Nilpotent torsion-free rings and triangles of types

M. C. WEBB

1. Introduction. This note modifies an idea of Vinsonhaler and Wickless [7] concerning associative rings having torsion-free additive group. In [7] the necessary and sufficient conditions for a group to support only trivial rings given by REE and WISNER [4] are generalised in such a way that certain groups supporting only nilpotent rings are characterised. In fact more precise information can be obtained giving a bound on the nilstufe of a group. The nilstufe, a notion due to Szele [6], $n(X)$, of a group X is the largest integer n such that there is an associative ring on X with a non-zero product of n elements. If no such largest integer exists then $n(X)=\infty$. Several authors [1], [3], [5], [8], [9] have obtained bounds for the nilstufe of a group in certain circumstances. The bound obtained here applies in quite general circumstances. In this note the basic tool of [7] is modified and then used to prove results based on two of the main theorems from [7], in one case giving a considerable generalisation.

From now on all groups are torsion-free abelian groups and all undefined concepts are standard from Fuchs [2]. In particular the product of a pair of types $\mathbf{t}_{1}, \mathbf{t}_{2}$ is written $\mathbf{t}_{1} \mathbf{t}_{2}$ not $\mathbf{t}_{1}+\mathbf{t}_{2}$ as in [7], and $T(X)=\{\mathbf{t}(x): x \in X\}$ is the type-set of the group X.
2. The results. The following is a modification of a definition of [7].

Definition. A collection of types $\left\{\mathbf{t}_{i j}: 1 \leqq j \leqq n-i+1,1 \leqq i \leqq n\right\}$ is a triangle of base size n if for any three integers i, j, k satisfying $1 \leqq k \leqq n-i-j+1$, $1 \leqq j \leqq n-i+1,1 \leqq i \leqq n$,

$$
\mathbf{t}_{i, j} \mathbf{t}_{k,(i+j)} \leqq \mathbf{t}_{(i+k), j}
$$

This is strongly related to the definition in [7] but, as will become apparent below, it is easy to handle. For example, the following based on Theorem 2.1 of [7] has a quite straightforward proof.

[^0]Theorem 1. For any torsion-free group X and any associative ring ($X, 0$), a non-zero product of n elements in the ring defines a triangle of base size n from the type-set of X.

Proof. Suppose that for the elements x_{1}, \ldots, x_{n} from X the product $x_{1} \circ \ldots \circ x_{n}$ is non-zero. Then denoting by $\langle x\rangle^{*}$ the pure subgroup generated by an element x of X, the following pure rank 1 subgroups of X are defined: for each pair of integers i, j satisfying $1 \leqq j \leqq n-i+1,1 \leqq i \leqq n$,

$$
X_{i, j}=\left\langle x_{j} \circ \ldots \circ x_{j+i-1}\right\rangle^{*}
$$

As a consequence, for the integers i, j, k satisfying $1 \leqq k \leqq n-i-j+1,1 \leqq j \leqq$ $\leqq n-i+1,1 \leqq i \leqq n$,

$$
\mathbf{t}\left(X_{(i+k), j}\right)=\mathbf{t}\left(x_{j} \circ \ldots \circ x_{j+i+k-1}\right) \geqq \mathbf{t}\left(x_{j} \circ \ldots \circ x_{j+i-1}\right) \mathbf{t}\left(x_{j+i} \circ \ldots \circ x_{j+i+k-1}\right)
$$

However,

$$
\mathbf{t}\left(X_{i, j}\right) \mathbf{t}\left(X_{k,(i+j)}\right)=\mathbf{t}\left(x_{j} \circ \ldots \circ x_{j+i-1}\right) \mathbf{t}\left(x_{j+i} \circ \ldots \circ x_{j+i+k-1}\right)
$$

implying $\quad \mathbf{t}\left(X_{(i+k), j}\right) \geqq \mathbf{t}\left(X_{i, j}\right) \mathbf{t}\left(X_{k,(i+j)}\right)$. So if $\quad \mathbf{t}_{i, j}=\mathbf{t}\left(X_{i, j}\right)$ for $1 \leqq j \leqq n-i+1$, $1 \leqq i \leqq n$ the set of types so defined form a triangle of base size n.

Recalling the definition of nilstufe there is the following corollary.
Corollary. For any torsion-free group X, its nilstufe $n(X)$ is bounded by the maximum base size of triangles that can be formed from $T(X)$.

Note that in the Corollary there are no restraints on the group X. Other authors [1], [5], [8] have obtained bounds for $n(X)$ but for groups whose type-sets satisfy some form of chain condition. In most cases the Corollary gives a better bound on the nilstufe and an illustrative example is given following Theorem 2. A second important result of [7] that can now be more easily proved is

Theorem 2. If for $X=\bigoplus_{i \in I} X_{i}$ where each X_{i} has rank 1 a triangle of base size n can be formed from the set $\left\{\mathrm{t}\left(X_{i}\right): i \in I\right\}$ without using the same summand twice, then $n(X) \geqq n$.

Proof. Suppose that the triangle is $\left\{\mathbf{t}_{i, j}: 1 \leqq j \leqq n-i+1,1 \leqq i \leqq n\right\}$ where the $\mathbf{t}_{i, j}$ are types of distinct summands X_{i}. Then,

$$
\mathbf{t}_{(i+k), j} \geqq \mathbf{t}_{i, j} \mathbf{t}_{\mathbf{k},(i+j)}
$$

where $1 \leqq k \leqq n-j-i+1,1 \leqq j \leqq n-i+1,1 \leqq i \leqq n$. The characteristic of an element x in X is denoted by $\chi(x)$ and so the above inequalities imply that elements $x_{i, j}$ from the corresponding rank one summands can be found such that

$$
\chi\left(x_{(i+k), j}\right) \geqq \chi\left(x_{i, j}\right) \chi\left(x_{k,(i+j)}\right) .
$$

If Y is the direct sum of the summands of X used in defining the types then a ring $(Y, *)$ can be defined using the following products. For integers i, j, k satisfying $1 \leqq k \leqq n-l+1, \quad 1 \leqq j \leqq n-i+1,1 \leqq i \leqq n, 1 \leqq l \leqq n$.

$$
x_{i, j} * x_{k, l}= \begin{cases}x_{(i+k), j} & \text { if } l=i+j \\ 0 & \text { if } \\ 0 \text { not }\end{cases}
$$

These products and the distributive law define a ring which can be shown to be associative.

Take three subscripts $\left(k_{1}, k_{2}\right),\left(l_{1}, l_{2}\right),\left(m_{1}, m_{2}\right)$; then

$$
x_{k_{1}, k_{2}} * x_{l_{1}, l_{2}}=\left\{\begin{array}{lll}
0 & \text { if } & l_{2} \neq k_{1}+k_{2} \\
x_{\left(k_{1}+l_{1}\right), k_{2}} & \text { if } & l_{2}=k_{1}+k_{2}
\end{array}\right.
$$

and

$$
x_{\left(k_{1}+l_{1}\right), k_{2}} * x_{m_{1}, m_{2}}=\left\{\begin{array}{lll}
0 & \text { if } & m_{2} \neq k_{1}+l_{1}+k_{\lambda} \\
x_{\left(k_{1}+l_{1}+m_{1}\right), k_{2}} & \text { if } & m_{2}=k_{1}+l_{1}+k_{\lambda} .
\end{array}\right.
$$

Also,
and

$$
x_{l_{1}, l_{2}} * x_{m_{1}, m_{2}}=\left\{\begin{array}{lll}
0 & \text { if } & m_{2} \neq l_{1}+l_{2} \\
x_{\left(l_{1}+m_{1}\right), l_{2}} & \text { if } & m_{2}=l_{1}+l_{2}
\end{array}\right.
$$

$$
x_{k_{1}, k_{2}} * x_{\left(l_{1}+m_{1}\right), l_{2}}=\left\{\begin{array}{lll}
0 & \text { if } & l_{2} \neq k_{1}+k_{2} \\
x_{\left(k_{1}+l_{1}+m_{1}\right), k_{2}} & \text { if } & l_{2}=k_{1}+k_{2}
\end{array}\right.
$$

So that the products $\left(x_{k_{1}, k_{2}} * x_{l_{1}, l_{2}}\right) * x_{m_{1}, m_{2}}, x_{k_{1}, k_{2}} *\left(x_{l_{1}, l_{2}} * x_{m_{1}, m_{2}}\right)$ are non-zero if and only if $I_{2}=k_{1}+k_{2}$ and $m_{2}=l_{1}+l_{2}$ in which case they both equal $x_{\left(k_{1}+l_{1}+m_{1}\right), k_{2}}$. Furthermore, $x_{1,1} * x_{1,2} * \ldots * x_{1, n}=x_{n, 1}$ is non-zero.

To define an associative ring on X merely take the ring direct sum of $(Y, *)$ and the trivial ring on the complement of Y in X and so $n(X) \geqq n$.

Finally an example is given to illustrate that the bounds obtained using Theorem 1 can be lower than those obtained using other available results.

Example. Begin by partitioning the set of all primes into two disjoint infinite subsets P_{1} and P_{2} where $P_{2}=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}$. Then define the following subgroups of the rationals.

$$
A_{1}=A_{2}=g p\left\{\frac{1}{p}: p \in P_{1} \cup P_{2}\right\}, \quad B=g p\left\{\frac{1}{p^{n}}, \frac{1}{q^{2}}: p \in P_{1}, n \in \mathbf{Z}^{+}, q \in P_{2}\right\}
$$

and for each integer $i \geqq 1$,

$$
C_{i}=g p\left\{\frac{1}{p}, \frac{1}{p_{1}^{n}}, \frac{1}{p_{2}^{n}}, \ldots, \frac{1}{p_{i}^{n}}: p \in P_{1}, n \in \mathbf{Z}^{+}\right\}
$$

For each positive integer m let

$$
X_{m}=A_{1} \oplus A_{2} \oplus B \oplus C_{1} \oplus \ldots \oplus C_{m}
$$

Then $T\left(X_{m}\right)=\left\{\mathbf{t}\left(A_{1}\right), \mathbf{t}(B), \mathbf{t}\left(C_{1}\right), \ldots, \mathbf{t}\left(C_{m}\right)\right\}$ contains a chain of length $m+1$, but no chain of greater length.

A type \mathbf{t}_{1} in $T(X)$ absorbs a type $\mathbf{t}_{\mathbf{2}}$ in $T(X)$ if $\mathbf{t}_{\mathbf{1}} \mathbf{t}_{2}=\mathbf{t}_{\mathbf{1}}$. It is clear that $\mathbf{t}\left(X_{m}\right)$ contains no absorbing types so that Proposition 1.2 of [5] implies $n\left(X_{m}\right) \leqq m+1$. However, a triangle of base length two can be formed from $T\left(X_{m}\right)$, namely $\mathbf{t}_{21}=$ $=\mathbf{t}(B), \mathbf{t}_{\mathbf{i}}=t\left(A_{i}\right) \mathrm{i}=1,2$. So, by Theorem $2, n\left(X_{m}\right) \geqq 2$. The following lemma will show that no larger triangles can be formed.

Lemma. If X is a group such that $T(X)$ contains no absorbing types the apex of a triangle of base size n formed from $T(X)$ has a chain of length n descending from it in $T(X)$.

Proof. The proof is by induction on n, the result being trivial for $n=1$.
Suppose $n>1$. Let $\mathbf{t}_{k, 1}$ be the apex of a triangle of base size k, then the apex of any triangle of base size $(n-1)$ from $T(X)$ has a chain of length $(n-1)$ descending from it in $T(X)$. If the triangle is $\left\{\mathbf{t}_{i, j}: 1 \leqq j \leqq n-i+1,1 \leqq i \leqq n\right\}$ then

$$
\mathbf{t}_{n, 1} \geqq \mathbf{t}_{(n-1), \mathbf{1}} \mathbf{t}_{1, n} .
$$

Now: $\mathbf{t}_{(n-1), 1}$ is the apex of a triangle of base size $(n-1)$ from $T(X)$ so is the maximal type of a chain of length $(n-1)$ in $T(X)$. Suppose $\mathbf{t}_{n, 1}=\mathbf{t}_{(n-1), 1}$ then $\mathbf{t}_{(n-1), 1} \mathbf{t}_{1, n}=$ $=\mathbf{t}_{(n-1), 1}$ and $\mathbf{t}_{(n-1), 1}$ is an absorbing type in $T(X)$. Thus $\mathbf{t}_{n, 1}>\mathbf{t}_{(n-1), 1}$ and so has a chain of length n descending from it in $T(X)$.

Returning to the example it should be noted that $t(B)$ has only chains of at most length 2 descending from it in $T\left(X_{n}\right)$. Furthermore by considering the summands of X_{m} it is clear that in any ring on $X_{m}, X_{m}^{2} \subseteq B$ since $P_{1} \cap P_{2}$ is empty. Since any product of more than two elements in any ring on X is in $B, \mathbf{t}(B)$ is the apex of all triangles formed by applying Theorem 1 . Hence $n\left(X_{m}\right) \leqq 2$ which with the earlier work gives $n\left(X_{m}\right)=2$ for all $m \geqq 1$.

In conclusion it is noted that this technique fails to work for non-associative rings as the bracketing of a product may be quite arbitrary. Essential to the above is that for a product in an associative ring $\mathbf{t}((a b) c)=\mathbf{t}(a(b c))$.

References

[1] S. Feigelstock, The nilstufe of rank two torsion-free groups, Acta Sci. Math., 36 (1974), 29—32.
[2] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press (New York, 1973).
[3] B. J. Gardner. Rings on completely decomposable torsion-free abelian groups, Comment. Math. Univ. Carolinae, 15 (1974), 381-392.
[4] R. Ree and R. J. Wisner, A note on torsion-free nil groups, Proc. Amer. Math. Soc., 7 (1956), 6-8.
[5] A. E. Stratton and M. C. Webb, Type-sets and nilpotent multiplications, Acta Sci. Math., 41 (1979), 209-213.
[6] T. Szele, Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math. Z., 54 (1951), 168-180.
[7] C. Vinsonhaler and W. J. Wickless, Completely decomposable groups which admit only nilpotent multiplications, Pac. J. Math., 53 (1974), 273-280.
[8] M. C. Webb, A bound for the nilstufe of a group, Acta Sci. Math., 39 (1977), 185-188.
[9] W. J. Wickless, Abelian groups which admit only nilpotent multiplications, Pac. J. Math., 40 (1972), 251-259.

UNIVERSITY OF GHANA
P.O. BOX 62

LEGON, GHANA

[^0]: Received July 27, 1977, in revised form April 17, 1978.

