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Covering branchings

ANDRAS FRANK

In a previous paper [4] we proved, among others, a min-max theorem con-
cerning cuts of a directed graph. Now this theorem will be applied in order to get
some new min-max theorems about branchings and arborescences. For example,
a good characterization is given for the problem of the existence of k branchings
covering all of the edges of a directed graph. This theorem can be considered as
a directed counterpart of a theorem of Nash-Willlams about covering forests.

Another corollary is a directed analogue of Tutte’s theorem about edge disjoint
spanning trees. A directed graph has k edge disjoint spanning arborescences
(possibly rooted at different vertices) if and only if, for every family of ¢ disjoint
subsets of vertices, the sum of their indegrees is at least k(¢—1). This theorem
differs from Edmonds’ one concerning the existence of k edge disjoint spanning
arborescences rooted at a fixed vertex. However we shall use Edmonds’ result in
the proof.

~Let G=(V,E) be a finite directed graph with vertex set V' and edge set E.
Multiple edges are allowed, loops are excluded. Let r be a distinguished vertex of G.
We use the notation U=V\{r}. :

An arborescence a is a directed tree such that every edge is directed toward
a different vertex. It is well known that an arborescence has a unique vertex (of
indegree 0) from which every other vertex can be reached by a directed path. This
vertex is called the root of a. A spanning arborescence of G rooted at r is called
an r-arborescence. .

' A branching b is a directed forest, the components of which are arborescences.

We say that a directed edge e enters a set X of vertices if the head of e is in
X but its tail is not. We say that a subset E” of edges enters X if at least one element
of E’ enters X. _

The indegree 05(X) of a subset X of V is the number of edges entering X. The
following inequality is straightforward: @ (X)+0s(Y)Z 06(XUY)+05(XNY).
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For an arbitrary set X, X'€X means that X’ is a family of not necessarily distinct
elements of X.

A family & of subsets of U is called laminar if at least one of X\ Y, Y\ X,
XNY is empty for any two members of &

Let f be a non-negative integer valued function defined on the subsets of U.
f is called weakly supermodular if X, YCU, £(X), f(Y)=>0 and XNY=0 imply
fXO)+HHY)=fXUY)+E(XNY). If X,YSU and XNY=@ already imply it
then f is called supermodular.

A family E’ of not necessarily distinct edges of G (i.e. E'cE) is called
f-entering if in the graph G’=(V, E’) the indegree of every subset X is at least f(X).

Let ¢ be a non-negative integer valued function on E. A family & of not
necessarily distinct subsets of U is called c-edge-independent if each edge e of G
enters at most ¢(e) members of £.

The following theorem was proved in a slightly other form in [4].

Theorem 1. If f is weakly supermodular and ¢(Y)=0 implies £(Y)=0 ‘then
max f(X) = min cle o
ax 300 =pin 3 e(9)

where & is c-edge-independent (#e2Y) and E’'CE is f-entering. The ma,\jim'_um
can be realized by a laminar #.

Let k be a natural number and FCE.

Problem 1. What is the maximum number M of edges of F which can be
covered by k r-arborescences of G?
The case F=E was discussed in [4]. We formulate this problem in another form

Problem la. What is the minimum number m of not necessarily dlstmct
edges of G which, together with F, contain k edge disjoint r-arborescences?

The two problems are equivalent because Mz=k(|]V|—1)—m. :and
m=k(|V|—1)—M, hence i
§)) m+M=k(V)-1). s

By a theorem of J. EDMONDSs [3, 5] a digraph has k edge disjoint r-arbofeé’ceric'es
if and only if the indegree of every subset of ¥\ {r} is at least k. Therefore
m= gp‘i:nE |E’| where E’ is f-entering and the function f is defined as follows:

f(X) = max (0, k—ou(X)) for XS U

‘where 0u(X) is the indegree of X in the subgraph H=(V, F). Obviously f is
weakly supermodular. (Observe that F is used only to define f). Applying Theorem I
to G and to this function f, with the choice c(e)=1 (ecE), we get m= max 2 1(X)
where &# is 1-edge-independent. This, together with (1), proves XeF
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Theorem 2. If H=(V, F) is a subgraph of G=(V, E) then the maximum
number of edges of H which can be covered by k r-arborescences of G is equal to

min [k(V|—1—-0)+ ;2 en (V)]

where the minimum is taken over all l-edge-independent laminar families
F={Vy, Vs, ..., V;} (V,EU).

Problem 2. Let H=(U, F) be a directed graph (there is no distinguished
vertex). What is the maximum number M of edges which can be covered by k
branchings?

Complete H by a new vertex r and by |U| new edges which are joined from
r to all other vertices of U, i.e. V=UU{r} and E=FU{(r, x): xcU}. It is easy
to check that the maximum number of edges of H which can be covered by k
r-arborescences of G=(V, E) is M. Apply Theorem 2 and observe that in this
case a laminar family of subsets of U consists of pairwise disjoint subsets. Thus
we have '

Theorem 3. The maximum number of edges of H=(U, F) which can be
covered by k branchings is equal to

t
min [k(IUl—t)+§ en(M)]
where the minimum is taken over all families of disjoint subsets V; (i=1,2,...,1)
of U.

A simple application of this theorem provides an analogue of Tutte’s disjoint
spanning trees theorem [8].

Theorem 4. H=(U, F) has k edge disjoint spanning arborescences (possibly
rooted at different vertices) if and only if

@ ; on(¥) = k(t—1)

for every family of disjoint subsets V, (i=1,2,...,t) of U.

Proof. H has k edge disjoint spanning arborescences if and only if at least
k(|lU|—1) edges of H can be covered by k branchings, i.e., by Theorem 3,

k(IU|=1)+ 3 0u(V)=k({U|—1), which is equivalent to (2). O
i=1
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Another consequence of Theorem 3 is
Theorem 5. The edges of H can be covered by k branchings if and only if
3 k(UI-0=e

Sor every family of disjoint subsets V,, V,, ..., V, of U, where e, denotes the number
of edges not entering any V,.

1
Proof. By Theorem 3 we have to assure that k(|U|—t)+ > ex(V)=|F|.
t i=1
But this is equivalent to (3), because e+ > op(V)=|F|. O
i=1

Theorem 5a. The edges of H can be covered by k branchings if and only if
(4a) the indegree of every vertex is at most k, and
(4b) the edges of H (in the undirected sense) can be covered by k forests.

Proof. The necessity of the conditions is obvious. For the sufficiency we verify
that (4a) and (4b) imply (3). Let V;,V,, ..., V, be disjoint subsets of U. Let

t
Vo=U\LU V; (V, may be empty) and let e(X) denote the number of edges with
i=1
tails and heads both in X. Then

o= 3 ea@+ 2 e®) = kll+ 2 k(W=D = k(UI-0). ©

Remark. The last theorem can be considered as a new “linking” theorem. Let
A, denote the circuit matroid (on F) of H considering H as an undirected graph.
Let .4, denote the matroid on F in which a subset is defined to be independent if
it contains no two edges directed toward the same vertex. Now Theorem 5a states
that if F can be covered by k independent sets of ., and can be covered by k in-
dependent sets of ., then F can be covered by k sets which are independent in
. both 4, and A,.

Another special case of this statement, when #; and ., are transversal
matroids, was proved by BRuaLD1 [2]. However, this statement is not true in general:
Let #, be the circuit matroid of K, (the complete graph on 4 vertices) and ., be
defined such that a subset in independent if it contains no disjoint edges of X,.

Now we prove a Vizing type theorem which is due to Mosesyan [6] for y=1.

Theorem 6. If in H=(U, F) the indegree of every vertex is at most K and
H does not contain y+1 edges with the same heads and tails then F can be covered
by k=K+y branchings.

Proof. (4a) holds obviously. To prove (4b) we have to verify that e(X)=
=k(|X|—1) for XSU. This condition is equivalent to (4b) by a well-known
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theorem of NasH-WiLLiaMs [7]. If [X|y=k then e(X)=[X|(|X|-Dy=
=k((X|=1). If in turn |X|y=k then e(X)=|X|-K=|X|k—y)s=k(JX|-1). O

Finally, a theorem is stated which is also a consequence of Theorem 1. The
proof is left to the reader.

Theorem 7. The edges of H=(U, F) can be covered by k spanning arborescences
if and only if k(|U{—1—t+d)=e, for every l-edge-independent laminar family
F={Vy, ..., V,}, where e, is the number of edges not entering any V, and d denotes
the maximum number of V,’s containing any vertex.
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