A note on integral operators

A. R. SOUROUR

Let (X, m) be a separable σ -finite measure space which is not purely atomic (it may include some atoms). A bounded linear operator T on $L^2(X)$ is called an integral operator if there exists a measurable function k on $X \times X$ such that (Tf)(x) = $= \int k(x, y)f(y)m(dy)$ almost everywhere. It is known ([7], p. 35) that every Hilbert—Schmidt operator is an integral operator. It is also known that there are integral operators which are not Hilbert—Schmidt or even compact. For example, if k is the characteristic function of the set $\bigcup_{n=0}^{\infty} ([n, n+1] \times [n, n+1])$, the operator induced by k on $L^2(0, \infty)$ is a projection of infinite rank. (This example is in HALMOS [3].) However, KOROTKOV [6] proved that every operator unitarily equivalent to T is an integral operator if and only if T is a Hilbert—Schmidt operator. The purpose of this note is to give a proof of Korotkov's theorem which seems to be conceptually simpler than the original. Unlike the proof in [6], we do not use any results about Fourier series. Our techniques are more operator-theoretic.

We start by establishing notation. Let \mathfrak{H} be a separable infinite-dimensional Hilbert space, and let $\mathscr{B}(\mathfrak{H})$ be the algebra of bounded operators on \mathfrak{H} . If $T \in \mathscr{B}(\mathfrak{H})$, and if \mathfrak{M} is a (closed) subspace of \mathfrak{H} , then the *compression* of T to \mathfrak{M} is the operator $PTP|\mathfrak{M}$, where P is the projection onto \mathfrak{M} . We will always assume that \mathfrak{M} is a "half" of \mathfrak{H} , that is, both \mathfrak{M} and \mathfrak{M}^{\perp} are infinite-dimensional.

If K is a compact operator, then the sequence of *s*-numbers of K is the sequence $s_1 \ge s_2 \ge ...$ of nonzero eigenvalues of the compact positive operator $(K^*K)^{1/2}$, each repeated according to its multiplicity. A compact operator is called *Hilbert—Schmidt* if its sequence of *s*-numbers is square summable. For a detailed discussion of ideals, *s*-numbers and related concepts see pp. 25—27 of [7]. Here we need only the following fact: If two compact operators have the same sequence of *s*-numbers, then they must belong to the same two-sided ideals ([7, p. 26]).

Received May 25, and in revised form August 9, 1978.

Lemma 1. If K is a compact operator, then $K = \begin{bmatrix} K_1 & S_2 \\ S_3 & S_4 \end{bmatrix}$, where every S_i is a Hilbert—Schmidt operator. Consequently, there is a Hilbert—Schmidt operator S such that $\begin{bmatrix} K & 0 \\ 0 & 0 \end{bmatrix}$ is unitarily equivalent to K + S.

Proof. Let $\{e_n\}$ be an orthonormal basis for the underlying Hilbert space, then $||Ke_n|| \to 0$ and $||K^*e_n|| \to 0$. Choose a subsequence $\{f_n\}$ of $\{e_n\}$ such that $\sum ||Kf_n||^2 < \infty$ and $\sum ||K^*f_n||^2 < \infty$. Let \mathfrak{M} be the orthogonal complement of the span of $\{f_n\}$. (By passing to a subsequence of $\{f_n\}$, if necessary, we can assume that \mathfrak{M} is infinite-dimensional.) The matrix of K relative to the decomposition $\mathfrak{M} \oplus \mathfrak{M}^{\perp}$ has the required form. The second assertion of the Lemma follows easily from the first.

Lemma 2. Let \mathfrak{A} be a linear space of compact operators, and assume that \mathfrak{A} is closed under unitary equivalence and under compression and that it contains every Hilbert—Schmidt operator. Then \mathfrak{A} is a two-sided ideal in $\mathfrak{B}(\mathfrak{H})$.

Proof. Assume that $K \in \mathfrak{A}$, and apply Lemma 1 to conclude that the operator $T = \begin{bmatrix} K & 0 \\ 0 & 0 \end{bmatrix}$ belongs to \mathfrak{A} . Each of the following operators is unitarily equivalent to T and hence belongs to \mathfrak{A} :

$$T_{1} = \begin{pmatrix} 0 & 0 \\ 0 & K \end{pmatrix}, \quad T_{2} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} K & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} K & K \\ K & K \end{pmatrix},$$
$$T_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} K & K \\ K & K \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} K & -iK \\ iK & K \end{pmatrix}.$$

By taking an appropriate linear combination, we see that $\begin{pmatrix} 0 & 0 \\ K & 0 \end{pmatrix}$ is also in \mathfrak{A} , and so is the operator

 $\begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix} \begin{pmatrix} 0 & 0 \\ K & 0 \end{pmatrix} \begin{pmatrix} U^* & 0 \\ 0 & V^* \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ VKU^* & 0 \end{pmatrix}$

for any unitary operators U and V. Since every operator can be written as a linear combination of four unitary operators ([1, p. 4]), the operator $\begin{pmatrix} 0 & 0 \\ AKB & 0 \end{pmatrix}$ belongs to \mathfrak{A} for any operators A and B. By unitary equivalence, the following operator also belongs to \mathfrak{A}

$$\frac{1}{2} \begin{pmatrix} AKB & AKB \\ -AKB & -AKB \end{pmatrix}.$$

Consequently AKB belongs to \mathfrak{A} . Therefore \mathfrak{A} is a two-sided ideal.

Lemma 3. Let (X, m) be a separable σ -finite measure space and Y a Borel subset of X such that $L^2(Y)$ and $L^2(X \setminus Y)$ are both infinite dimensional, and let \mathfrak{H} be a separable Hilbert space, \mathfrak{M} a subspace of \mathfrak{H} with dim $\mathfrak{M}=\dim \mathfrak{M}_{\perp}^{\perp}=\infty$, T an

.' :

operator on \mathfrak{H} and A the compression of T to \mathfrak{M} . If every operator on $L^2(X)$ which is unitarily equivalent to T is an integral operator, then every operator on $L^2(Y)$ which is unitarily equivalent to A is an integral operator.

Proof. Let $V: \mathfrak{M} \to L^2(Y)$ be a unitary operator and let W be any unitary mapping \mathfrak{M}^{\perp} onto $L^2(X \setminus Y)$, and let $U = V \oplus W$. Thus UTU^* is an integral operator on $L^2(X)$. If k is the kernel of the latter, then VAV^* is an integral operator whose kernel is the restriction of k to $Y \times Y$.

Lemma 4. Let T be a bounded operator on \mathfrak{H} such that UTU^* is an integral operator for every unitary operator U mapping \mathfrak{H} onto $L^2(X)$. Then T is compact.

Proof. First we show that every non-compact operator has a compression (to an infinite dimensional subspace) which equals the sum of a non-zero scalar and a Hilbert—Schmidt operator. Let T be a non-compact operator and let $T=T_1+$ $+iT_2$ where T_1 and T_2 are self-adjoint. One of the operators T_1 and T_2 (say T_1) is not compact. Let E be the spectral measure of T_1 . Then there is a real number $\lambda \neq 0$ such that dim $(E(\Delta)\mathfrak{H})=\infty$ for every open set Δ containing λ . Consequently, there is a compression $PT_1P|P\mathfrak{H}$ of T_1 (to an infinite dimensional subspace) which is equal to $\lambda + a$ Hilbert—Schmidt operator. Since PT_2P is self-adjoint, the same argument shows that there is an infinite dimensional projection $Q \leq P$ such that $QT_2Q|Q\mathfrak{H}$ is a scalar+a Hilbert—Schmidt operator (this scalar may be zero). Thus

$$QTQ|Q\mathfrak{H} = \mu + S$$

where $\mu \neq 0$ and S is a Hilbert—Schmidt operator. (This proof is due to the referee.)

Let Y be a non-atomic "half" of X. If T is non-compact and is always integral on X, then by Lemma 3, the compression $\mu + S$ is always integral on Y. It follows that the identity on $L^2(Y)$ is an integral operator, which is impossible (see [5, problem 134]). So T must be compact.

For clarity of exposition, we will prove the main result first when X=[0, 1].

Theorem 1. Let T be a bounded operator on \mathfrak{H} . Then UTU^* is an integral operator for every unitary operator U mapping \mathfrak{H} onto $L^2(0, 1)$ if and only if T is a Hilbert—Schmidt operator.

Proof. The "if" part is easy. To prove the converse, let \mathscr{I} be the set of all operators T on \mathfrak{H} with the property that UTU^* is an integral operator for every unitary $U: \mathfrak{H} \rightarrow L^2(0, 1)$. It is easy to see that \mathscr{I} is a linear space and is closed under unitary equivalence. It is also closed under compression since if $T \in \mathscr{I}$ and A is a compression of T, then A is always integral on $\left(0, \frac{1}{2}\right)$ and hence is always integral on (0, 1). By Lemma 2, \mathscr{I} is a two-sided ideal. Let $K \in \mathscr{I}$ and let $\{\lambda_n\}$ be the sequence of s-numbers of K. Since \mathscr{I} is an ideal, every operator on $L^2(0, 1)$ with the same

sequence of s-numbers is an integral operator. We will now construct an operator on $L^2(0, 1)$ with s-numbers $\{\lambda_n\}$.

Let $\{e_n\}$ be an orthonormal basis of $L^2(0, 1)$ consisting of unimodular function, that is $|e_n(x)|=1$. (For example, the usual exponentials exp $(2\pi i k x)$, arranged in a sequence.) Let $\{\alpha_n\}$ be a sequence of positive numbers such that $\sum \alpha_n^2 = 1$, and let $\{E_n\}$ be a sequence of disjoint measurable subsets of (0, 1) whose union is (0, 1)and such that $m(E_n) = \alpha_n^2$. Let $\varphi_n = \alpha_n^{-1} \chi_n$, where χ_n is the characteristic function of E_n . Therefore $\{\varphi_n\}$ is an orthonormal set in $L^2(0, 1)$. Define an operator C on $L^2(0, 1)$ by the equations

 $C\varphi_n = \lambda_n e_n$, and Cf = 0 if $f \in \{\varphi_n\}^{\perp}$.

It is easy to see that $C^* e_n = \lambda_n \varphi_n$ and $CC^* e_n = \lambda_n^2 e_n$, and so C is a compact operator whose sequence of s-numbers is $\{\lambda_n\}$.

By the foregoing, the operator C must be an integral operator. Let k be the kernel of C, so

$$(Cf)(x) = \int k(x, y)f(y)m(dy)$$
 a.e.

By considering only functions in $L^2(E_n)$ for a fixed *n*, we see that

$$Cf = (f, \varphi_n)\lambda_n e_n$$
 for $f \in L^2(E_n)$,

so

$$(Cf)(x) = \int \alpha_n^{-1} \lambda_n e_n(x) f(y) m(dy)$$
 for $f \in L^2(E_n)$

By the uniqueness of the kernel, we must have $k(x, y) = \alpha_n^{-1} \lambda_n e_n(x)$ when $y \in E_n$. For every $f \in L^2(0, 1)$, the function $|k(x, \cdot)f(\cdot)|$ must be integrable for almost every x. By taking f=1, we have $\int |k(x, y)|m(dy) < \infty$ for almost every x, so $\sum \alpha_n \lambda_n < \infty$. Since this is true for any (normalized) square-summable sequence $\{\alpha_n\}$, we must have $\{\lambda_n\}$ square-summable, and so K is a Hilbert—Schmidt operator.

Theorem 2. Let (X, m) be a separable σ -finite measure space with no atoms, and let T be a bounded operator on \mathfrak{H} . Then UTU^* is an integral operator for every unitary operator U mapping \mathfrak{H} onto $L^2(X)$ if and only if T is a Hilbert—Schmidt operator.

Proof. This theorem is proved by slight modifications of the proof of Theorem 1. We only indicate the necessary changes.

As before, let \mathscr{I} be the set of all operators T on \mathfrak{H} with the property that UTU^* is an integral operator for every unitary $U: \mathfrak{H} \to L^2(X)$. Unlike the case X=[0, 1], it is not immediately obvious that \mathscr{I} is closed under compression. (If $T \in \mathscr{I}$ and Ais a compression of T, then we only know that A is always integral on every half of X.) So we introduce the class \mathscr{J} of all compressions of operators in \mathscr{I} , that is $A \in \mathscr{J}$ if and only if there exist operators B, C, D such that $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathscr{I}$. It is obvious that \mathscr{J} is a linear space, and is closed under compression and under unitary equiv-

A note on integral operators

alence, and so it is a two-sided ideal by Lemma 2. In view of Lemma 1, we need only show that every operator in \mathscr{J} is Hilbert—Schmidt. Let Y be a "half" of X which has finite measure and we may assume that m(Y)=1. If $K \in \mathscr{J}$, then as before, every operator on $L^2(Y)$ with the same s-numbers as K must be an integral operator. An examination of the remainder of the proof of Theorem 1 shows that it depends on the two properties of Y which we now list and prove.

(i) There exists an orthonormal basis of $L^2(Y)$ consisting of unimodular functions.

Proof. There is an isomorphism of the measure algebra of (Y, m) onto the measure algebra of the unit interval [4, p. 173]. This isomorphism induces a linear map V of the linear space of equivalence classes of measurable functions on [0, 1] onto the space of equivalence classes of measurable functions on Y (see [2, pp. 252–254] for details). This map can be seen to carry the exponentials (exp $2\pi inx$) into a basis of $L^2(Y)$ consisting of unimodular functions.

(ii) If $\{\alpha_n\}$ is a sequence of positive numbers such that $\sum \alpha_n = 1$, then there is a sequence of disjoint measurable subsets of Y whose union is Y and such that $m(E_n) = \alpha_n$.

Proof. Again this follows immediately from the isomorphism of the measure algebras.

This ends the proof of Theorem 2.

Corollary. The conclusion of Theorem 2 is valid if X contains atoms but is not purely atomic.

Proof. Let Y be a half of X which contains no atoms, and let T be an operator which is always integral on X. Every compression of T is always integral on Y, hence is Hilbert—Schmidt by Theorem 2. Therefore T must be Hilbert—Schmidt by Lemma 1.

References

[1] J. DIXMIER, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars (Paris, 1959).

[2] J. L. DOOB, Stochastic processes, Wiley (New York, 1953).

[3] P. R. HALMOS, Integral operators, in: Hilbert Space operators, Lecture Notes in Mathematics, vol. 693, Springer-Verlag (Berlin, 1978), 1–15.

[4] P. R. HALMOS, Measure theory, Van Nostrand (New York, 1950).

[5] P. R. HALMOS, A Hilbert space problem book, Van Nostrand (New York, 1967).

[6] V. B. KOROTKOV, Strong integral operators, Sibirian Math. J., 16 (1974), 1137-1140.

[7] R. SCHATTEN, Norm ideals of completely continuous operators, Ergebnisse der Math. und ihrer Grenzgebiete, Band 27, Springer-Verlag (Berlin, 1960).

[8] V. S. SUNDER, Unitary orbits of integral operators, Notices Amer. Math. Soc., 24 (1977), A-639.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO TORONTO, CANADA