# Remarks on finitely projected modular lattices 

E. T. SCHMIDT

1. Introduction. Let $\mathbf{K}$ be a variety of lattices. A lattice $L$ in $\mathbf{K}$ is called finitely K-projected if for any surjective $f: K \rightarrow L$ in $\mathbf{K}$ there is a finite sublattice of $K$ whose image under $f$ is $L$. These lattices are important by the investigations of subvarieties of $\mathbf{K}$, in fact, every finite $\mathbf{K}$-projected subdirectly irreducible lattice $L$ is splitting in $\mathbf{K}$, i.e. there is a largest subvariety of $\mathbf{K}$ not containing $L$ (see Day [1]). Let $\mathbf{B}_{2}$ be the variety generated by all breadth 2 modular lattices. In [2] there is given a necessary condition for a lattice $L \in B_{2}$ to be $\mathbf{B}_{2}$-projected. Our goal here is to give some further necessary conditions for a lattice to be M-projected, where $\mathbf{M}$ denotes the variety of all modular lattices.
2. Preliminaries. Let $M$ be a finite modular lattice and let $Q$ be the chain of bounded rationals, say $Q=[0,1] . M(Q)$ is the lattice of all continous monotone maps of the compact totally ordered disconnected space $X$ of all ultrafilters of $Q$ into the discrete space $M$. The constant mappings form a sublattice of $M(Q)$ which is isomorphic to $M$; we identify $M$ with this sublattice. If $a / b$ is a prime quotient of $M$ then the corresponding quotient $a / b$ of $M(Q)$ is isomorphic to $Q$, we have a natural isomorphism $\varepsilon_{a b}: Q \rightarrow a / b$. If $a / b$ runs over all prime quotients then all $a / b$ generate a sublattice $M[Q]$ of $M(Q)$.

Let $A$ and $B$ be two modular lattices with isomorphic sublattices $C \cong C^{\prime}$ where $C$ is a filter of $A$ and $C^{\prime}$ is an ideal of $B$. Then $L=A \cup B$ can be made into a modular lattice by defining $x \leqq y$ if and only if one of the following conditions is satisfied: $x \leqq y$ in $A$ or $x \leqq y$ in $B$ or $x \leqq c$ in $A$ and $c^{\prime} \leqq y$ in $B$ where $c, c^{\prime}$ are corresponding elements under the isomorphism $C \cong C^{\prime}$. We say that $L$ is the lattice obtained by gluing together $A$ and $B$ identifying the corresponding elements under the isomorphism $C \cong C^{\prime}$. This useful construction is due to Hall and Dilworth. In this case $A$ is an ideal and $B$ is a filter of $L, L=A \cup B$ and $C=A \cap B$. Conversely if $A$ is an ideal and $B$ is a filter of a lattice $L$ such that $L=A \cup B$ then $L$ is obviously the lattice obtained by gluing together $A$ and $B$.

Received February 11, 1978; in revised form September 16, 1978.

## 3. The Hall-Dilworth construction.

Theorem 1. Let $A$ be an ideal and let $B$ be the filter of the finite modular lattice $M$ such that $M=A \cup B$ and $C=A \cap B$ is a chain. Let $a / b$ and $c / d$ be two different prime quotients of $C$ which are projective in $A$ and in $B$. Then $M$ is not finitely M-projected.

Proof. $A[Q]$ is an ideal and $B[Q]$ is a filter of $M[Q]$. Consequently, $M[Q]=$ $=A[Q] \cup B[Q]$. It is easy to see that $A[Q] \cap B[Q]=C[Q]$. Let $B^{\prime}[Q]$ be a disjoint copy of $B[Q]$ with the isomorphism $\varphi: B[Q] \rightarrow B^{\prime}[Q]\left(x \rightarrow x^{\prime}\right)$. The restriction of $\varphi$ to $C[Q]$ give a sublattice $C^{\prime}[Q]$ of $B^{\prime}[Q]$.

Let $a / b$ and $c / d$ two different prime quotients of $C$. Then we can assume that $a>b \geqq c>d$. First we define an injection $\psi: C[Q] \rightarrow C^{\prime}[Q]$ which is different from $\varphi$. To define this $\psi$ we distinguish two cases:
(a) We assume that there exists a $u \in C$ covering $a$. The quotients $u / b, a / b, u / a$ of $C[Q]$ are all isomorphic to $Q$. Let further $\delta$ be an automorphism of $u / b$ and we set $a_{0}=a, a_{1}=\delta a_{0}, \ldots, a_{i+1}=\delta a_{i}$ and $\bar{a}_{1}=\delta^{-1} a_{0}, \ldots, a_{i+1}=\delta^{-1} \bar{a}_{i}$. Obviously, if $r$ is an arbitrary irrational number between 0 and 1 then there exists an automorphism $\delta$ of $u / b$ satisfying the following two conditions (see Fig. 1.).

$$
\begin{gather*}
a_{1}<a,  \tag{1}\\
\varepsilon_{a b}\left(\inf \left\{a_{i}\right\}\right)=\varepsilon_{\mu a}\left(\sup \left\{\bar{a}_{i}\right\}\right)=r \tag{2}
\end{gather*}
$$

$\left(\varepsilon_{a b}\right.$ (resp. $\left.\varepsilon_{u a}\right)$ ) denotes the natural isomorphism $a / b \rightarrow Q$ (resp. $u / a \rightarrow Q$ )). Defining $\psi_{0}$ to be the product $\varphi \circ \delta, \psi_{0}$ is an isomorphism of $u / b$ onto $u^{\prime} / b^{\prime} . \psi_{0}$ can be extended to an isomorphism $\psi: C[Q] \rightarrow C^{\prime}[Q]$ as follows:

$$
\psi(x)=\left\{\begin{array}{lll}
\varphi(x) & \text { if } & x \notin u / b \\
\psi_{0}(x) & \text { if } & x \in u / b .
\end{array}\right.
$$

(b) In the second case $a$ is a maximal element of $C$. Then we can choose an arbitrary $t$ such that $a^{\prime}>t>b^{\prime}$. $t / b^{\prime}$ is isomorphic to $Q$, hence there exists an isomorphism $\psi_{0}: a / b \rightarrow t / b^{\prime}$. The extension of $\psi_{0}$ is defined by

$$
\psi(x)=\left\{\begin{array}{lll}
\varphi(x) & \text { if } & x \notin a / b \\
\psi_{0}(x) & \text { if } & x \in a / b
\end{array}\right.
$$

We take in both cases the lattice $L$ obtained by gluing together $A[Q]$ and $B^{\prime}[Q]$ identifying the corresponding elements of $C[Q]$ and $\psi(C[Q])$ under the isomorphism $\psi$ (Fig. 2).

We prove that there exists a surjection $f: L \rightarrow M$. Let $\Theta$ be the congruence relation of $Q$ defined as follows: $x \equiv y(\Theta)$ if and only if either $x, y>r^{-}$or $x, y<r$. Then $A[Q]$ has a congruence relation $\Theta_{A}$ such that the restriction of $\Theta_{A}$ to a quotient ${ }^{50}$
$a / b$ - where $a / b$ is a prime quotient of $A$ - is the image of $\Theta$ by the isomorphism $\varepsilon_{a b}: Q \rightarrow a / b$. The corresponding factor lattice $A[Q] / \Theta_{A}$ is isomorphic to $A$. Similarly $B^{\prime}[Q]$ has a congruence relation $\Theta_{B}$ corresponding to $\Theta$, and the factor lattice is isomorphic to $B$. By the definition of $\delta, x \equiv y\left(\Theta_{A}\right)(x, y \in C[Q])$ if and only if $\delta x \equiv \delta y\left(\Theta_{A}\right)$. That means that the restriction of $\Theta_{A}$ to $\delta C[Q]$ corresponds by $\varphi$ to the restriction of $\Theta_{B}$ to $C^{\prime}[Q]$. If follows that the join $\Theta_{A} \cup \Theta_{B}$ has an extension $\bar{\Theta}$ to $L$ such that the restriction of $\bar{\Theta}$ to $A[Q]$ is $\Theta_{A}$ and the restriction $B^{\prime}[Q]$ is $\Theta_{B}$. Hence $M / \bar{\Theta}$ is isomorphic to $M$.


Fig. 1


Fig. 2

Let $\pi$ be the projectivity $a / b \approx c / d$ in $A . \varrho$ denotes the projectivity $c / d \approx a / b$ in $B$. Thus we get the projectivity $\varrho \circ \pi: a / b \approx a / b$. It is easy to show that this projectivity has no inverse in $L$, i.e. by Lemma 1 of [2] we get that $M$ is not finitely projected.

Theorem 2. Let $A$ be an ideal and let $B$ be a filter of the finite modular lattice $M$ such that $M=A \cup B$ and $C=A \cap B$ is a Boolean lattice. Let $a / b$ and $c / d$ be two prime quotients of $C$ which are projective in $A$ and in $B$. If $M$ is finitely $\mathbf{M}$-projected then $a / b$ and $c / d$ are projective in $C$.

Proof. The proof is similar to the previous one. We define an injective endomorphism $\delta$ of $C[Q]$. $a / b$ is isomorphic to $Q$, hence we can choose an arbitrary $t$ such that $b<t<a$. Let $u$ be the relative complement of $b$ in the quotient $a / o$ where $o$ denotes the least element of $C[Q]$. Finally $u^{\prime}$ denotes the complement of $u$ in $C[Q]$. Then the ideal ( $\left.t \vee u^{\prime}\right]$ of $C[Q]$ is isomorphic to $C[Q]$. We have therefore an injective endomorphism $\delta$ for which $\delta a=t$ and $\delta x=x$ for every $x \leqq u^{\prime}$. We assume that $c, d \leqq u^{\prime}$.

If $\varphi$ denotes the isomorphism $C[Q] \rightarrow C^{\prime}[Q]$ then $\psi=\varphi \circ \delta$ is an injection of $C[Q]$ into $C^{\prime}[Q]$, such that the image of $C[Q]$ is an ideal of $C^{\prime}[Q], \psi a>a$, $\psi b=b, \psi c=c, \psi d=d$. Let $L$ be the lattice obtained by gluing together $A[Q]$ and $B[Q]$ identifying the corresponding elements under $\psi$. We can finish the proof as in Theorem 1.

It is easy to generalize the previous theorems if we introduce the following notion.

Definition. Let $M$ be a finite lattice. An injective endomorphism $\delta$ of $M[Q]$ is called a compression if the following properties are satisfied.
(i) $\delta(x) \leqq x$ for every $x \in M[Q]$ and $\delta M[Q]$ is an ideal of $M[Q]$;
(ii) there exists a $\Theta \in \operatorname{Con}(Q)$ with exactly two $\Theta$-classes such that $\delta^{-1}(x) \equiv$ $\equiv x \equiv \delta x(\bar{\Theta})$ for every $x$ where $\bar{\Theta}$ denotes the extension of $\Theta$ to $M[Q]$.

Theorem 3. Let $A$ be an ideal and let $B$ be a filter of the finite modular lattice $M$, such that $M=A \cup B$. Let further $a / b$ and $c / d$ be two prime quotients of $C=A \cap B$ which are projective in $A$ and in $B$. If $C$ has a compression $\delta$ such that $a>\delta a>\delta b=b$ and $\delta c=c, \delta d=d$ then $M$ is not finitely $\mathbf{M}$-projected.
4. Stable quotients. Let $a / b$ be a prime quotient of a finite modular lattice $M$. We define a new element $t$ to $M$ for which $a>t>b$. Then $M \cup\{t\}$ is a partial lattice with the sublattice $M . t \vee m, t \wedge m(m \in M)$ are not defined. It is easy to show that there exists a lattice $\bar{M}$ freely generated by this partial lattice. We say that $a / b$ is stable if $\bar{M}$ is finite. A. Mitschke and R. Wille have proved that every prime quotient of $M_{3}$ is stable. The prime-quotients of $M_{4}$ are not stable.

Conjecture. A finite modular lattice is finitely M-projected if and only if every prime quotient is stable.

It is easy to show - applying [2] - that a finite planar modular lattice is finitely M-projected if and only if every prime quotient is stable.

## References

[1] A. Day, Splitting algebras and weak notion of projectivity, Algebra Universalis, 5 (1975), 153162.
[2] A. Mitschke, E. T. Schmidt, R. Wille, On finitely projected modular lattices of breadth two, in preparation.

