q}_{qs}$, then W is noninvertible [14], [12].

75

i) W is injective. Since $W \in \mathcal{Q}_{qs}$, Corollary 2.4 implies that W commutes with a nonzero quasinilpotent; thus Corollary 2.6 implies that W is quasinilpotent.

ii) For each integer N, there exist integers m and n, n < N < m, such that $\alpha_m = \alpha_n = 0$. It is clear that in this case W is an infinite direct sum of finite dimensional nilpotent operators.

iii) There exist integers *n* and *m*, $n \le m$, such that $\alpha_n = 0$, $\alpha_m = 0$, and $\alpha_k \ne 0$ for k < n or k > m. We consider only the case n < m; the case n = m may be treated similarly. Let $\mathfrak{H}_1 = \langle e_n, e_{n-1}, e_{n-2}, \ldots \rangle$, $\mathfrak{H}_2 = \langle e_{n+1}, \ldots, e_m \rangle$, and $\mathfrak{H}_3 = \langle e_{m+1}, e_{m+2}, \ldots \rangle$. Relative to the decomposition $\mathfrak{H} = \mathfrak{H}_1 \oplus \mathfrak{H}_2 \oplus \mathfrak{H}_3$, the operator matrix of *W* is of the form $W = W_{\beta}^* \oplus N \oplus W_{\gamma}$, where W_{β} and W_{γ} are injective unilateral weighted shifts on \mathfrak{H}_1 and \mathfrak{H}_3 respectively, and $N^{m-n} = 0$.

Suppose that W is quasisimilar to a quasinilpotent operator Q. Let X and Y be quasiaffinities such that WX = XQ and YW = QY. Note that $\mathfrak{P}(W) = \mathfrak{H}_1 \oplus \mathfrak{H}_2$ and $\mathfrak{M}_{\infty}(W) = \mathfrak{H}_3$. Corollary 2.2 implies that there is an operator Q' unitarily equivalent to Q such that $\mathfrak{M}_n(W) = \mathfrak{M}_n(Q')$ $(0 \le n \le \infty)$, and thus ker $(W^n) = \text{ker}(Q'^n)$ for $n \ge 0$. Let U denote a unitary operator such that $Q' = U^*QU$. Let X' = XUand $Y' = U^*Y$; clearly X' and Y' are quasiaffinities and $(*) \quad W^nX' = X'Q'^n$ and $Y'W^n = Q'^nY'$ for n > 0. Since ker $(W^n) = \text{ker}(Q'^n)$, the preceding equations imply that $\mathfrak{M} \equiv \mathfrak{P}(W) = \mathfrak{P}(Q') = \mathfrak{H}_1 \oplus \mathfrak{H}_2$ is an invariant subspace for X' and Y'.

Relative to the decomposition $\mathfrak{H}=\mathfrak{M}\oplus\mathfrak{M}^{\perp}$, the operator matrices of X', Y', Q', and W are of the form

$$\begin{pmatrix} X_{11} & X_{12} \\ 0 & X_{22} \end{pmatrix}$$
, $\begin{pmatrix} Y_{11} & Y_{12} \\ 0 & Y_{22} \end{pmatrix}$, $\begin{pmatrix} Q_{11} & Q_{12} \\ 0 & Q_{22} \end{pmatrix}$, and $\begin{pmatrix} Z & 0 \\ 0 & W_{\gamma} \end{pmatrix}$,

where X_{22} and Y_{22} have dense range, and $Q_{22} \in \mathcal{Q}$. The equations (*) imply that $W_{\gamma}X_{22} = X_{22}Q_{22}$ and $Y_{22}W_{\gamma} = Q_{22}Y_{22}$. Lemma 2.3 implies that $R = X_{22}Q_{22}Y_{22}$ is a quasinilpotent operator commuting with W_{γ} , and we assert that R is nonzero. For otherwise, since $Y_{22}X_{22}$ commutes with Q_{22} , it follows that $0 = Y_{22}R = Y_{22}X_{22}Q_{22}Y_{22} = Q_{22}Y_{22}X_{22}Y_{22}$. Since X_{22} and Y_{22} have dense range, it follows that $Q_{22} = 0$. Now (*) implies that $W_{\gamma} = 0$, which is a contradiction.

Thus R is a nonzero quasinilpotent commuting with W_{γ} , so Corollary 2.6 implies that W_{γ} is quasinilpotent. By applying the preceding method to W^* , we conclude that W_{β} is also quasinilpotent. (Note that $W^* = W_{\beta} \oplus N^* \oplus W_{\gamma}^*$, so that $\mathscr{P}(W^*) =$ $= \mathfrak{H}_2 \oplus \mathfrak{H}_3$.) Since $W_{\gamma}, W_{\beta} \in \mathcal{A}$ and $N \in \mathcal{N}$, it follows that W is quasinilpotent, which (together with case i)) completes the proof of the second part of 2).

iv) There exists a largest integer N such that $\alpha_N = 0$, but there exists no smalles, such integer. Let $\mathfrak{M} = \langle e_N, e_{N-1}, \ldots \rangle$. Relative to the decomposition $\mathfrak{H} = \mathfrak{M} \oplus \mathfrak{M}^{\perp}$, $W = N \oplus W_{\gamma}$, where N is an infinite direct sum of finite dimensional nilpotentst and W_{γ} is an injective unilateral weighted shift. Since $\mathfrak{P}(W) = \mathfrak{M}$, the method of

case iii) implies that W_{y} is quasinilpotent, so W is a direct sum of quasinilpotents.

v) There is a smallest integer N such that $\alpha_N = 0$, but there is no largest such integer. The desired conclusion that W is a direct sum of quasinilpotents follows by applying case iv) to W^* , which is a bilateral weighted shift relative to the basis $\{f_n\}_{n=-\infty}^{+\infty}$, where $f_n = e_{-n}$.

Theorem 2.8. Let $W = W_{\gamma}$ be a unilateral weighted shift. The following are equivalent.

- 1) $W \in \mathcal{Q}_{as}$;
- 2) $W \in \mathcal{Q}$ or γ has infinitely many zero terms;
- 3) W is a direct sum of quasinilpotent operators.

Proof. The implication $2)\Rightarrow 3$ is obvious and $3)\Rightarrow 1$ follows from [8, Prop. 3.10]. Suppose that $W_{\gamma} \in \mathcal{Q}_{qs}$. Let W_{β} be a quasinilpotent injective unilateral weighted shift and let $W_{\alpha} = W_{\beta}^* \oplus W_{\gamma}$. Thus W_{α} is a bilateral weighted shift and W_{α} is in \mathcal{Q}_{qs} [8]. If at most a finite number of the weights of W_{α} are zero, then Theorem 2.7 implies that $W_{\alpha} \in \mathcal{Q}$, from which it follows that $W_{\gamma} \in \mathcal{Q}$. In the remaining case, W_{α} has infinitely many zero weights, and since W_{β} is injective, these weights correspond to zero terms in γ .

Corollary 2.9. \mathcal{Q}_{qs} is a proper subset of $\mathcal{Q}_{af} \cap \mathcal{Q}_{af}^*$.

Proof. According to [9, Example 3.2], there exists a non-quasinilpotent injective unilateral weighted shift W such that $\mathfrak{M}(W)$ and $\mathfrak{M}(W^*)$ both contain the orthonormal basis $\{e_n\}_{n=0}^{\infty}$. Thus $\mathfrak{M}(W)$ and $\mathfrak{M}(W^*)$ are both dense, and so [3] implies that $W \in \mathcal{Q}_{af} \cap \mathcal{Q}_{af}^*$. However, since W is injective and non-quasinilpotent, Theorem 2.8 implies that W is not in \mathcal{Q}_{as} .

Remark. The shift W in the preceding proof satisfies properties (I) and (II) of section 1. It follows that in general neither property implies membership in \mathcal{Q}_{qs} . These results provide negative answers to Question 3.9, Question 3.14, and Question 3.16 of [8]. Theorem 2.7 and Theorem 2.8 answer [8, Question 3.7]. We note also that it is possible to prove Theorem 2.8 directly, without recourse to Theorem 2.7, by employing the same technique used to prove Theorem 2.7.

In [11] C. FOIAŞ and C. PEARCY proved that if Q is quasinilpotent, then Q and Q^* are quasiaffine transforms of compact operators (which are necessarily quasinilpotent). (This result also follows from [3].) In [11, Proposition 1.5] it is also proved that there exists a quasinilpotent operator that is not quasisimilar to any compact operator. The shift W of Corollary 2.9 is an example of a non-quasinilpotent operator such that W and W^* are quasiaffine transforms of compact operators but such that W is not quasisimilar to any compact operator. The fact that W and W^* are provided that the transforms of compact operators of the transforms of compact operators but such that W is not quasisimilar to any compact operator. The fact that W and

 W^* are quasiaffine transforms of compact operators follows from [3]. Now each nonzero operator quasisimilar to a compact operator commutes with a nonzero compact operator [11, Proposition 1.5]; since the spectrum of a compact operator is countable, Lemma 2.5 implies that W is not quasisimilar to any compact operator.

3. Conclusion. In this section we relate our results to a conjecture of [13], discuss some related questions. Let $\{\mathfrak{M}_n\}_{1 \le n < k}$ $(2 < k \le \infty)$ denote a sequence of closed subspaces of \mathfrak{H} . The sequence $\{\mathfrak{M}_n\}$ is said to be a *basic sequence* for an operator T in $\mathscr{L}(\mathfrak{H})$ if the following properties are satisfied: 1) for each n, \mathfrak{M}_n is invariant for T, i.e. $T\mathfrak{M}_n \subset \mathfrak{M}_n$; 2) For each n, \mathfrak{M}_n and $\bigvee_{\substack{m \ne n}} \mathfrak{M}_m$ are complementary in \mathfrak{H} ; 3) If $k = \infty$, then $\bigcap_{n=1}^{\infty} (\bigvee_{\substack{m \ge n}} \mathfrak{M}_m) = \{0\}$. The *trivial* basic sequence for any operator is the sequence $\mathfrak{M}_1 = \{0\}$, $\mathfrak{M}_2 = \mathfrak{H}$. The concept of a basic sequence is due to C. Apostol [1].

D. A. HERRERO [13, Conjecture 1] stated the following

Conjecture H. [13] If an operator T has no non-trivial basic sequence, then each operator S quasisimilar to T satisfies $\sigma(S) = \sigma(T)$.

Theorem 2.8 can be interpreted as offering some (albeit limited) support to this conjecture. Indeed, an injective unilateral weighted shift T has no nontrivial pair of complementary invariant subspaces [15, Corollary 2, page 63]. Thus T has no nontrivial basic sequence, and Theorem 2.8 shows that if r(T) > 0, then r(S) > 0 for each operator S quasisimilar to T. We can show a bit more. Suppose T shifts the basis $\{e_n\}_{n=0}^{\infty}$. Let X and Y be operators with dense range and let S be an operator such that TX=XS and YT=SY. Since XY commutes with T, [16, page 780] implies that the matrix of XY relative to $\{e_n\}$ is given by a formal power series $\sum_{n=0}^{\infty} a_n T^n$. Since XY has dense range, $|a_0| > 0$. By method quite different than that used in section 2 it can be shown that if $\sum_{n=1}^{\infty} |a_n| ||S^n|| < |a_0|$, then $r(S) \ge r(T)$; note that if $a_n=0$ for each $n \ge 1$, then XY is invertible, so T and S are similar.

In a different direction, S. CLARY [5] has studied subnormal operators quasisimilar to the unweighted unilateral shift U. It follows from [5] that there exists subnormal operators S such that S and U are quasisimilar but not similar; however, quasisimilar subnormal operators do have equal spectra [6, Theorem 2]. The preceding remarks suggest the following question.

Question 3.1. If T is an injective unilateral weighted shift and S is quasisimilar to T, does $\sigma(S) = \sigma(T)$?

C. APOSTOL [1] proved that an operator T is quasisimilar to a normal operator if and only if T has a basic sequence $\{\mathfrak{M}_n\}$ such that each restriction $T|\mathfrak{M}_n$ is simi-

lar to a normal operator. In [9, Theorem 5.5] it is proved that if an operator T has a basic sequence $\{\mathfrak{M}_n\}$ such that each restriction $T|\mathfrak{M}_n$ is a spectral operator, then T is quasisimilar to a spectral operator. The proof of this result also yields the following sufficient condition for membership in \mathcal{Q}_{as} .

Proposition 3.2. If $\{\mathfrak{M}_n\}$ is a basic sequence for an operator T such that each restriction $T|\mathfrak{M}_n$ is quasinilpotent, then T is in \mathcal{Q}_{as} .

Question 3.3. Is the converse of Proposition 3.2 true?

The results of [8] show that if T is in \mathcal{Q}_{qs} and T is decomposable or hyponormal, then T is quasinilpotent, so Question 3.3 has an affirmative answer for operators in these classes. More generally, the answer is affirmative for each operator T satisfying property (C) in the sense of [17], since for each such operator, $\mathfrak{M}(T)$ is closed. The answer is also affirmative for weighted shifts; indeed Theorem 2.7 and Theorem 2.8 may be reformulated as follows.

Theorem 3.4. A weighted shift W is in \mathcal{Q}_{qs} if and only if there exists a basic sequence $\{\mathfrak{M}_n\}$ for W such that each restriction $W|\mathfrak{M}_n$ is quasinilpotent.

Proof. Theorem 2.7 and Theorem 2.8 imply that if a weighted shift W is in \mathcal{Q}_{qs} , then W is a direct sum of quasinilpotents; this direct sum decomposition gives rise to the desired basic sequence. The converse follows from Proposition 3.2.

Acknowledgement. The author wishes to thank the referee for helpful comments.

References

- C. APOSTOL, Operators quasisimilar to normal operators, Proc. Amer. Math. Soc., 53 (1975), 104-106.
- [2] C. APOSTOL, Inner derivations with closed range, Rev. Roumaine Math. Pures Appl., 21 (1976), 249-265.
- [3] C. APOSTOL, Quasiaffine transforms of quasinilpotent compact operators, Rev. Roumaine Math. Pures Appl., 21 (1976), 813-816.
- [4] C. APOSTOL, R. G. DOUGLAS, and C. FOIAS, Quasi-similar models for nilpotent operators, Trans. Amer. Math. Soc., 224 (1976), 407-415.
- [5] S. CLARY, Quasi-similarity and subnormal operators, Ph. D. thesis, University of Michigan, 1973.
- [6] S. CLARY, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc., 53 (1975), 88-90.
- [7] I. COLOJOARĂ and C. FOIAŞ, Theory of Generalized Spectral Operators, Gordon and Breach (New York, 1968).
- [8] L. A. FIALKOW, A note on quasisimilarity of operators, Acta Sci. Math., 39 (1977), 67-85.

- [9] L. A. FIALKOW, A note on quasisimilarity. II, Pacific J. Math., 70 (1977), 151-162.
- [10] L. A. FIALKOW, Similarity cross sections for operators, Indiana Univ. Math. J., 28 (1979), 71-86.
- [11] C. FOIAŞ and C. PEARCY, A model for quasinilpotent operators, Mich. Math. J., 21 (1974), 399-404.
- [12] D. A. HERRERO, On the spectra of the restrictions of an operator, Trans. Amer. Math. Soc., 233 (1977), 45-58.
- [13] D. A. HERRERO, Quasisimilar operators with different spectra, Acta Sci. Math., 41 (1979), 101-118.
- [14] T. B. HOOVER, Quasisimilarity of operators, Illinois J. Math., 16 (1972), 678-686.
- [15] A. L. SHIELDS, Weighted shift operators and analytic function theory, Topics in Operator Theory, Amer. Math. Soc. (1974), 49-128.
- [16] A. L. SHIELDS and L. J. WALLEN, The commutants of certain Hilbert space operators, Indiana Univ. Math. J., 20 (1970), 777-788.
- [17] J. G. STAMPFLI, A local spectral theory for operators. V. Spectral subspaces for hyponormaloperators, *Trans. Amer. Math. Soc.*, 217 (1976), 285–296.
- [18] B. Sz.-NAGY and C. FOIAŞ, Harmonic Analysis of Operators on Hilbert Space, North-Holland. (Amsterdam, 1970).
- [19] L. R. WILLIAMS, Equality of essential spectra of certain quasisimilar seminormal operators, Proc. Amer. Math. Soc., to appear.

DEPARTMENT OF MATHEMATICS WESTERN MICHIGAN UNIVERSITY KALAMOZOO, MICHIGAN 49008 USA